JPH04145221A - Flow measuring method for porous static-pressure gas bearing - Google Patents

Flow measuring method for porous static-pressure gas bearing

Info

Publication number
JPH04145221A
JPH04145221A JP26508490A JP26508490A JPH04145221A JP H04145221 A JPH04145221 A JP H04145221A JP 26508490 A JP26508490 A JP 26508490A JP 26508490 A JP26508490 A JP 26508490A JP H04145221 A JPH04145221 A JP H04145221A
Authority
JP
Japan
Prior art keywords
flow rate
bearing
elastic body
porous
robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26508490A
Other languages
Japanese (ja)
Other versions
JP2729700B2 (en
Inventor
Takaomi Miyazaki
宮崎 隆臣
Satoshi Osaki
聡 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2265084A priority Critical patent/JP2729700B2/en
Priority to US07/769,215 priority patent/US5203204A/en
Publication of JPH04145221A publication Critical patent/JPH04145221A/en
Application granted granted Critical
Publication of JP2729700B2 publication Critical patent/JP2729700B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To improve the measuring accuracy of gas flow by providing a flow meter, a ring elastic body, a spherical bearing and a compression spring, and pressing the ring elastic body at constant pressure to the radial bearing face of a porous static-pressure bearing. CONSTITUTION:A porous gas bearing is formed of an NC robot 60, a flow detecting part B, a flow regulating part C and a work indexing part D. When the flow detecting part B is lowered by an air cylinder 20 and stopped in a specified position, the NC robot 60 is moved to the X-axis (+) side so as to press a ring elastic body 2 to a bearing face 1a, and a compression spring 4 starts its deflection. Then a spherical bearing 3 is moved to the (+) side and stopped in a position taught by the NC robot 60, and the ring elastic body 2 is pressed at constant pressure to the bearing face 1a. At this time, a pin 6 guides the movement of a bracket 5, and the ring elastic body 2 fitted to the bracket 5 is brought into close contact with a measuring part since a piston 7 is supported by the spherical bearing 3 so as to measure the gas passing flow quantity with accuracy.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は多孔質静圧気体軸受、特に円筒状のラジアル軸
受の流量測定手段に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a flow rate measuring means for a porous hydrostatic gas bearing, particularly a cylindrical radial bearing.

[従来の技術] 多孔質気体軸受で所定の回転精度、負荷能力、軸受剛性
等の軸受性能を得るためには、多孔質体に所定の圧力で
気体を供給した時に軸受面における単位面積あたりに噴
出する気体の流量すなわち、気体通過流量が所定の値で
軸受面全体にわたり均一であることが要求される。この
ような流量調整方法として従来は予め所定の流量以下に
なるように軸受面に樹脂を含浸させて多孔質材の孔を塞
いだ後、気体通過流量を測定しながら、溶剤により適宜
樹脂を除去し、流量が均一になるように調整していた。
[Conventional technology] In order to obtain predetermined bearing performance such as rotational accuracy, load capacity, and bearing rigidity with a porous gas bearing, when gas is supplied to the porous body at a predetermined pressure, it is necessary to It is required that the flow rate of the ejected gas, that is, the flow rate of gas passing through the bearing surface is uniform over the entire bearing surface at a predetermined value. Conventionally, the method for adjusting the flow rate is to impregnate the bearing surface with resin to close the pores of the porous material so that the flow rate is below a predetermined flow rate, and then remove the resin as appropriate with a solvent while measuring the gas flow rate. The flow rate was adjusted to be uniform.

従来の気体通過流量の測定方法としては、!10図に示
すように、先端にリング状弾性体2を取付けた測定バッ
ト130をラジアル軸受面1aに手で押し付けて行なっ
ていた。
The conventional method for measuring gas flow rate is! As shown in FIG. 10, the measurement was carried out by manually pressing a measuring butt 130 with a ring-shaped elastic body 2 attached to the tip against the radial bearing surface 1a.

[発明か解決しようとする課題] 従来のラジアル軸受面の流量測定方法では、円筒状の多
孔質体の内側表面に対し、測定パッドを手で押付けて測
定していたため、作業性が悪く、また弾性体のすわりか
悪いため、測定値か不安定となりまた時間がかかってい
た。さらに手で押し付けているため、加圧力が一定でな
く測定ごとに弾性体の変形量が異なり、測定値の再現性
かないなどの問題かあった。
[Problem to be solved by the invention] In the conventional method for measuring flow rate on a radial bearing surface, measurement was performed by pressing a measuring pad manually against the inner surface of a cylindrical porous body, which resulted in poor workability and problems. Because the elastic body was not seated properly, the measured values were unstable and it took a long time. Furthermore, since the pressure was applied by hand, the pressing force was not constant and the amount of deformation of the elastic body varied with each measurement, causing problems such as a lack of reproducibility of the measured values.

本発明は上記従来技術の欠点に鑑みなされたものであっ
て、ラジアル軸受面の流量測定を自動でしかも精度よく
測定可能なラジアル軸受の流量測定手段の提供を目的と
する。
The present invention has been made in view of the above-mentioned drawbacks of the prior art, and it is an object of the present invention to provide a flow rate measuring means for a radial bearing that can automatically and accurately measure the flow rate on a radial bearing surface.

[課題を解決するための手段および作用]前記目的を達
成するため、本発明によれは、流量計、リング状弾性体
、球面軸受および圧縮バネにより、所定の曲率を持った
多孔質静圧軸受のラジアル軸受面に対しリング状弾性体
を一定圧力で押し付けることにより多孔質静圧気体軸受
の気体通過流量を精度よくまた効率的に測定できる。
[Means and effects for solving the problem] In order to achieve the above object, the present invention provides a porous hydrostatic bearing having a predetermined curvature using a flowmeter, a ring-shaped elastic body, a spherical bearing, and a compression spring. By pressing a ring-shaped elastic body at a constant pressure against the radial bearing surface of the porous hydrostatic gas bearing, the gas flow rate through the porous hydrostatic gas bearing can be measured accurately and efficiently.

U実施例コ 第1図は装置の全体平面図、第2図はその側面図であり
、本装置は直交2軸(X、Z)のNCロボット部(A部
)と、流量検出部(B部)と流量調整部(0部)と、ワ
ーク割出およびパターン割出部、(D部)で構成される
。70は操作部である。NCロボット(A部)は、流量
検出部(B部)と流量調整部(0部)の各々を流量調整
ずへき多孔質静圧軸受1のラジアル軸受面1aに対し予
め設定されたプログラムにより位置決めさせる。
Embodiment U Fig. 1 is an overall plan view of the device, and Fig. 2 is a side view of the device. (section 0), a flow rate adjustment section (section 0), and a workpiece indexing and pattern indexing section (section D). 70 is an operation section. The NC robot (section A) positions each of the flow rate detection section (section B) and the flow rate adjustment section (section 0) with respect to the radial bearing surface 1a of the porous hydrostatic bearing 1 according to a preset program without adjusting the flow rate. let

第3図(A)に多孔質静圧気体軸受の外観を示し、第3
図(B)にその断面を示す。1aはラジアル軸受面、1
bはスラスト軸受面、ICは圧縮空気の供給路、1dは
給気りであり継手が取付けられている。以上の構成によ
り回転体IE(−点鎖線)を静圧支持する。
Figure 3 (A) shows the external appearance of the porous static pressure gas bearing, and
Figure (B) shows its cross section. 1a is a radial bearing surface, 1
b is a thrust bearing surface, IC is a compressed air supply path, and 1d is an air supply to which a joint is attached. With the above configuration, the rotating body IE (-dotted chain line) is supported by static pressure.

第4図に流量検出部(B部)の詳細を示す。第4図(A
)は平面図、(8)は縦断面図である。
FIG. 4 shows details of the flow rate detection section (section B). Figure 4 (A
) is a plan view, and (8) is a longitudinal sectional view.

1aはラジアル軸受を示す。2はリング状弾性体てあり
シリコン系のOリングなと硬度の柔らかいものが使われ
る。このリング状弾性体2は軸受面1aに押し付けられ
これを通して気体通過流量を収集する。3は球面軸受で
あり、リング状弾性体2か軸受面1aに押し付けられた
際に、軸受面に対し弾性体を密着させる。3aは可動側
軸受、3bは固定側軸受である。4は圧縮バネであり、
測定時に、軸受面に対し一定圧力で作用する。5はリン
グ状弾性体2を固定するためのブラケットであり、弾性
体2の取付面はラジアル軸受面1aの曲率に合せて、R
加工が施されている。弾性体2はブラケット5に接着剤
により固定される。リング状弾性体2を取付けたブラケ
ット5は、測定を行なうラジアル軸受面の曲率に応して
複数用意しておき適宜交換してもよい。ピン6が球面軸
受側に固定され、測定時にブラケット5の回転を防止し
かつ球面軸受3を案内する。ブラケット5は中空のボル
ト10によってピストン7に固定支持される。またピス
トン7は球面軸受の可動部3a内に挿入され、軸方向に
自由に摺動可能である。8は継手であり、流量センサ1
.09と配管接続される。9は気体通過流量を収集測定
するための気体連絡路である。
1a indicates a radial bearing. 2 is a ring-shaped elastic body, and a soft material such as a silicone O-ring is used. This ring-shaped elastic body 2 is pressed against the bearing surface 1a and collects the gas passing through it. 3 is a spherical bearing, and when the ring-shaped elastic body 2 is pressed against the bearing surface 1a, the elastic body is brought into close contact with the bearing surface. 3a is a movable side bearing, and 3b is a fixed side bearing. 4 is a compression spring;
During measurement, a constant pressure is applied to the bearing surface. Reference numeral 5 denotes a bracket for fixing the ring-shaped elastic body 2, and the mounting surface of the elastic body 2 has an R shape in accordance with the curvature of the radial bearing surface 1a.
It has been processed. The elastic body 2 is fixed to the bracket 5 with adhesive. A plurality of brackets 5 to which the ring-shaped elastic body 2 is attached may be prepared and replaced as appropriate depending on the curvature of the radial bearing surface to be measured. A pin 6 is fixed to the spherical bearing side to prevent rotation of the bracket 5 and guide the spherical bearing 3 during measurement. The bracket 5 is fixedly supported on the piston 7 by a hollow bolt 10. Further, the piston 7 is inserted into the movable part 3a of the spherical bearing and can freely slide in the axial direction. 8 is a joint, and the flow rate sensor 1
.. Connected to 09 by piping. 9 is a gas communication path for collecting and measuring the gas passing flow rate.

上記構成において、流量検出部8部はエアシリンダ2o
(第2図)によってラジアル軸受1の内部に接触するこ
となく下降し、所定の位置に止まる。次にNCロボット
60かX軸(+)方向に移動し、ラジアル軸受面1aに
対し、リング状弾性体2を当接させ、ざらにロボットは
ゆっくりとしたスピードで移動し、軸受面に対し弾性体
2を押圧する。次に押付は力が圧縮バネ4より犬きくな
ると、圧縮バネ4が撓みはじめ、ピストン7をカイトに
して球面軸受3が(+)側に移動し、あらかじめNCロ
ボット60にティーチングされた位置で止まる。圧縮バ
ネ4によって弾性体2は軸受面1aに一定圧力で押し付
けられる。この時ピン6はブラケット5の移動をガイド
し、さらに回り止めも行なう。またこの時ピストン7が
球面軸受3に支持されているため、ブラケット5に取付
けたリング状弾性体2が測定部に確実に密着され正確な
流量測定を行なうことができる。
In the above configuration, the flow rate detection section 8 is connected to the air cylinder 2o.
(FIG. 2), it descends without contacting the inside of the radial bearing 1 and stops at a predetermined position. Next, the NC robot 60 moves in the X-axis (+) direction and brings the ring-shaped elastic body 2 into contact with the radial bearing surface 1a. Press the body 2. Next, when the pressing force becomes stronger than the compression spring 4, the compression spring 4 begins to bend, the piston 7 becomes a kite, the spherical bearing 3 moves to the (+) side, and stops at the position previously taught by the NC robot 60. . The compression spring 4 presses the elastic body 2 against the bearing surface 1a with a constant pressure. At this time, the pin 6 guides the movement of the bracket 5 and also prevents it from rotating. Furthermore, since the piston 7 is supported by the spherical bearing 3 at this time, the ring-shaped elastic body 2 attached to the bracket 5 is securely brought into close contact with the measuring section, making it possible to accurately measure the flow rate.

流量調整部(0部)は溶剤塗布用のスプレと流量調整す
べき範囲を制限するためのマスクを具備している。第5
図にこの0部の詳細を示す。
The flow rate adjustment section (part 0) is equipped with a spray for applying a solvent and a mask for limiting the range in which the flow rate should be adjusted. Fifth
The details of this part 0 are shown in the figure.

Aは側面図、Bは正面図、CはEE’矢視図である。1
1は溶剤を露状にし一定量塗布させるためのスプレ本体
、12は溶剤の吹付量を調整するための調整つまみ、1
3はスプレノズルであり、先端側面に溶剤吹出し用の穴
13aが設けられている。14は流量調整すべき範囲を
制限するためのマスクであり溶剤が他の部分に回り込む
ことを防止する。14aは調整すべき範囲に溶剤を通過
させるための窓である。
A is a side view, B is a front view, and C is a view taken along the EE' arrow. 1
1 is a spray main body for making the solvent dew and applying a certain amount; 12 is an adjustment knob for adjusting the amount of solvent sprayed; 1
3 is a spray nozzle, and a hole 13a for blowing out the solvent is provided on the side surface of the tip. Reference numeral 14 is a mask for restricting the range in which the flow rate should be adjusted, and prevents the solvent from going around to other parts. 14a is a window for allowing the solvent to pass through the range to be adjusted.

割出し部(D部)は溶剤塗布量をコントロールするため
のパターン割出部とワークを円周方向で分割、位置決め
するためのワーク割出部とにより構成される。第6図に
パターン割出部の詳細を示す。図に示すようにワーク1
とパターン17は、ラジアル軸受1aに対してすきまが
1mm程度になるように、円筒状に製作され、軸受面1
aに対して同軸に配置される。第7図(A)にパターン
の展開図を示す。パターン17は円周状に等分に開口部
(17g〜17k)か5種類配置されている。各開口部
には第7図(B)に示すようにヌキ穴加工17aが施さ
れその径は0.5 mm程度である。各開口部の開口率
を表1に示す。
The indexing section (section D) is composed of a pattern indexing section for controlling the amount of solvent applied and a workpiece indexing section for dividing and positioning the workpiece in the circumferential direction. FIG. 6 shows details of the pattern indexing section. Work 1 as shown in the figure
The pattern 17 is manufactured in a cylindrical shape so that the clearance is about 1 mm with respect to the radial bearing 1a, and the pattern 17 is
It is arranged coaxially with respect to a. FIG. 7(A) shows a developed view of the pattern. The pattern 17 has five types of openings (17g to 17k) arranged equally around the circumference. Each opening is provided with a hollow hole 17a having a diameter of approximately 0.5 mm, as shown in FIG. 7(B). Table 1 shows the aperture ratio of each aperture.

表1 パターン17は減速機付ステッピングモータ18と連結
され、流量に応して必要開口率の割出しが行なわれる。
Table 1 The pattern 17 is connected to a stepping motor 18 with a reduction gear, and the required opening ratio is determined according to the flow rate.

さらにパターン割出部はエアシリンダ21と連結され、
流量検出時には下方に逃がされる。
Further, the pattern indexing section is connected to an air cylinder 21,
When the flow rate is detected, it is released downward.

7−7割出部は小歯車30および大歯車40て構成され
、小歯車30は減速機31の軸と嵌合される。また減速
機31はカップリング32を介してDCサーボモータ3
3と連結されている。34はモータ固定用ブラケットで
ある。また大歯車40はクロスローラヘアリング41で
支持されている。42はワーク1を支持するための治具
である。
The 7-7 indexing portion is composed of a small gear 30 and a large gear 40, and the small gear 30 is fitted with the shaft of a reduction gear 31. Further, the reducer 31 is connected to the DC servo motor 3 via a coupling 32.
It is connected to 3. 34 is a motor fixing bracket. Further, the large gear 40 is supported by a cross roller hair ring 41. 42 is a jig for supporting the work 1.

本発明の実施例について第8図を参照してさらに説明す
る。
An embodiment of the present invention will be further described with reference to FIG.

第8図は装置の構成を示すブロック図である。FIG. 8 is a block diagram showing the configuration of the device.

図において60は直交二軸NCロボットであり、検出パ
ット2とマスク14およびスプレガン13をラジアル軸
受面1aの調整ポイントに対して位置決めする。104
はNCロボット60のモータドライバ、102はNCコ
ントローラでありCPU114と接続されている。メモ
リ115がCPU114に接続されている。メモリ11
5には流量調整制御用プログラムが記憶され、CPU1
14はこのプログラムに基づいて後述する流量調整動作
を制御する。22はマスクおよびスプレを上下移動させ
るためのエアシリンダ、23はエアシリンダ22の上昇
下降を切換えるための電磁弁、24は電磁弁23のドラ
イバでありCPU114に接続されている。25はスプ
レカン13に圧縮エアを間欠的に給送するための電磁弁
、26はそのトライバでありCPU114に接続されて
いる。109は検圧される流量を電気信号に変換する流
量センサ、110はアナログ信号をデジタル信号に変換
するA/D変換器であり、CPU114に接続されてい
る。27はエアシリンダ20の切換えを行なう電磁弁、
28は電磁弁27のトライバでありCPU114に接続
されている。29はサーホモータ33を動作させるモー
タトライバでありCPU1114に接続されている。
In the figure, 60 is an orthogonal two-axis NC robot, which positions the detection pad 2, mask 14, and spray gun 13 with respect to adjustment points on the radial bearing surface 1a. 104
102 is a motor driver of the NC robot 60, and 102 is an NC controller connected to the CPU 114. Memory 115 is connected to CPU 114. memory 11
5 stores a flow rate adjustment control program, and the CPU 1
14 controls a flow rate adjustment operation, which will be described later, based on this program. 22 is an air cylinder for vertically moving the mask and spray; 23 is a solenoid valve for switching the air cylinder 22 up and down; and 24 is a driver for the solenoid valve 23, which is connected to the CPU 114. 25 is a solenoid valve for intermittently feeding compressed air to the spray can 13, and 26 is a driver thereof, which is connected to the CPU 114. 109 is a flow rate sensor that converts the detected flow rate into an electrical signal, and 110 is an A/D converter that converts an analog signal into a digital signal, which is connected to the CPU 114. 27 is a solenoid valve for switching the air cylinder 20;
28 is a driver for the solenoid valve 27 and is connected to the CPU 114. 29 is a motor driver for operating the surf motor 33, and is connected to the CPU 1114.

43は多孔質静圧軸受1に供給する圧縮エアのON、O
FFを切換えるための電磁弁、44は電磁弁43のドラ
イバでありCPU114に接続されている。45はパタ
ーン17を駆動させるモータ18のドライバでありCP
U114に接続されている。21はパターン割巴部を上
昇、下降させるためのエアシリンダ、46はシリンダの
上昇下降の切換えを行なう電磁弁、47は電磁弁46の
ドライバでありCPUI 14に接続されている。
43 indicates ON/O of compressed air supplied to the porous hydrostatic bearing 1.
A solenoid valve 44 for switching the FF is a driver for the solenoid valve 43 and is connected to the CPU 114 . 45 is a driver for the motor 18 that drives the pattern 17;
Connected to U114. 21 is an air cylinder for raising and lowering the pattern split part, 46 is a solenoid valve for switching between raising and lowering the cylinder, and 47 is a driver for the solenoid valve 46, which is connected to the CPU 14.

101は圧縮空気源コンプレッサてあり、上記各電磁弁
と接続されている。
101 is a compressed air source compressor, which is connected to each of the above-mentioned solenoid valves.

次に上記構成装置の動作について説明する。Next, the operation of the above-mentioned component device will be explained.

ワーク(軸受)1を治具を使用して大歯車40にセット
する。tla弁4弁管3ンにし、ワーク1に圧縮エアを
供給する。次に流量検出部(検出パット2)をCPU1
14からの命令によりあらかじめティーチングされた開
始ポイント(軸受1内に挿入可能な位置)に移動する。
A workpiece (bearing) 1 is set on a large gear 40 using a jig. The tla valve is set to 4 valves and the pipe is set to 3, and compressed air is supplied to the workpiece 1. Next, connect the flow rate detection section (detection pad 2) to the CPU1.
14 to a pre-taught start point (a position where it can be inserted into the bearing 1).

この位置で電磁弁27を切換え、シリンダ20を動作さ
せ流量検圧部をラジアル軸受1の内部まで下降させる。
At this position, the solenoid valve 27 is switched, the cylinder 20 is operated, and the flow rate pressure detection part is lowered to the inside of the radial bearing 1.

さらにCPU114からの命令によりNCロボット60
がX軸方向に移動し、バッド2がラジアル軸受面1aに
押付けられ流量が検出される。この時パターン17は下
降しラジアル軸受面から図中下方に離れ退避した状態に
なっている。検出された流量は流量センサ109によっ
て電気信号に変換され、ざらにA/D変換器110によ
ってデジタル信号にされCPU114に送られる。次に
電磁弁27が切換えられシリンダ20が動作し、検出部
は上昇する。
Further, the NC robot 60 receives a command from the CPU 114.
moves in the X-axis direction, the pad 2 is pressed against the radial bearing surface 1a, and the flow rate is detected. At this time, the pattern 17 descends and is in a retracted state away from the radial bearing surface downward in the figure. The detected flow rate is converted into an electrical signal by the flow rate sensor 109, and then converted into a digital signal by the A/D converter 110 and sent to the CPU 114. Next, the solenoid valve 27 is switched, the cylinder 20 is operated, and the detection section is raised.

CPUI 14では取り込まれた流量データに基づき予
めプログラムされた演算方法により適切なパターン17
(第7図)が選択される。次にCPU114よりトライ
バ45に命令が出されモータ18が動作し選択されたパ
ターン17の割出しが行なわれる。さらに、電磁弁46
が切換えられシリンダ21が動作し、パターン17は上
昇しラジアル軸受1内に挿入される。次にNCロボット
60に命令が出され、予めティーチングされた位置にマ
スク14と流量検出部2の位置が切換えられる。さらに
、CPU114より命令が出され電磁弁23が切換えら
れ、シリンダ22が動作しマスク14、スプレ13が下
降する。さらに電磁弁25が間欠操作され、スプレガン
本体11に圧縮エアが供給され、ノズル13先端より溶
剤が霧状になって、マスク14とパターン17を介して
ラジアル軸受面1aに吹付けられる。この溶剤の吹付は
状態を第9図に示す。スプレノズル13およびマスク1
4はパターン17の内部側に挿入されている。
The CPUI 14 generates an appropriate pattern 17 using a pre-programmed calculation method based on the captured flow rate data.
(Fig. 7) is selected. Next, the CPU 114 issues a command to the driver 45 to operate the motor 18 and index the selected pattern 17. Furthermore, the solenoid valve 46
is switched, the cylinder 21 operates, and the pattern 17 rises and is inserted into the radial bearing 1. Next, a command is issued to the NC robot 60, and the positions of the mask 14 and the flow rate detection section 2 are switched to the previously taught positions. Further, a command is issued from the CPU 114, the solenoid valve 23 is switched, the cylinder 22 is operated, and the mask 14 and spray 13 are lowered. Further, the electromagnetic valve 25 is operated intermittently to supply compressed air to the spray gun body 11, and the solvent is atomized from the tip of the nozzle 13 and sprayed onto the radial bearing surface 1a via the mask 14 and the pattern 17. The state of this solvent spraying is shown in FIG. Spray nozzle 13 and mask 1
4 is inserted inside the pattern 17.

次に電磁弁23と46が同時に切換えられシリンダ22
.21が動作しマスク14、スプレ13′は上昇し、パ
ターン割出部は下降する。さらにロボットに命令が出さ
れ検出部とマスク、スプレ部の位置を切換え、スプレ後
の流量を検出する。
Next, the solenoid valves 23 and 46 are switched simultaneously, and the cylinder 22
.. 21 is operated, the mask 14 and the spray 13' are raised, and the pattern indexing section is lowered. Furthermore, a command is issued to the robot to switch the positions of the detection part, mask, and spray part, and detect the flow rate after spraying.

以上の動作を繰返しあらかじめ設定さねた流量範囲の流
量検出を終了する。次に検出バッド2を逃げ位置に移動
し、NCロボット60を下方に動かして検出部を下方に
スライドし、軸受1の上下方向に沿った次ポイント(次
の測定範囲)に位置決めする。ここで上記と同様の調整
が実施され、上下方向の分割ポイントの調整が全て終了
すると検出部は上方に逃がされ、CPU114から21
のモータドライバに命令が比され、サーボモータ33が
動作され、ラジアル軸受面1aの円周方向の次ポイント
の割出しが行なわわる。以上の動作を順次繰返し、分割
された全てのポイントで流量調整か終了すると初期状態
に復帰し、全ての動作を完了する。
The above operation is repeated to complete the flow rate detection in the previously set flow rate range. Next, the detection pad 2 is moved to the escape position, and the NC robot 60 is moved downward to slide the detection section downward to position the bearing 1 at the next point (next measurement range) along the vertical direction. Here, the same adjustment as above is carried out, and when the adjustment of all the vertical division points is completed, the detection unit is moved upward, and the CPU 114 to 21
The command is sent to the motor driver, the servo motor 33 is operated, and the next point in the circumferential direction of the radial bearing surface 1a is indexed. The above operations are repeated in sequence, and when the flow rate adjustment is completed at all divided points, the initial state is returned and all operations are completed.

[発明の効果] 以上説明したように、本発明により多孔質静圧気体軸受
の流量測定を確実に精度よく行なって流量調整を自動連
続作業することができこれにより作業工数の低減による
コスト低下が図られまた均一な品質が得られる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to reliably and accurately measure the flow rate of a porous hydrostatic gas bearing, and to automatically and continuously adjust the flow rate, thereby reducing costs by reducing the number of work steps. and uniform quality can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の構成を示す平面図、第2図は
第1図の実施例の構成を示す側面図、第3図(A)(B
)は各々多孔質静圧気体軸受の外観図と断面図、 第4図(A)(B)は各々流量検出部の平面図と縦断面
図、 第5図(A)(B)(C)は各々スプレおよびマスクの
側面図と正面図と横断面図、 第6図はパターンと多孔質静圧軸受の外観図、第7図(
A)(B)は各々パターンの展開図と小孔の詳細図、 第8図は本発明の実施例の構成を示すブロック図、 第9図は本発明の実施例の溶剤塗布時の外観図、 第10図は従来技術の説明図である。 1・多孔質静圧気体軸受、 2:リング状弾性体、 11ニスプレガン本体、 13ニスブレノズル、 14:マスク、 17・パターン、 60:直交Z軸(X、Z)NCロボット、10トコンブ
レッサ。 特許出願人   キャノン株式会社 代理人 弁理士   伊 東 哲 也 代理人 弁理士   伊 東 辰 雄 第 図 第 図 第 fi(A) 第 図 (B) 第 図 (A) (B) 第 図 (C) 第 鴻(A) 第 図(B) 第 図 1r
FIG. 1 is a plan view showing the configuration of an embodiment of the present invention, FIG. 2 is a side view showing the configuration of the embodiment of FIG. 1, and FIGS.
) are an external view and a cross-sectional view of the porous hydrostatic gas bearing, respectively. Figures 4 (A) and (B) are a plan view and a vertical cross-sectional view of the flow rate detection section, respectively. Figures 5 (A), (B), and (C) are respectively are a side view, a front view, and a cross-sectional view of the spray and mask, respectively, Figure 6 is an external view of the pattern and porous hydrostatic bearing, and Figure 7 (
A) and (B) are a developed view of the pattern and a detailed view of the small hole, respectively. Figure 8 is a block diagram showing the configuration of the embodiment of the present invention. Figure 9 is an external view of the embodiment of the present invention during solvent application. , FIG. 10 is an explanatory diagram of the prior art. 1. Porous static pressure gas bearing, 2. Ring-shaped elastic body, 11. Nispre gun body, 13. Nispre gun body, 13. Nispre gun body, 14. Mask, 17. Pattern, 60: Orthogonal Z-axis (X, Z) NC robot, 10. Compressor. Patent Applicant Canon Co., Ltd. Representative Patent Attorney Tetsuya Ito Representative Patent Attorney Tatsuo Ito Figure fi (A) Figure (B) Figure (A) (B) Figure (C) Figure Ko (A) Figure (B) Figure 1r

Claims (3)

【特許請求の範囲】[Claims] (1)円筒状の多孔質静圧気体軸受内側のラジアル軸受
面に対し、流量計測手段に連結する流量検出部をリング
状弾性体を介して圧縮バネおよびガイド手段を用いて一
定圧力で一定方向に押圧し、該リング状弾性体を通して
前記軸受の透過流量を検出することを特徴とする多孔質
静圧気体軸受の流量測定方法。
(1) The flow rate detection section connected to the flow rate measurement means is connected to the radial bearing surface inside the cylindrical porous hydrostatic gas bearing through a ring-shaped elastic body using a compression spring and a guide means in a constant direction at a constant pressure. 1. A method for measuring a flow rate of a porous hydrostatic gas bearing, characterized in that the permeation flow rate of the bearing is detected through the ring-shaped elastic body.
(2)前記静圧気体軸受は軸廻りに回転可能な測定位置
の割り出し手段に装着され、前記流量検出部は前記軸に
沿ったZ方向および軸に垂直なX方向に移動可能な位置
決め手段に連結されたことを特徴とする特許請求の範囲
第1項記載の多孔質静圧気体軸受の流量測定方法。
(2) The static pressure gas bearing is attached to a measurement position indexing means that is rotatable around the axis, and the flow rate detection section is attached to a positioning means that is movable in the Z direction along the axis and the X direction perpendicular to the axis. 2. A method for measuring a flow rate of a porous hydrostatic gas bearing according to claim 1, wherein the porous hydrostatic gas bearings are connected.
(3)前記流量検出部は気体通路が貫通するピストンお
よびピストンが挿入された球面軸受からなることを特徴
とする特許請求の範囲第1項記載の多孔質静圧気体軸受
の流量測定方法。
(3) The method for measuring a flow rate in a porous hydrostatic gas bearing according to claim 1, wherein the flow rate detection section comprises a piston through which a gas passage passes and a spherical bearing into which the piston is inserted.
JP2265084A 1990-10-04 1990-10-04 Flow measuring device for porous hydrostatic gas bearing Expired - Fee Related JP2729700B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2265084A JP2729700B2 (en) 1990-10-04 1990-10-04 Flow measuring device for porous hydrostatic gas bearing
US07/769,215 US5203204A (en) 1990-10-04 1991-10-01 Flow regulating apparatus and flow measuring apparatus for porous hydrostatic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2265084A JP2729700B2 (en) 1990-10-04 1990-10-04 Flow measuring device for porous hydrostatic gas bearing

Publications (2)

Publication Number Publication Date
JPH04145221A true JPH04145221A (en) 1992-05-19
JP2729700B2 JP2729700B2 (en) 1998-03-18

Family

ID=17412379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2265084A Expired - Fee Related JP2729700B2 (en) 1990-10-04 1990-10-04 Flow measuring device for porous hydrostatic gas bearing

Country Status (1)

Country Link
JP (1) JP2729700B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006195138A (en) * 2005-01-13 2006-07-27 Ricoh Co Ltd Roll through-hole inspecting device
JP2007315611A (en) * 2007-09-06 2007-12-06 Nsk Ltd Thrust hydrostatic bearing pad
CN107228127A (en) * 2017-07-21 2017-10-03 天津航天机电设备研究所 A kind of air-bearing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107014672B (en) * 2017-03-31 2020-03-17 重庆大学 Loaded coal rock mass thermo-hydro-mechanical coupling CT triaxial pressure loading system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315189A (en) * 1976-07-27 1978-02-10 Sumitomo Electric Ind Ltd Packing apparatus for object tested in porous sintered body automatic testing machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315189A (en) * 1976-07-27 1978-02-10 Sumitomo Electric Ind Ltd Packing apparatus for object tested in porous sintered body automatic testing machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006195138A (en) * 2005-01-13 2006-07-27 Ricoh Co Ltd Roll through-hole inspecting device
JP4519660B2 (en) * 2005-01-13 2010-08-04 株式会社リコー Roll through hole inspection device
JP2007315611A (en) * 2007-09-06 2007-12-06 Nsk Ltd Thrust hydrostatic bearing pad
CN107228127A (en) * 2017-07-21 2017-10-03 天津航天机电设备研究所 A kind of air-bearing
CN107228127B (en) * 2017-07-21 2023-06-06 天津航天机电设备研究所 Air bearing

Also Published As

Publication number Publication date
JP2729700B2 (en) 1998-03-18

Similar Documents

Publication Publication Date Title
GB2251945A (en) Apparatus for tracing the outline of a closed surface
KR20020011943A (en) Coating apparatus for applying coating material intermittently to substrate
KR100408170B1 (en) Optical polishing method and apparatus
JPH06500619A (en) Control valve for adjusting the flow rate of gas or liquid and how to use the valve
JPH04145221A (en) Flow measuring method for porous static-pressure gas bearing
JPH07106541B2 (en) Wide-angle toric lens manufacturing method and apparatus
US5203204A (en) Flow regulating apparatus and flow measuring apparatus for porous hydrostatic bearing
EP1270166A1 (en) Deflashing apparatus
US5110520A (en) Method for manufacturing a porous static pressure gas bearing
JPH04145222A (en) Flow regulating device for porous static-pressure gas bearing
KR20000023264A (en) Paste coating machine
CN104625314A (en) Portable pipe cutting device based on crawling mechanism
JPH04145217A (en) Flow regulating device for porous static-pressure gas bearing
US3270619A (en) Control system
JP2001113320A (en) Method and device for spinning
JPH03260417A (en) Flow regulating device of porous static pressure gas bearing
JPH0632261Y2 (en) Steady structure of round material
JPH086748B2 (en) Manufacturing method of porous hydrostatic gas bearing
JPH03224555A (en) Device for treating interior part of telescopic joining member used in dental prosthesis
JPH03170283A (en) Apparatus for controlling robot
CN208743977U (en) A kind of robot tool positioning device
JPS5882656A (en) Work table automatic slewing device of cylindrical grinding machine
SU1479827A1 (en) Pneumatic device for measuring hole dimensions
JPH06705A (en) Tailstock structure for cylinder grinding machine
JPS6320463Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees