JPH04145674A - Electrostrictive effect element and production of the same - Google Patents

Electrostrictive effect element and production of the same

Info

Publication number
JPH04145674A
JPH04145674A JP2269846A JP26984690A JPH04145674A JP H04145674 A JPH04145674 A JP H04145674A JP 2269846 A JP2269846 A JP 2269846A JP 26984690 A JP26984690 A JP 26984690A JP H04145674 A JPH04145674 A JP H04145674A
Authority
JP
Japan
Prior art keywords
cutting
electrostrictive
block
groove
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2269846A
Other languages
Japanese (ja)
Inventor
Isao Tochihara
功 栃原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2269846A priority Critical patent/JPH04145674A/en
Publication of JPH04145674A publication Critical patent/JPH04145674A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To realize high quality by providing a chamfered areas to the periphery of both end faces in the displacing direction of an element. CONSTITUTION:Generation of crack or cutting with an external impact is made difficult by executing the chamfering in the predetermined inclination to both end faces 5a, 5b in the displacing direction and respective four sides of an element. An element can precisely control a fine mechanical displacement as a piezoelectric actuator. Mass-production is possible by previously forming the chamfered areas like a V-shaped groove and cutting the groove at the center in the producing process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電歪効果素子とその製造方法に関し、特に、
電歪効果素子の端面形状の改善に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrostrictive effect element and a manufacturing method thereof, and in particular,
This invention relates to improving the end face shape of an electrostrictive element.

〔従来の技術〕[Conventional technology]

電歪効果素子(以下素子と記す)は、電歪効果により、
電気エネルギーを機械エネルギーに変換して微小な機械
的変位を発生するものであって、圧電アクチュエータの
素子として、現在、半導体集積回路の製造装置における
マスフローコントローラや露光装置のX−Yテーブル、
あるいは、プラスチックの射出成形機など、微小な位置
の移動量を精密に制御する必要がある分野で使用されて
いる。
An electrostrictive effect element (hereinafter referred to as an element) has an electrostrictive effect that
It converts electrical energy into mechanical energy to generate minute mechanical displacements, and is currently used as a piezoelectric actuator element in mass flow controllers in semiconductor integrated circuit manufacturing equipment, X-Y tables in exposure equipment,
Alternatively, it is used in fields where it is necessary to precisely control the amount of movement of minute positions, such as plastic injection molding machines.

この素子としては、低い電圧で大きな変位を得ることが
できるように、電歪材料を薄層にし、この電歪材料の薄
層と内部電極とを交互に積層した、いわゆる、積層形の
構造のものが広く用いられている。
This element has a so-called laminated structure in which thin layers of electrostrictive material and internal electrodes are alternately laminated so that a large displacement can be obtained with a low voltage. things are widely used.

第4図に、従来の素子の構造を示す。FIG. 4 shows the structure of a conventional element.

第4図に示す従来の素子においては、電歪効果を示すセ
ラミック層1と内部電極2とが交互に積層され、内部電
極2が露出する四つの側面のうちの対向する二つの側面
に、内部電極2の露出部とその近傍のセラミック層1の
部分を覆うようにして、絶縁体3が一層おきに、たがい
ちがいに設けらている。
In the conventional element shown in FIG. 4, ceramic layers 1 exhibiting an electrostrictive effect and internal electrodes 2 are alternately laminated, and internal Insulators 3 are provided on every other layer so as to cover the exposed portions of the electrodes 2 and the portions of the ceramic layer 1 in the vicinity thereof.

このような構造においては、内部電極2が一層おきに同
じ外部電極4に接続され、隣り合う内部電極同志がセラ
ミック層1を挟んで互いに対向電極となるので、外部か
ら外部電極4に電圧が印加されると、セラミック層1が
電歪効果を示し、第4図中に矢印で示す方向に機械的変
位が発生する。
In such a structure, the internal electrodes 2 are connected to the same external electrode 4 every other layer, and adjacent internal electrodes serve as opposing electrodes with the ceramic layer 1 in between, so that a voltage cannot be applied to the external electrode 4 from the outside. Then, the ceramic layer 1 exhibits an electrostrictive effect, and mechanical displacement occurs in the direction indicated by the arrow in FIG.

上述のような構造の素子は、後述するように、その製造
工程中で、大きな積層体から切り出して所望の形状・寸
法に仕上げて作製するが、従来の素子においては、第4
図に示すように、変位方向の両端面5a及び5bの4つ
の辺が、それぞれ、切り出したままの状態で面取りされ
ていないので、素子の両端面5a及び5bと側面とのな
す角は鋭角である。
Elements with the above-mentioned structure are manufactured by cutting out a large laminate and finishing it with the desired shape and dimensions during the manufacturing process, as will be described later. However, in conventional elements, the fourth
As shown in the figure, since the four sides of both end faces 5a and 5b in the displacement direction are not chamfered in the cut-out state, the angles formed by the side faces and both end faces 5a and 5b of the element are acute angles. be.

以下に、上述の構造を持つ従来の素子の製造工程につい
て述べる。
The manufacturing process of a conventional element having the above structure will be described below.

第4図に示す従来の素子を作製するには、先ず、電歪材
料としてチタン酸鉛などを用いたセラミックの仮焼粉末
を準備し、これを有機バインダー及び可塑剤とともに有
機溶媒中に分散させて泥漿をつくる。
To fabricate the conventional element shown in Figure 4, first, a ceramic calcined powder using lead titanate or the like as an electrostrictive material is prepared, and this is dispersed in an organic solvent together with an organic binder and a plasticizer. to create a slurry.

この泥漿から、ドクターブレードを用いたスリップキャ
スティング法により所定の大きのグリーンシートを作製
する。
A green sheet of a predetermined size is produced from this slurry by slip casting using a doctor blade.

次に、第5図(a)に示すように、銀粉末とパラジウム
粉末の混合粉とをビヒクルとともにペースト化させた混
合ペーストを、印刷スクリーン法を用いて、グーリーン
シート6の片面に被着させ、乾燥させて内部電極2を形
成する。
Next, as shown in FIG. 5(a), a mixed paste made by making a paste of a mixed powder of silver powder and palladium powder together with a vehicle is applied to one side of the green sheet 6 using a printing screen method. The internal electrodes 2 are formed by drying.

次に、内部電極2が形成されたグリーンシート6を、1
枚おきに180°回転させ、所定の枚数だけ詰み重ね、
熱プレスで上下がら圧着し、温度500℃まで加熱して
グリーンシート中に含まれる有機バインダー及び可塑剤
を分解させて除去した後、1120℃で焼成して第5図
(b)に示すような積層体7を得る。
Next, the green sheet 6 on which the internal electrode 2 was formed was placed in one
Rotate every other sheet 180°, stack the specified number of sheets,
The green sheet was pressed from top to bottom with a heat press, heated to a temperature of 500°C to decompose and remove the organic binder and plasticizer contained in the green sheet, and then fired at 1120°C to form a green sheet as shown in Figure 5(b). A laminate 7 is obtained.

次いで、焼成を完了した積層体7を、第5図(c)に示
すように、金属製例えばピアノ線などのワイヤー8を用
いた切断加工機により、ブロック状に切削加工してブロ
ックを形成する。
Next, as shown in FIG. 5(c), the fired laminate 7 is cut into a block shape using a cutting machine using a metal wire 8 such as piano wire. .

この時、ブロックの左右の面には、−層おきに内部電極
の端面が露出するので、次工程で、第5図(d)に示す
ように、ブロック9の端面に銀ペーストを塗布して一対
の仮電極10a及び10bを形成すると、内部電極2が
、−層おきに、交互に左右の仮電極10a及び10bに
接続される。
At this time, the end surfaces of the internal electrodes are exposed on the left and right surfaces of the block at every - layer, so in the next step, silver paste is applied to the end surfaces of the block 9, as shown in FIG. 5(d). After forming the pair of temporary electrodes 10a and 10b, the internal electrodes 2 are alternately connected to the left and right temporary electrodes 10a and 10b every other layer.

次に、第5(e)に示すように、例えばテフロン製テー
プなどのマスキング材11をブロック9の一方の切断面
に貼付け、ブロック9の左右の面に形成された仮電極1
0a及び10bに電圧を印加し、電気泳動法により、ブ
ロック9の切断面に露出している内部電極上に、−層お
きにガラス粉末を電着させ、焼成して絶縁体3を形成す
る。
Next, as shown in 5(e), a masking material 11 such as Teflon tape is pasted on one cut surface of the block 9, and temporary electrodes 1 are formed on the left and right surfaces of the block 9.
A voltage is applied to 0a and 10b, and glass powder is electrodeposited every other layer on the internal electrodes exposed on the cut surface of the block 9 by electrophoresis, and is fired to form the insulator 3.

次に、前工程とは反対側の面にマスキング材を貼付け、
前工程とは逆の電圧を仮電極に印加して前工程で形成さ
れた絶縁体とはたがいちがいの位置に絶縁体を形成する
Next, apply masking material to the side opposite to the previous process,
A voltage opposite to that in the previous step is applied to the temporary electrode to form an insulator at a position different from that of the insulator formed in the previous step.

次に、第5図(f)に示すように、交互に露出した内部
電極2の上に、銀ベーストなどの外部電極4を形成し、
各内部電極と外部電極とを接続した後、第5図(g)に
示すように、ピアノ線などのワイヤー8を用いた切断加
工機により、チップ状に切り出すと第4図に示す素子が
得られる。
Next, as shown in FIG. 5(f), external electrodes 4 such as silver base are formed on the alternately exposed internal electrodes 2,
After connecting each internal electrode and external electrode, as shown in FIG. 5(g), the element shown in FIG. 4 is obtained by cutting into chips using a cutting machine using a wire 8 such as a piano wire. It will be done.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の素子では、変位方向の両端面の各辺が面
取りされておらず、素子の両端面と側面とのなす角が鋭
角であるので、両端面の各辺は外力に対して非常に脆い
In the conventional element described above, each side of both end faces in the displacement direction is not chamfered, and the angles formed between both end faces of the element and the side surfaces are acute angles, so each side of both end faces is extremely sensitive to external force. brittle.

このため、僅かな衝撃でも変位の基準となるべき素子の
端面にクラックが入ったり、欠けたりして、この素子を
圧電アクチュエータの素子として用いた時に、ミクロン
オーダの微小な変位を精密に制御することができなくな
ってしまう。
For this reason, even a slight impact can cause cracks or chips on the end face of the element that serves as a reference for displacement, making it difficult to precisely control minute displacements on the micron order when this element is used as a piezoelectric actuator element. I become unable to do so.

又、素子の機械的強度が低下し、品質が低下する。In addition, the mechanical strength of the element is reduced and the quality is degraded.

一方、各辺の面取りを行う方法としては、例えばアルミ
ナ族などの細かい粒子を面取りを行いたい部分に高速で
ぶつけるサンドブラスト法や、面取りを行いたい辺を2
辺あるいは4辺同時に研削盤で削る方法などがある。
On the other hand, methods for chamfering each edge include, for example, the sandblasting method in which fine particles such as alumina are hit at high speed on the area to be chamfered, and
There is a method of grinding one side or all four sides at the same time using a grinder.

しかし、サンドブラスト法では、面取りを行いたい部分
以外の部分にも傷をつけることがあるので、前述のよう
に素子の性能や品質を損なうことがあり、又、面取りの
寸法精度がよくない。
However, the sandblasting method may damage parts other than the part to be chamfered, which may impair the performance and quality of the element as described above, and the dimensional accuracy of chamfering is poor.

一方、研削盤で削る方法では、装置が複雑化してしまう
On the other hand, the method of grinding with a grinder requires complicated equipment.

いずれの方法でも、素子をチップ状に切り出してから面
取りを行うため、量産に適さず、性能や品質の低下を招
くという欠点がある。
In either method, the elements are cut into chips and then chamfered, so they are not suitable for mass production and have the disadvantage of causing a decline in performance and quality.

〔課題を解決するための手段〕[Means to solve the problem]

請求項1記載の電歪効果素子は、電歪材料の層と内部電
極の層とを交互に積層してなる積層形電歪効果素子にお
いて、 前記積層形電歪効果素子の変位方向に垂直な二つの端面
の周辺部に面取り部を設けたことを特徴とする。
The electrostrictive element according to claim 1 is a laminated electrostrictive element in which layers of electrostrictive material and layers of internal electrodes are alternately laminated, and the electrostrictive element has the following features: It is characterized in that a chamfered portion is provided at the periphery of the two end faces.

また請求項2記載の電歪効果素子の製造方法は、電歪効
果を示す材料の層と内部電極の層とが交互に積層され一
体化された積層体を形成する工程と、 前記積層体を切断してブロックを形成する工程と、 前記ブロックを切断してチップを形成する工程とを含む
積層形電歪効果素子の製造方法において、 前記ブロック形成工程では、前記積層体の、切断方向と
垂直な一対の面の切断位置に予じめ■溝を設け、このV
溝の位置で前記積層体を切断し、前記チップ形成工程で
は、前記ブロックの、切断方向と垂直な一対の面の切断
位置に予じめV溝を設け、このV溝の位置で前記ブロッ
クを切断することを特徴とする。
The method for manufacturing an electrostrictive element according to claim 2 further includes a step of forming a laminate in which layers of a material exhibiting an electrostrictive effect and layers of internal electrodes are alternately laminated and integrated; In the method for manufacturing a multilayer electrostrictive element, the method includes the steps of cutting the block to form a block, and cutting the block to form a chip, in which the block forming step is performed in a direction perpendicular to the cutting direction of the laminate. A groove is prepared in advance at the cutting position of the pair of surfaces, and this V
The laminated body is cut at the groove position, and in the chip forming step, a V groove is provided in advance at the cutting position of a pair of surfaces perpendicular to the cutting direction of the block, and the block is cut at the position of the V groove. Characterized by cutting.

〔実施例〕〔Example〕

次に、本発明について、図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は、本発明の実施例の構造を示す断面図である。FIG. 1 is a sectional view showing the structure of an embodiment of the present invention.

本実施例では、電歪材料として、複合へロブスカイト構
造を有するチタン酸ジルコニウム酸鉛からなるセラミッ
クを用い、内部電極として、銀・パラジウム合金を用い
ており、素子の構造は、第4図に示す従来の素子と類似
の構造をしているが、素子の変位方向の両端面5a及び
5bのそれぞれの4辺には、約45°の傾きを持つ面取
りが施されている。
In this example, a ceramic made of lead zirconate titanate having a composite herovskite structure is used as the electrostrictive material, and a silver-palladium alloy is used as the internal electrode. The structure of the element is shown in FIG. Although it has a similar structure to a conventional element, each of the four sides of both end faces 5a and 5b in the displacement direction of the element is chamfered with an inclination of about 45 degrees.

本実施例の素子は、前述の従来の素子の製造工程と類似
の製造工程によって作製したが、この場合、焼成を終っ
た積層体を切断してプロ・ンクを切り出す時に、第2図
(a)に示すように、先ず、ダイシングソーなどの外周
刃切断機を用いて、積層体7の上面及び下面の切断位置
に■渭12を設ける。
The device of this example was fabricated by a manufacturing process similar to that of the conventional device described above, but in this case, when cutting out the fired laminate to cut out the prongs, as shown in Fig. 2 (a). ), first, using a circumferential blade cutter such as a dicing saw, the arms 12 are provided at cutting positions on the upper and lower surfaces of the laminate 7.

本実施例では、幅が2m11、深さがl amの形状の
V溝を設けた。
In this example, a V-groove having a width of 2 m11 and a depth of lam was provided.

次に、第2図(b)に示すように、このV溝12の位置
で、従来の製造方法と同様に、ワイヤー8を用いた切断
加工機により切断して、ブロックを切り出した。
Next, as shown in FIG. 2(b), the block was cut at the position of the V-groove 12 using a cutting machine using a wire 8, as in the conventional manufacturing method.

更に、製造工程が進んで、外部電極が形成されたブロッ
クを切断してチップを切り出す時に、第3図(a)に示
すように、先ず、ダイシングソーなどの外周刃切断機を
用いて、プロ・ンク9の上面及び下面の切断位置にV?
1112を加工してがち、第3図(b)に示すように、
このV渭の位置で、ブイヤー8により切断してチップを
切り出した。
Furthermore, when the manufacturing process progresses and the block on which the external electrodes are formed is cut to cut out the chips, as shown in Figure 3(a), first, a peripheral blade cutting machine such as a dicing saw is used to cut out the chips.・Is there a V at the cutting position on the upper and lower surfaces of the link 9?
1112, as shown in Figure 3(b),
At this V edge position, a cutter was used to cut out chips.

上述のような製造工程により作製した本実施8による素
子では、第1図に示すように、素子の5位の基準面とな
る、変位方向の両端面の4辺にa取りを行っているので
、外部がらの衝撃によりブラックが入ったり欠けたりす
ることが少ない。
In the device according to Example 8, which was manufactured by the manufacturing process described above, as shown in FIG. , there is less chance of black staining or chipping due to external impact.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、請求項1記載の発明にJれば、電
歪効果素子の変位方向の両端面の周辺翔に面取り部が設
けられているので、変位の基準となる面にクラックや欠
けが発生しに<<、圧電アクチュエータとして用いた時
に微小な機械的変信を精密に制御できる、高品質の電歪
効果素子を捕ることができる。
As explained above, according to the invention set forth in claim 1, chamfers are provided on the peripheral edges of both end faces in the displacement direction of the electrostrictive effect element, so that cracks and chips may occur on the surface serving as a reference for displacement. When used as a piezoelectric actuator, it is possible to obtain a high-quality electrostrictive effect element that can precisely control minute mechanical transformations.

又、請求項2記載の発明は、電歪効果素子の変位方向の
両端面に面取り部を形成する場合に、積層体やブロック
などの、大きい形状の時に、−度に処理する方法を採っ
ているので、非常に量産性が高いという効果を有してい
る。
In addition, the invention as claimed in claim 2 adopts a method of processing the chamfered parts at once when the chamfers are formed on both end faces in the displacement direction of the electrostrictive effect element when the shape is large, such as a laminate or a block. Therefore, it has the advantage of being extremely easy to mass-produce.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例による電歪効果素子の構造を
示す斜視図、第2図(a)及び(b)は、本発明の実施
例におけるブロック形成工程を説明するための図、第3
図(a>及び(b)は、本発明の実施例のチップ形成工
程を説明するための図、第4図は、従来の電歪効果素子
の構造を示す斜視図、第5図(a)から(g)は、従来
の素子の製造工程を説明するための図である。 1・・・セラミック層、2・・・内部電極、3・・・絶
縁体、4・・・外部電極、5a、5b・・・端面、6・
・・グリーンシート、7・・・積層体、8・・・ワイヤ
ー 9・・・ブロック、10a、10b・・・仮電極、
11・・・マスキング材、12・・・■渭。
FIG. 1 is a perspective view showing the structure of an electrostrictive effect element according to an embodiment of the present invention, FIGS. 2(a) and 2(b) are diagrams for explaining a block forming process in an embodiment of the present invention, Third
Figures (a> and (b) are diagrams for explaining the chip forming process of the embodiment of the present invention, Figure 4 is a perspective view showing the structure of a conventional electrostrictive effect element, and Figure 5 (a) to (g) are diagrams for explaining the manufacturing process of a conventional element. 1... Ceramic layer, 2... Internal electrode, 3... Insulator, 4... External electrode, 5a , 5b... end face, 6.
...Green sheet, 7... Laminate, 8... Wire 9... Block, 10a, 10b... Temporary electrode,
11...Masking material, 12...■渭.

Claims (2)

【特許請求の範囲】[Claims] 1.電歪材料の層と内部電極の層とを交互に積層してな
る積層形電歪効果素子において、前記積層形電歪効果素
子の変位方向に垂直な二つの端面の周辺部に面取り部を
設けたことを特徴とする積層形電歪効果素子。
1. In a laminated electrostrictive element formed by alternately laminating layers of electrostrictive material and layers of internal electrodes, chamfers are provided at the peripheral portions of two end faces perpendicular to the displacement direction of the laminated electrostrictive element. A multilayer electrostrictive effect element characterized by:
2.電歪効果を示す材料の層と内部電極の層とが交互に
積層され一体化された積層体を形成する工程と、 前記積層体を切断してブロックを形成する工程と、 前記ブロックを切断してチップを形成する工程とを含む
積層形電歪効果素子の製造方法において、 前記ブロック形成工程では、前記積層体の、切断方向と
垂直な一対の面の切断位置に予めV溝を設け、このV溝
の位置で前記積層体を切断し、前記チップ形成工程では
、前記ブロックの、切断方向と垂直な一対の面の切断位
置に予めV溝を設け、このV溝の位置で前記ブロックを
切断することを特徴とする積層形電歪効果素子の製造方
法。
2. a step of forming an integrated laminate in which layers of a material exhibiting an electrostrictive effect and layers of internal electrodes are alternately laminated; a step of cutting the laminate to form a block; and a step of cutting the block. In the method for manufacturing a laminated electrostrictive effect element, the block forming step includes forming a V-groove in advance at a cutting position on a pair of surfaces perpendicular to the cutting direction of the laminated body. The laminated body is cut at the position of the V-groove, and in the chip forming step, a V-groove is previously provided at the cutting position of a pair of surfaces perpendicular to the cutting direction of the block, and the block is cut at the position of the V-groove. A method for manufacturing a multilayer electrostrictive element, characterized in that:
JP2269846A 1990-10-08 1990-10-08 Electrostrictive effect element and production of the same Pending JPH04145674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2269846A JPH04145674A (en) 1990-10-08 1990-10-08 Electrostrictive effect element and production of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2269846A JPH04145674A (en) 1990-10-08 1990-10-08 Electrostrictive effect element and production of the same

Publications (1)

Publication Number Publication Date
JPH04145674A true JPH04145674A (en) 1992-05-19

Family

ID=17478007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2269846A Pending JPH04145674A (en) 1990-10-08 1990-10-08 Electrostrictive effect element and production of the same

Country Status (1)

Country Link
JP (1) JPH04145674A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652161U (en) * 1992-12-17 1994-07-15 株式会社大真空 Piezoelectric transformer
WO2003010608A1 (en) * 2001-07-24 2003-02-06 Fuji Electric Imaging Device Co., Ltd Cylindrical developer carrier and production method thereof
JP2006100805A (en) * 2004-08-31 2006-04-13 Kyocera Corp Piezo-actuator and manufacturing method of the same
WO2007023594A1 (en) * 2005-08-26 2007-03-01 Kyocera Corporation Piezoelectric actuator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652161U (en) * 1992-12-17 1994-07-15 株式会社大真空 Piezoelectric transformer
WO2003010608A1 (en) * 2001-07-24 2003-02-06 Fuji Electric Imaging Device Co., Ltd Cylindrical developer carrier and production method thereof
JP2006100805A (en) * 2004-08-31 2006-04-13 Kyocera Corp Piezo-actuator and manufacturing method of the same
WO2007023594A1 (en) * 2005-08-26 2007-03-01 Kyocera Corporation Piezoelectric actuator

Similar Documents

Publication Publication Date Title
JPS5927520B2 (en) Piezoelectric ceramic multilayer element and its manufacturing method
JPH07335478A (en) Manufacture of layered ceramic electronic component
JPH04145674A (en) Electrostrictive effect element and production of the same
JP4771649B2 (en) Manufacturing method of multilayer electronic component
JP2850718B2 (en) Manufacturing method of piezoelectric actuator
JP2539106B2 (en) Piezoelectric actuator and manufacturing method thereof
JPH07235442A (en) Production of multilayer ceramic electronic component
JPH0387076A (en) Piezoelectric actuator and manufacture thereof
JP2002299720A (en) Laminate having partial electrode structure and manufacturing method therefor
KR20150042953A (en) Piezoelectric device and method of fabricating the piezoelectric device
JP3731916B2 (en) Manufacturing method of ceramic laminated piezoelectric element
JPH0779026A (en) Piezoelectric actuator and its manufacture
JPH04336928A (en) Piezoelectric stage
JPH06283777A (en) Multilayer piezoelectric actuater and manufacture thereof
KR100819555B1 (en) Methods of forming piezoelectric resonant device having piezoelectric resonator
JP2003258332A (en) Manufacturing method for ceramic laminate
JPH039580A (en) Electrostrictive actuator
JPH0472684A (en) Electrostrictive effect element
JPH06268275A (en) Lamination-type displacement element and its manufacture
JPH04255245A (en) Piezoelectric stage
JPH07135347A (en) Multialyer piezoelectic actuator
JP3155851B2 (en) Manufacturing method of chip type resistor
JPS62188289A (en) Electrostrictive effect element
JPH01264805A (en) Manufacture of ceramic substrate
JPH02235393A (en) Cutting of ceramic board