JPH04145933A - Gas separation membrane - Google Patents

Gas separation membrane

Info

Publication number
JPH04145933A
JPH04145933A JP26807890A JP26807890A JPH04145933A JP H04145933 A JPH04145933 A JP H04145933A JP 26807890 A JP26807890 A JP 26807890A JP 26807890 A JP26807890 A JP 26807890A JP H04145933 A JPH04145933 A JP H04145933A
Authority
JP
Japan
Prior art keywords
membrane
gas
alkyl group
separation membrane
gas separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26807890A
Other languages
Japanese (ja)
Inventor
Tadahira Yo
余 忠衡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Original Assignee
Japan Vilene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd filed Critical Japan Vilene Co Ltd
Priority to JP26807890A priority Critical patent/JPH04145933A/en
Publication of JPH04145933A publication Critical patent/JPH04145933A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce deterioration with time in gas transmitting property by making a subtd. polyacetylene membrane occlude a specified amt. of ditrimethylsilylfumalate. CONSTITUTION:The gas separation membrane is prepared by occluding ditrimethylsilylfumalate by 0.5-10.0wt.% in a subtd. polyacetylene polymer membrane expressed by formula I (R1 is hydrogen atom, halogen atom, alkyl group or halogenated alkyl group, and R2 is alkyl group, phenyl group or organosilyl group). This gas separation membrane is excellent in gas transmitting property and shows significant decrease in deterioration of gas transmission coefft with the lapse of time. Thereby, this membrane is very effective for manufacturing a composite with a super-thin film having enough selective transmitting function.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、混合気体から特定の気体を選択透過する気体
分離膜に関する。更に詳しくは、気体透過特性の経時的
劣化を改良した分離膜に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a gas separation membrane that selectively permeates a specific gas from a mixed gas. More specifically, the present invention relates to a separation membrane whose gas permeability characteristics are improved over time.

(従来の技術) 近年、混合気体中から特定の気体を分離濃縮する技術開
発が盛んに行われ、中でも空気中から酸素を25〜40
%に濃縮分離するいわゆる酸素富化膜は、医療分野にお
ける酸素療法を始め燃焼システムにおける省エネ化、健
康機器、菌体の好気性培養など様々な用途への利用が期
待されている。
(Prior art) In recent years, there has been active development of technology for separating and concentrating specific gases from mixed gases.
The so-called oxygen-enriching membrane, which concentrates and separates microbial cells, is expected to be used in a variety of applications, including oxygen therapy in the medical field, energy saving in combustion systems, health equipment, and aerobic culture of bacterial cells.

酸素富化膜に要求される特性のうち重要なことは、酸素
富化空気の透過量が大きいこと、及び酸素濃度が高いこ
とである。酸素富化空気の透過量は、素材固有の値であ
る酸素透過係数(PO2)に比例し、膜厚に反比例する
。また酸素濃度は、酸素透過係数(PO2)と窒素透過
係数(PN2)の比である分離係数(PO2/PN2)
によって決まる。
Important characteristics required of an oxygen-enriched membrane are a large permeation amount of oxygen-enriched air and a high oxygen concentration. The amount of permeation of oxygen-enriched air is proportional to the oxygen permeability coefficient (PO2), which is a value unique to the material, and inversely proportional to the film thickness. In addition, the oxygen concentration is determined by the separation coefficient (PO2/PN2), which is the ratio of the oxygen permeability coefficient (PO2) and the nitrogen permeability coefficient (PN2).
Determined by

従って、理想的な酸素富化膜とは、酸素透過係数が大き
く、かつ分離係数の高い膜素材を用いて、できるだけ薄
い(好ましく数十Å以下の)ピンホールのない超薄膜を
形成することにある。しかし、このような超薄膜は、通
常、膜強度が不十分であり、直接多孔質支持材上に積層
すると、吸引時に薄膜が破壊され実用性を失ってしまう
結果となる。
Therefore, an ideal oxygen-enriched membrane is one that uses a membrane material that has a large oxygen permeability coefficient and a high separation coefficient to form an ultra-thin membrane that is as thin as possible (preferably several tens of Å or less) and has no pinholes. be. However, such ultra-thin films usually have insufficient film strength, and if they are directly laminated onto a porous support material, the thin film will be destroyed during suction, resulting in a loss of practicality.

この問題を解決するためには、超薄膜と多孔質支持材の
間に、補強とクツション性を兼ね備えた非多孔質の薄膜
を介してやればいよい。このような非多孔質膜に要求さ
れる性質は、酸素透過係数がきわめて大きいこと、加え
て、薄膜化に必要な膜強度を備えていることである。何
故なら非多孔質膜の膜厚はその性質上、上層の超薄膜よ
り厚く成らざるを得す、このことは、非多孔質膜が透過
量の律速となり易いことを意味している。超薄膜が十分
な酸素富化機能を有していれば、補強材としての非多孔
質膜にとって、必ずしも高い分離係数は必要でなく、厚
くても透過量が律速とならないように、透過係数のでき
るだけ大きい素材による、強度の強い薄膜化が強く望ま
れるのである。
In order to solve this problem, a non-porous thin film having both reinforcement and cushioning properties may be interposed between the ultra-thin film and the porous support material. Such a non-porous membrane is required to have an extremely high oxygen permeability coefficient and, in addition, to have membrane strength necessary for thinning. This is because the thickness of a non-porous membrane must be thicker than the ultra-thin upper layer due to its nature, which means that the non-porous membrane tends to be rate-limiting for the amount of permeation. As long as the ultra-thin membrane has a sufficient oxygen enrichment function, a high separation coefficient is not necessarily required for a non-porous membrane as a reinforcing material. There is a strong desire to create a strong, thin film using as large a material as possible.

これまで知られた酸素透過係数の大きい高分子膜として
は、ポリジメチルシロキサンがある。酸素透過係数は6
 X 1O−8L?n+3(STP)am/ eTIl
”SeC”e+nHgとゴム状高分子の中では最も高い
がきわめて柔軟であるため25μm以下の薄膜化は困難
であり実用に耐えることができない。また分離係数も2
.0と低い。
Polydimethylsiloxane is a known polymer membrane with a high oxygen permeability coefficient. Oxygen permeability coefficient is 6
X 1O-8L? n+3(STP)am/eTIl
"SeC" e+nHg is the highest among the rubbery polymers, but it is extremely flexible, so it is difficult to form a thin film of 25 μm or less, and it cannot be put to practical use. Also, the separation factor is 2
.. As low as 0.

ポリジメチルシロキサンの薄膜化特性を改良する目的で
、ポリジメチルシロキサン/ポリカーボネート共重合体
(米国特許第3980456号、同37496号)やポ
リジメチルシロキサン共重合体(特開昭56−2650
4号公報)が知られている。これらは、1μm以下の薄
厚を達成することにより透過流量は向上したが、酸素透
過係数は何れもポリジメチルシロキサンを下回るため、
実用性は十分とはいえない。
For the purpose of improving the thin film properties of polydimethylsiloxane, polydimethylsiloxane/polycarbonate copolymers (U.S. Pat.
4) is known. Although the permeation flow rate was improved by achieving a thin thickness of 1 μm or less, the oxygen permeability coefficient was lower than that of polydimethylsiloxane, so
Practicality is not sufficient.

一方、ポリジメチルシロキサンより酸素透過係数の大き
い高分子膜として、ポリ(1−トリメチ・非シリル1−
プロピン)(以下PTMSPと略す)の代表される置換
ポリアセチレン化合物が知られている。 (J、Am、
Chem、Soc、、 105.7473(1983)
)メチル基とトリメチルシリル基という嵩高い運動性に
富んだ側鎖と、剛直な二重結合の主鎖からなるPTMS
Pは、膜の密度が非常に低く、膜中の自由体積が通常の
ガラス状高分子に比べてかなり大きいことから、製膜直
後の分子構造は非常にバルキーであると考えられ、この
ことが高い気体透過係数に繁ると推察される。このPT
MSPからなる膜は、分離係数は1.4〜2.0と低い
が、酸素透過係数は4〜IOX 10−7とポリジメチ
ルシロキサンを1桁も上回り、優れた膜強度を持つため
薄膜化が容易にできるという長所がある。その意味で、
PTMSPは好ましい材料である。
On the other hand, as a polymer membrane with a higher oxygen permeability coefficient than polydimethylsiloxane, poly(1-trimethyl, non-silyl 1-
Substituted polyacetylene compounds typified by PTMSP (hereinafter abbreviated as PTMSP) are known. (J, Am,
Chem, Soc, 105.7473 (1983)
) PTMS consists of bulky and highly mobile side chains of methyl and trimethylsilyl groups and a main chain of rigid double bonds.
Since the film density of P is very low and the free volume in the film is considerably larger than that of ordinary glassy polymers, the molecular structure of P immediately after film formation is considered to be very bulky. It is presumed that this results in a high gas permeability coefficient. This P.T.
A membrane made of MSP has a low separation coefficient of 1.4 to 2.0, but an oxygen permeability coefficient of 4 to IOX 10-7, which is an order of magnitude higher than that of polydimethylsiloxane, and has excellent membrane strength, making it easy to thin the membrane. It has the advantage of being easy to do. In that sense,
PTMSP is a preferred material.

しかしこのPTMSPは、時間経過とともに酸素透過係
数が著しく低下するという大きな欠点があり、特に加熱
下ではこの劣化のスピードは加速される傾向がある( 
J、Appl、Po1m、Sci、、30. 1605
゜(1985))。
However, this PTMSP has a major drawback in that its oxygen permeability coefficient decreases significantly over time, and the speed of this deterioration tends to accelerate, especially under heating (
J, Appl, Po1m, Sci, 30. 1605
(1985)).

気体透過係数の低下の原因は定かではないが、時間経過
とともに起こる分子の緩和現象、或いは空気中の微粒子
の蒸着等によるものと考えられている。従って、PTM
SP膜の酸素透過係数を極力落とさないで如何に長期安
定性を計るかが、大変重要な課題となるのである。
Although the cause of the decrease in gas permeability coefficient is not clear, it is thought to be due to a relaxation phenomenon of molecules that occurs over time, or the deposition of fine particles in the air. Therefore, PTM
A very important issue is how to measure the long-term stability of the SP membrane without reducing its oxygen permeability coefficient as much as possible.

PTMSPの気体透過性に対する経時的不安定さを改善
する目的で、PvC可塑剤として知られるジオクチルフ
タレート(以下DOPと略す)をPTMSP膜に吸着す
る方法が提案されている(第24同高分子と水に関する
討論会 講演要旨集1986年)。しかし、この方法は
DOPを100℃の高温の下で吸着処理するため、カス
透過特性の低下を促進させることに繁り好ましい方法と
はいえない。
In order to improve the instability of PTMSP's gas permeability over time, a method has been proposed in which dioctyl phthalate (hereinafter abbreviated as DOP), known as a PvC plasticizer, is adsorbed onto the PTMSP membrane (No. 24). Collection of abstracts from the water debate 1986). However, since this method adsorbs DOP at a high temperature of 100° C., it often accelerates the deterioration of the sludge permeation properties, and is therefore not a preferable method.

特開昭62−110728号公報むこは、PTMSPに
ポリシロキザン系高分子を含浸または吸着させた気体透
過性複合膜が提案されているが、分離係数はやや上がる
ものの、酸素透過係数は、PTMSP単体の場合に比べ
て大きく低下しており、ここで用いる非多孔質膜として
は適切とはいえない。
JP-A-62-110728 proposes a gas-permeable composite membrane in which PTMSP is impregnated with or adsorbed with a polysiloxane polymer, but although the separation coefficient is slightly higher, the oxygen permeability coefficient is lower than that of PTMSP alone. This is significantly lower than in the case, and it cannot be said to be suitable as a non-porous membrane used here.

(発明が解決しようとする問題点) 本発明は、上記欠点を解決するもので、気体透過性に優
れ、且つ酸素透過係数の経時的低下度の少ない気体分離
膜を提供するものである。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned drawbacks, and provides a gas separation membrane that is excellent in gas permeability and whose oxygen permeability coefficient decreases little over time.

(問題点を解決するための手段と作用)本発明は、PT
MSPに代表される置換ポリアセチレンの持つ優れた酸
素透過性係数をできるだけ低下させることなく、経時的
に安定な高分子膜の提供を目的としたもので、PTMS
P膜の表面または内部に、ジトリメチルシリルフマレー
ト(以下DTMSFと略す)のモノマーまたは/および
オリゴマーを吸蔵化することにより、優れた膜強度と高
い酸素透過係数を併せ−持つ膜素材ができることを見出
し、本発明を完成するに至った。
(Means and effects for solving the problems) The present invention
The purpose is to provide a polymer membrane that is stable over time without reducing the excellent oxygen permeability coefficient of substituted polyacetylene represented by MSP.
We discovered that by occluding ditrimethylsilyl fumarate (hereinafter abbreviated as DTMSF) monomers and/or oligomers on the surface or inside of a P membrane, it is possible to create a membrane material that has both excellent membrane strength and a high oxygen permeability coefficient. , we have completed the present invention.

すなわち、本発明は、 「一般式が +C=C気 (但し、R1は水素原子、ハロゲン原子、アルキル基、
またはハロゲン化アルキル基、R2はアルキル基、フェ
ニル基、またはオルガノシリル基)で示される置換ポリ
アセチレン高分子膜にジトリメチルシリルフマレートを
0.5〜lo、owt%吸蔵化させることを特徴とする
気体分離膜」をその要旨とするものである。
That is, the present invention provides that ``the general formula is +C=C (where R1 is a hydrogen atom, a halogen atom, an alkyl group,
or a halogenated alkyl group, R2 is an alkyl group, a phenyl group, or an organosilyl group) A gas characterized by occluding 0.5 to lo, owt% of ditrimethylsilyl fumarate into a substituted polyacetylene polymer membrane. Its gist is ``separation membranes''.

本発明に用いる置換ポリアセチレンとしては、例えばポ
リメチルアセチレン、ボリエメチルアセチレン、ポリプ
ロピルアセチレン、ポリt−ブチルアセチレン、ポリト
リメチルシリルプロピン、ポリl、2−ビス(トリメチ
ルシリル)アセチレン、ポリフェニルアセチレン、ポリ
1−クロロ2−フェニルアセチレン等があるがこれに限
定されるものではない。
Examples of the substituted polyacetylene used in the present invention include polymethylacetylene, polymethylacetylene, polypropylacetylene, polyt-butylacetylene, polytrimethylsilylpropylene, polyl,2-bis(trimethylsilyl)acetylene, polyphenylacetylene, and polyacetylene. Examples include, but are not limited to, 1-chloro2-phenylacetylene.

置換ポリアセチレンの中で、例えばP TMS Pは、
従来知られた増圧等のJ、Am、Chem、Soc、 
、 105.7473(1983)の方法に準じて作成
することができる。
Among the substituted polyacetylenes, for example, P TMS P is
Conventionally known pressure increase etc. J, Am, Chem, Soc,
, 105.7473 (1983).

市販の1−トリメチルシリル1−プロピンを原料とし、
重合触媒として五塩化タンタル、五塩化ニオブ等を用い
、有機溶媒(トルエン、キシレン、ベンゼン、1.2−
ジクロロエタン、四塩化炭素等)の下80℃で12から
24時間重合することにより得られる。生成したポリマ
ーは多量のメタノール中に沈降させ、白色粉末のPTM
SPに精製する。重量平均分子量は、GPC法によりス
チレン換算値で50万以上好ましくは100万以上であ
る。
Using commercially available 1-trimethylsilyl-1-propyne as a raw material,
Tantalum pentachloride, niobium pentachloride, etc. are used as polymerization catalysts, and organic solvents (toluene, xylene, benzene, 1.2-
dichloroethane, carbon tetrachloride, etc.) at 80° C. for 12 to 24 hours. The produced polymer was precipitated in a large amount of methanol to form a white powder of PTM.
Purify to SP. The weight average molecular weight is 500,000 or more, preferably 1,000,000 or more as a styrene equivalent value determined by GPC method.

本発明に用いる置換ポリアセチレン高分子は(トルエン
、キシレン、ベンゼン、n−ヘキサン等の有機溶媒に溶
解し、通常知られたキャスト法、水面展開法等により容
易に薄膜化することができ、多孔質支持材上に積層され
、超薄膜用補強層としての複合膜が形成される。
The substituted polyacetylene polymer used in the present invention (dissolved in an organic solvent such as toluene, xylene, benzene, n-hexane, etc.) can be easily formed into a thin film by commonly known casting methods, water surface development methods, etc., and is porous. It is laminated on a support material to form a composite membrane as a reinforcing layer for ultra-thin membranes.

多孔質支持材としては、酢酸セルロース、ポリカーボネ
ット、ポリスルホン、ポリエーテルスルホン、ポリオレ
フィン等の高分子多孔質膜が使用できる。
As the porous support material, porous polymer membranes such as cellulose acetate, polycarbonate, polysulfone, polyethersulfone, and polyolefin can be used.

PTMSP単独の経時的なガス透過特性を知るため、ま
ず本ポリマーをベンゼン溶媒に溶解し、ガラス板上にキ
ャストした後、室温で乾燥し、膜厚80〜150μmの
フィルムを作成した。低圧法により気体透過率を測定し
たところ、PTMSPフィルムの酸素透過係数の初期値
は6〜10×10−7と非常に高い値を示したが、時間
と共に経時劣化し、特に加速試験のため100℃加熱雰
囲気中に放置すると、酸素透過係数は1昼夜後1120
以下に低下することが分かった。
In order to understand the gas permeation characteristics of PTMSP alone over time, the present polymer was first dissolved in a benzene solvent, cast on a glass plate, and then dried at room temperature to form a film with a thickness of 80 to 150 μm. When the gas permeability was measured by a low pressure method, the initial value of the oxygen permeability coefficient of the PTMSP film was very high, 6 to 10 × 10-7, but it deteriorated over time, and the oxygen permeability coefficient of 100 When left in a heated atmosphere at ℃, the oxygen permeability coefficient becomes 1120 after 1 day and night.
It was found that it decreased below.

本発明に用いるDTMSFは、公知の方法により、フマ
ル酸とへキサメチルジシラサンを130℃オイルバス上
で8時間反応させた後、減圧蒸留により精製DTMSF
を得た。DTMSFはモノマーまたは/及びオリゴマー
として、メチルアルコール、エチルアルコール、アセト
ン、酢酸エチル等の有機溶媒に溶解させ、この溶液中に
PTMSPをはじめ、置換ポリアセチレンフィルムを浸
漬し、DTMSFを置換ポリアセチレンフィルムの表層
または/および内部に吸−化させる。あるいはDTMS
Fを、減圧下でDTMSF蒸気として置換ポリアセチレ
ンフィルムに吸蔵化させることができる。いずれの場合
も、吸蔵化温度は気体透過性の低下を防止するため、4
0〜50℃以下、できれば常温下で行うことが望ましい
The DTMSF used in the present invention is obtained by reacting fumaric acid and hexamethyldisilazane on a 130°C oil bath for 8 hours, and then distilling the purified DTMSF under reduced pressure.
I got it. DTMSF is dissolved as a monomer or/and oligomer in an organic solvent such as methyl alcohol, ethyl alcohol, acetone, or ethyl acetate, and a substituted polyacetylene film including PTMSP is immersed in this solution. / and absorbed into the interior. Or DTMS
F can be occluded into substituted polyacetylene films as DTMSF vapor under reduced pressure. In either case, the occlusion temperature is set to 4
It is desirable to carry out the process at a temperature of 0 to 50°C or less, preferably at room temperature.

DTMSFの置換ポリアセチレンフィルムに対する吸蔵
化量は、0.5〜10wt%が好ましく、1.0〜5.
0w%であれば、更に好ましい。吸蔵化量がこの範囲に
あれば、気体透過性を余り損なうことがなく、酸素透過
係数の経時安定性を保つことができる。DTMSFの吸
蔵化量が0.5wt%以下になると、未処理のPTMS
Pフィルムと同じく急激な経時的酸素透過係数の低下が
見られ、DTMSFの吸蔵化効果は認められない。一方
、DTMSFの吸蔵化量が10wt%を越えると、分離
係数は少し高いが、酸素透過係数の初期値が10−8台
と低くなり好ましくない。
The amount of occlusion of DTMSF in the substituted polyacetylene film is preferably 0.5 to 10 wt%, and 1.0 to 5.
It is more preferable if it is 0w%. If the amount of occlusion is within this range, the gas permeability will not be significantly impaired and the stability of the oxygen permeability coefficient over time can be maintained. When the amount of occlusion of DTMSF becomes 0.5wt% or less, untreated PTMS
As with the P film, a rapid decrease in the oxygen permeability coefficient over time was observed, and no occlusion effect of DTMSF was observed. On the other hand, if the amount of occlusion of DTMSF exceeds 10 wt %, the separation coefficient will be a little high, but the initial value of the oxygen permeability coefficient will be as low as 10-8, which is not preferable.

(実施例)1・: 以下実施例と比較例により本発明の詳細な説明するが、
本発明はこれに限定されたものではない。
(Example) 1: The present invention will be explained in detail below with reference to Examples and Comparative Examples.
The present invention is not limited to this.

=12一 実施例−1 PTMSPフィルムの調製 1−トリメチルシリル1−プロピン(アルドリッチ社製
)500ミリモルをトルエン500−に溶解し、触媒と
して五塩化タルタル5ミリモルを加え、80℃で24時
間重合した。生成ポリマーをトルエンに溶解し、多量の
メタノール中に沈澱させ精製した。
=12 Example-1 Preparation of PTMSP film 500 mmol of 1-trimethylsilyl-1-propyne (manufactured by Aldrich) was dissolved in 500 mmol of toluene, 5 mmol of tartarum pentachloride was added as a catalyst, and the mixture was polymerized at 80° C. for 24 hours. The resulting polymer was purified by dissolving it in toluene and precipitating it into a large amount of methanol.

ポリマーの重量平均分子量MwをGPC法により測定し
たところMw=198万であった。
The weight average molecular weight Mw of the polymer was measured by GPC method and was found to be 1,980,000.

精製ポリマー2.0gベンゼン100−に溶解し、平滑
なガラス板上に流延し、常温常圧の下で溶媒を蒸発させ
、膜厚120μmのPTMSPフィルムな得た。
2.0 g of the purified polymer was dissolved in 100 g of benzene, cast on a smooth glass plate, and the solvent was evaporated at room temperature and pressure to obtain a PTMSP film with a thickness of 120 μm.

DTMSFの吸蔵化 フマル酸1.0モルをヘキサメチルシラザン1.1モル
に入れ、130℃で8時間反応させた。生成物を減圧蒸
留し白色結晶状の精製DTMSFを得た。
1.0 mol of occluded fumaric acid of DTMSF was added to 1.1 mol of hexamethylsilazane, and the mixture was reacted at 130° C. for 8 hours. The product was distilled under reduced pressure to obtain purified DTMSF in the form of white crystals.

精製DTMSF3.0gをメタノール+00dに溶解し
、この溶液中に先に作成したPTMSPフィルムを1昼
夜浸漬した後、室温で乾燥させたところ、PTMSPに
対するDTMSFの吸蔵化量は2.9wt%であった。
3.0 g of purified DTMSF was dissolved in methanol + 00 d, and the previously prepared PTMSP film was immersed in this solution for a day and night, and then dried at room temperature, and the amount of occlusion of DTMSF relative to PTMSP was 2.9 wt%. .

実施例−2 精製DTMSF6.0gをメタノール100m1lに溶
解し、この溶液中に実施例−1で作成した膜厚120μ
mのPTMSPフィルムを1昼夜浸漬し、乾燥したとこ
ろPTMSPに対するDTMSFの吸蔵化量は5.6w
t%であった。
Example-2 6.0 g of purified DTMSF was dissolved in 100 ml of methanol, and a film with a thickness of 120 μm prepared in Example-1 was added to this solution.
When a PTMSP film of m was soaked for a day and night and dried, the amount of occlusion of DTMSF relative to PTMSP was 5.6w.
It was t%.

比較例−1 実施例−1で作成した膜厚120μmのPTMSPフィ
ルムをそのまま用いた。
Comparative Example-1 The 120 μm thick PTMSP film prepared in Example-1 was used as it was.

比較例−2 精製D T M S F 0.2gをメタノール100
−に溶解し、この溶液中に実施例−1で作成した膜厚1
20μmのPTMSPフィルムを1昼夜浸漬し、乾燥し
たところPTMSPに対するDTMSFの吸蔵化量は0
.2wt%であった。
Comparative Example-2 0.2 g of purified DTMSF was added to 100 g of methanol.
- and the film thickness 1 formed in Example-1 in this solution.
When a 20μm PTMSP film was soaked for one day and night and dried, the amount of DTMSF absorbed by PTMSP was 0.
.. It was 2wt%.

比較例−3 精製D TMS F 15.0gをメタノールloom
9!に溶解し、この溶液中に実施例−1で作成した膜厚
120μmのPTMSPフィルムを1昼夜浸漬し、乾燥
したところ、PTMSPに対するDTMSFの吸蔵化量
は14.3wt%であった。
Comparative Example-3 15.0g of purified D TMS F was placed in methanol room.
9! When the PTMSP film having a thickness of 120 μm prepared in Example 1 was immersed in this solution for a day and night and dried, the amount of DTMSF occluded with respect to PTMSP was 14.3 wt%.

以上、実施例1〜2及び比較例1〜3て得られたフィル
ムを経時劣化を促進させるために100℃加熱雰囲気に
入れ、気体透過特性をガス透過率測定機(理化精機工業
製に一315使用)を用いて測定した。
The films obtained in Examples 1 to 2 and Comparative Examples 1 to 3 were placed in a heated atmosphere at 100°C to accelerate deterioration over time, and the gas permeation characteristics were measured using a gas permeability measuring device (manufactured by Rika Seiki Kogyo Co., Ltd.). (used).

その結果を表1に示す。The results are shown in Table 1.

いずれの場合も高い酸素透過係数と、経時的劣化の少な
い分離膜が得られた。
In all cases, separation membranes with high oxygen permeability coefficients and little deterioration over time were obtained.

(以下余白) +5− (発明の効果) 以上如く本発明はDTMSFを置換ポリアセチレン膜の
表面または/および内部に吸蔵化してなる気体分離膜を
提供するもので、気体透過特性に優れ、気体透過係数の
経時的劣化を著しく低減できることから、十分な選択透
過機能を持つ超薄膜と複合させる上において、非常に有
効な気体分離膜である。
(Blank below) +5- (Effects of the Invention) As described above, the present invention provides a gas separation membrane in which DTMSF is occluded on the surface and/or inside of a substituted polyacetylene membrane, which has excellent gas permeability and a low gas permeability coefficient. It is a very effective gas separation membrane when combined with an ultra-thin membrane that has a sufficient selective permeation function.

Claims (2)

【特許請求の範囲】[Claims] (1)一般式が ▲数式、化学式、表等があります▼ (但し、R_1は水素原子、ハロゲン原子、アルキル基
、またはハロゲン化アルキル基、R_2はアルキル基、
フェニル基、またはオルガノシリル基)で示される置換
ポリアセチレン高分子膜にジトリメチルシリルフマレー
トを0.5〜10.0wt%吸蔵化させることを特徴と
する気体分離膜。
(1) The general formula is ▲ Numerical formula, chemical formula, table, etc. ▼ (However, R_1 is a hydrogen atom, halogen atom, alkyl group, or halogenated alkyl group, R_2 is an alkyl group,
1. A gas separation membrane characterized in that 0.5 to 10.0 wt % of ditrimethylsilyl fumarate is occluded in a substituted polyacetylene polymer membrane represented by a phenyl group or an organosilyl group.
(2)置換ポリアセチレン高分子がポリ(1−トリメチ
ルシリル1−プロピン)である特許請求の範囲第1項記
載の気体分離膜。
(2) The gas separation membrane according to claim 1, wherein the substituted polyacetylene polymer is poly(1-trimethylsilyl-1-propyne).
JP26807890A 1990-10-04 1990-10-04 Gas separation membrane Pending JPH04145933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26807890A JPH04145933A (en) 1990-10-04 1990-10-04 Gas separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26807890A JPH04145933A (en) 1990-10-04 1990-10-04 Gas separation membrane

Publications (1)

Publication Number Publication Date
JPH04145933A true JPH04145933A (en) 1992-05-19

Family

ID=17453582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26807890A Pending JPH04145933A (en) 1990-10-04 1990-10-04 Gas separation membrane

Country Status (1)

Country Link
JP (1) JPH04145933A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707423A (en) * 1996-06-14 1998-01-13 Membrane Technology And Research, Inc. Substituted polyacetylene separation membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707423A (en) * 1996-06-14 1998-01-13 Membrane Technology And Research, Inc. Substituted polyacetylene separation membrane

Similar Documents

Publication Publication Date Title
US4689267A (en) Composite hollow fiber
US4759776A (en) Polytrialkylgermylpropyne polymers and membranes
JPS59154106A (en) Gas-separation membrane
US4567245A (en) Substituted polyacetylene copolymer
JPH04145933A (en) Gas separation membrane
JPS61129008A (en) Composite membrane for separating gas and its preparation
US5494989A (en) Acetylenic copolymers and membranes thereof
JPS61192322A (en) Composite membrane for separation
KR100265693B1 (en) A separating membrane
JPH0365223B2 (en)
JPH0440223A (en) Gas separation composite membrane
JPS59115738A (en) Selective gas-permeable membrane and its manufacture
JPS61200833A (en) Carbon dioxide permselective membrane
JPH0221291B2 (en)
JPS63236515A (en) Gas separating membrane
JPS62110729A (en) Permselective compound film for gas
JPS58223407A (en) Gas separation film
JPS6135823A (en) Gas permeable membrane
JPH0352631A (en) Polymer membrane for oxygen enrichment
JPH041654B2 (en)
JPH029430A (en) Gas separation membrane and composite gas separation membrane
JPS61146320A (en) Gas permeable membrane
JPS6238381B2 (en)
JPH0446172B2 (en)
JP3299298B2 (en) Gas selective permeable composite membrane