JPH0414461B2 - - Google Patents

Info

Publication number
JPH0414461B2
JPH0414461B2 JP8943583A JP8943583A JPH0414461B2 JP H0414461 B2 JPH0414461 B2 JP H0414461B2 JP 8943583 A JP8943583 A JP 8943583A JP 8943583 A JP8943583 A JP 8943583A JP H0414461 B2 JPH0414461 B2 JP H0414461B2
Authority
JP
Japan
Prior art keywords
polyacrylic acid
salt
linear
zinc
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8943583A
Other languages
Japanese (ja)
Other versions
JPS59215663A (en
Inventor
Kenji Fuji
Tadashi Sawai
Keigo Momose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8943583A priority Critical patent/JPS59215663A/en
Publication of JPS59215663A publication Critical patent/JPS59215663A/en
Publication of JPH0414461B2 publication Critical patent/JPH0414461B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture
    • H01M4/12Processes of manufacture of consumable metal or alloy electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/22Immobilising of electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、アルカリ電池、特にそのゲル状亜鉛
負極の製造法に関する。 従来例の構成とその問題点 従来、アルカリ電池の負極に使用されていたゲ
ル化剤としては、カルボキシメチルセルロース、
アルギン酸、グアーガム、ポリアクリル酸及びそ
の塩、ポリビニルアルコールなど水溶性高分子が
ある。 これらのなかで、電池の保存中のアルカリ電解
液、正極酸化物によるゲル化剤の酸化、加水分解
などを考慮すると、ポリアクリル酸及びその塩が
望ましい。ポリアクリル酸及びその塩において
は、重合方法により2つの異なる構造をもつてい
る。 一つは、アクリル酸もしくはその塩の単量体水
溶液に、過酸化物や過硫酸塩あるいはこれらと亜
硫酸塩のような還元剤を組み合わせたレドツクス
系触媒を用いて水溶液重合した直鎖型のものであ
る。他の一つは、ジビニルベンゼンなどの架橋剤
を加え、メタノール、アセトンの様な有機溶媒中
で懸濁重合した架橋分岐型のものである。 上記の異なる重合方法で得たポリアクリル酸も
しくはその塩をアルカリ電池において単独で用い
た場合、以下の様になる。 直鎖型ポリアクリル酸及びその塩の場合、重合
度2500以上では、曳糸性が高く接着性の強いゲル
が形成され、電解液、亜鉛、集電体及びセパレー
タ間の接触性がよく、放電中においても電池の内
部インピーダンスが低く、閉路電圧特性もよい。
これは、曳糸性による高い接触性が、放電中の亜
鉛酸イオンの拡散を良好にしているからと考えら
れる。 しかし、封口板容積の大きい電池においては、
直鎖型ポリアクリル酸の場合、亜鉛が保存中に沈
降し、亜鉛の有効面積が減少するため容量低下が
大きい。これは、直鎖型ポリアクリル酸の場合、
そのゲル状態に応力や負荷がかかると、分子が同
じ方向に並び、均一分散保持力がないからと考え
られる。 また、重合度2500以下の直鎖型ポリアクリル酸
及びその塩を単独で用いると、一定ゲル強度を得
るために添加率が高くなり、内部抵抗が増大し、
電池性能の低下をきたす。 これに対し、架橋分散型のポリアクリル酸及び
その塩は、耐アルカリ性を有するとともに、架橋
反応による三次元方向への分岐構造を持つため、
曳糸性がほとんどなく、チクソトロピツクな流動
性と高い降伏値を示すため、比重の大きな粉末状
の負極活物質の沈降を防止することができる。従
つて長期保存による放電性能の劣化が少ない。 しかし、この架橋分岐型は直鎖型と異なり曳糸
性がほとんどなく、電解液、亜鉛、集電体及びセ
パレータ相互の接触性が悪く、電池放電中の内部
インピーダンスの上昇が直鎖型に比べて大きく、
時計やカメラなどの機器に用いられ、瞬間的に大
電流を要求された場合には、閉路電圧の低下が大
きく、放電末期において支障をきたすことがあ
る。 発明の目的 本発明は、ゲル化剤として直鎖型あるいは架橋
分岐型ポリアクリル酸またはその塩を単独で用い
る場合の上記の欠点を解消し、品質が一定で、性
能の優れたアルカリ電池を得る方法を提供するこ
とを目的とする。 発明の構成 本発明は、重合度2500以下の直鎖型ポリアクリ
ル酸もしくはその塩をアルカリ電解液に溶解して
粘性溶液をつくり、この粘性溶液を、架橋型ポリ
アクリル酸もしくはその塩と亜鉛粉末との混合物
に注液することを特徴とする。 ここで、重合度2500以下の直鎖型ポリアクリル
酸もしくはその塩を電解液に溶解して使用するの
は、重合度2500以下のものでは曳糸性がほとんど
なく工程の作業性が良いからである。こうして直
鎖型ポリアクリル酸もしくはその塩を添加するこ
とにより、架橋分岐型ポリアクリル酸もしくはそ
の塩と亜鉛から構成される負極内及びセパレータ
との間隙を埋める作用をし、放電中の内部抵抗上
昇をおさえ、閉路電圧特性も向上する。 また、直鎖型ポリアクリル酸もしくはその塩
と、架橋型ポリアクリル酸もしくはその塩との粉
末を亜鉛と混合し、この混合物に電解液を注液す
る製造法に比較すると、電池の内部抵抗、閉路電
圧特性等のばらつきが小さくなる。これは、2種
類のゲル化剤、亜鉛、電解液との均一混合性の差
に起因すると考えられる。 さらに、ゲル化剤、亜鉛、電解液を混合して、
ゲル状負極を構成して、封口板に秤量する方式
は、重量精度のバラツキが大きく、一定品質のも
のを得るのは困難である。これに対して本発明で
は、架橋分岐型のポリアクリル酸もしくはその塩
と亜鉛粉末の混合物をマス切り法によつて秤量し
て封口板に充填し、これに直鎖型ポリアクリル酸
もしくはその塩を溶解した電解液を注入するの
で、重量精度のバラツキを小さくすることができ
る。 このようにして、本発明によれば、直鎖型及び
架橋分岐型のポリアクリル酸もしくはその塩の長
所を生かして、一定品質で高性能のアルカリ電池
を得ることができる。 実施例の説明 図は酸化銀電池SR1130を示す。 まず、酸化銀を主成分とした正極合剤1を正極
容器2内に正極リング3とともに挿入して圧縮成
形をする。そして耐アルカリ性のセパレータ4と
電解液含浸材5を合剤の上に載せる。 一方、重合度2500以下の直鎖型ポリアクリル酸
ナトリウムをか性カリの水溶液に溶解して粘性電
解液を形成する。また、汞化亜鉛粉末と架橋分岐
型ポリアクリル酸ナトリウムとを粉末状態で混合
し、マス切り法で秤量して封口板に充填し、この
混合物に前記粘性電解液を注液する。 こうしてゲル状負極6を設けた封口板7をガス
ケツト8を介して正極容器2に組み合わせ、容器
2の開口縁をしめつけて密封電池を構成する。 第1表は各種の負極製造法と負極重量に対する
ゲル化剤の割合を示す。
INDUSTRIAL APPLICATION FIELD OF THE INVENTION The present invention relates to an alkaline battery, and in particular to a method for producing a gelled zinc negative electrode thereof. Conventional structure and problems Conventionally, gelling agents used in the negative electrode of alkaline batteries include carboxymethylcellulose,
Water-soluble polymers include alginic acid, guar gum, polyacrylic acid and its salts, and polyvinyl alcohol. Among these, polyacrylic acid and its salts are preferable in consideration of oxidation and hydrolysis of the gelling agent by the alkaline electrolyte and positive electrode oxide during storage of the battery. Polyacrylic acid and its salts have two different structures depending on the polymerization method. One is the linear type, which is produced by aqueous solution polymerization of an aqueous monomer solution of acrylic acid or its salt using a redox catalyst that combines peroxide, persulfate, or a reducing agent such as a sulfite with these. It is. The other type is a cross-linked and branched type in which a cross-linking agent such as divinylbenzene is added and suspension polymerization is carried out in an organic solvent such as methanol or acetone. When polyacrylic acid or its salt obtained by the different polymerization methods described above is used alone in an alkaline battery, the results are as follows. In the case of linear polyacrylic acid and its salts, when the polymerization degree is 2500 or higher, a gel with high stringability and strong adhesiveness is formed, and the contact between the electrolyte, zinc, current collector, and separator is good, and the discharge Among them, the internal impedance of the battery is low and the closed circuit voltage characteristics are also good.
This is thought to be because the high contactability due to stringiness improves the diffusion of zincate ions during discharge. However, in batteries with a large sealing plate volume,
In the case of linear polyacrylic acid, zinc precipitates during storage and the effective area of zinc decreases, resulting in a large capacity loss. In the case of linear polyacrylic acid,
This is thought to be because when stress or load is applied to the gel state, the molecules align in the same direction, and there is no ability to maintain uniform dispersion. In addition, if linear polyacrylic acid with a degree of polymerization of 2500 or less and its salts are used alone, the addition rate will be high in order to obtain a certain gel strength, and the internal resistance will increase.
This will cause a decrease in battery performance. On the other hand, crosslinked dispersed polyacrylic acid and its salts have alkali resistance and a three-dimensional branched structure due to crosslinking reaction, so
Since it has almost no stringiness, exhibits thixotropic fluidity and a high yield value, it can prevent settling of a powdery negative electrode active material with a large specific gravity. Therefore, there is little deterioration in discharge performance due to long-term storage. However, unlike the linear type, this cross-linked branched type has almost no stringiness, has poor contact between the electrolyte, zinc, current collector, and separator, and has a higher internal impedance during battery discharge than the linear type. big,
When used in devices such as watches and cameras that require instantaneous large currents, the drop in closed-circuit voltage is large, which can cause problems at the end of discharge. Purpose of the Invention The present invention solves the above-mentioned drawbacks when using linear or cross-linked branched polyacrylic acid or its salt alone as a gelling agent, and provides an alkaline battery with constant quality and excellent performance. The purpose is to provide a method. Structure of the Invention The present invention involves dissolving linear polyacrylic acid or its salt with a degree of polymerization of 2500 or less in an alkaline electrolyte to create a viscous solution, and combining this viscous solution with cross-linked polyacrylic acid or its salt and zinc powder. It is characterized by injecting the liquid into a mixture with. The reason why linear polyacrylic acid or its salt with a degree of polymerization of 2500 or less is dissolved in an electrolytic solution is because linear polyacrylic acid with a degree of polymerization of 2500 or less has almost no stringiness and the workability of the process is good. be. In this way, by adding linear polyacrylic acid or its salt, it acts to fill the gap between the negative electrode and the separator composed of cross-linked branched polyacrylic acid or its salt and zinc, increasing the internal resistance during discharge. This also improves the closed circuit voltage characteristics. In addition, compared to a manufacturing method in which powders of linear polyacrylic acid or its salt and cross-linked polyacrylic acid or its salt are mixed with zinc and an electrolyte is poured into this mixture, the internal resistance of the battery is lower. Variations in closed circuit voltage characteristics, etc. are reduced. This is considered to be due to the difference in uniform miscibility between the two types of gelling agents, zinc, and electrolyte. Furthermore, by mixing the gelling agent, zinc, and electrolyte,
In the method of constructing a gel-like negative electrode and weighing it on a sealing plate, the weight accuracy varies widely and it is difficult to obtain a product of constant quality. In contrast, in the present invention, a mixture of cross-linked branched polyacrylic acid or its salt and zinc powder is weighed by the mass cutting method and filled into a sealing plate, and then linear polyacrylic acid or its salt is filled into a sealing plate. Since an electrolytic solution containing dissolved is injected, variations in weight accuracy can be reduced. In this way, according to the present invention, by taking advantage of the advantages of linear and cross-linked branched polyacrylic acids or their salts, it is possible to obtain a high-performance alkaline battery with constant quality. Description of Examples The figure shows a silver oxide battery SR1130. First, a positive electrode mixture 1 containing silver oxide as a main component is inserted into a positive electrode container 2 together with a positive electrode ring 3 and compression molded. Then, an alkali-resistant separator 4 and an electrolyte-impregnated material 5 are placed on the mixture. On the other hand, a linear sodium polyacrylate having a degree of polymerization of 2500 or less is dissolved in an aqueous solution of caustic potassium to form a viscous electrolyte. Further, zinc chloride powder and crosslinked branched sodium polyacrylate are mixed in a powder state, weighed by a mass cutting method, and filled into a sealing plate, and the viscous electrolyte is poured into this mixture. The sealing plate 7 provided with the gelled negative electrode 6 is combined with the positive electrode container 2 via the gasket 8, and the opening edge of the container 2 is tightened to form a sealed battery. Table 1 shows various negative electrode manufacturing methods and the ratio of gelling agent to negative electrode weight.

【表】 第2表は、上記処法による電池各100個につい
て測定した負極の秤量重量と初期内部抵抗の平均
値及びそのバラツキを示す標準偏差値の比較を表
わす。 また、第3表は、直接及び45℃3カ月保存後の
特性の比較を示す。なお、放電時間は、20℃にお
いて7.5KΩを負荷として連続放電したときの
1.4Vまでの電池20個の平均値(かつこ内は標準
偏差値)を表わす。また、閉路電圧は、7.5KΩ
で放電深度80%まで放電した時点で、0℃におい
て200Ωで5秒間放電したときの最低閉路電圧の
電池15個の平均値(かつこ内は標準偏差値)を表
わす。
[Table] Table 2 shows a comparison of the weighed weight of the negative electrode, the average value of the initial internal resistance, and the standard deviation value indicating the dispersion thereof, which were measured for each of 100 batteries prepared by the above treatment method. Furthermore, Table 3 shows a comparison of the properties directly and after storage at 45°C for 3 months. In addition, the discharge time is when continuously discharging with a load of 7.5KΩ at 20℃.
The average value of 20 batteries up to 1.4V (standard deviation value is shown in square brackets). Also, the closed circuit voltage is 7.5KΩ
The average value of the lowest closed-circuit voltage of 15 batteries when discharged to a depth of discharge of 80% at 0°C for 5 seconds at 200Ω (the value in brackets is the standard deviation value) is shown.

【表】【table】

【表】【table】

【表】 以上の結果より、本発明による酸化銀電池は、
負極活物質の秤量精度及び放電特性、低温閉路電
圧ですぐれていることがわかる。 実施例では、ゲル化剤としてポリアクリル酸ナ
トリウムを用いたが、ポリアクリル酸及びその
塩、例えばカリウム塩においても同様であつた。
また電解液としてか性カリを使用したが、か性ソ
ーダにおいても同様の結果が得られた。 発明の効果 以上のように、本発明によれば、一定品質で性
能の優れたアルカリ電池を得ることができる。
[Table] From the above results, the silver oxide battery according to the present invention has
It can be seen that the negative electrode active material has excellent weighing accuracy, discharge characteristics, and low-temperature closed circuit voltage. In the examples, sodium polyacrylate was used as the gelling agent, but the same applies to polyacrylic acid and its salts, such as potassium salts.
Although caustic potash was used as the electrolyte, similar results were obtained with caustic soda. Effects of the Invention As described above, according to the present invention, an alkaline battery with constant quality and excellent performance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例における酸化銀電池の要部
を断面にした側面図である。 1……正極、4……セパレータ、5……電解液
含浸材、6……ゲル状負極。
The figure is a cross-sectional side view of a main part of a silver oxide battery in an example of the present invention. 1... Positive electrode, 4... Separator, 5... Electrolyte impregnated material, 6... Gel-like negative electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 重合度2500以下の直鎖型ポリアクリル酸もし
くはその塩をアルカリ電解液に溶解して粘性溶液
をつくり、この粘性溶液を架橋分岐型ポリアクリ
ル酸もしくはその塩と亜鉛粉末との混合物に加え
てゲル状亜鉛負極を構成する工程を有するアルカ
リ電池の製造法。
1. Dissolve linear polyacrylic acid or its salt with a degree of polymerization of 2500 or less in an alkaline electrolyte to create a viscous solution, and add this viscous solution to a mixture of cross-linked branched polyacrylic acid or its salt and zinc powder. A method for producing an alkaline battery comprising a step of forming a gelled zinc negative electrode.
JP8943583A 1983-05-20 1983-05-20 Manufacturing method of alkaline battery Granted JPS59215663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8943583A JPS59215663A (en) 1983-05-20 1983-05-20 Manufacturing method of alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8943583A JPS59215663A (en) 1983-05-20 1983-05-20 Manufacturing method of alkaline battery

Publications (2)

Publication Number Publication Date
JPS59215663A JPS59215663A (en) 1984-12-05
JPH0414461B2 true JPH0414461B2 (en) 1992-03-12

Family

ID=13970590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8943583A Granted JPS59215663A (en) 1983-05-20 1983-05-20 Manufacturing method of alkaline battery

Country Status (1)

Country Link
JP (1) JPS59215663A (en)

Also Published As

Publication number Publication date
JPS59215663A (en) 1984-12-05

Similar Documents

Publication Publication Date Title
US5549988A (en) Polymer electrolytes and electrochemical cells using same
JP3708426B2 (en) Proton conducting polymer secondary battery
JPS6113561A (en) Method of geling cathode of alkaline battery and cathode blend
US4288913A (en) Method of forming in situ gelled anode
CN104838533A (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
US4332870A (en) Cell having a gelled anode containing a polyhydric alcohol
CN112436183A (en) Semi-gelled electrolyte battery and preparation method thereof
JP4240894B2 (en) Lithium ion conductive gel electrolyte and polymer lithium ion secondary battery
JPH0414461B2 (en)
JPS58206048A (en) Alkaline battery
JPS6322027B2 (en)
JP2000182600A (en) Lithium battery
US3764388A (en) Chloride free amalgamation of zinc powder using acetic oxalic and boric acids
US3533843A (en) Zinc electrode and method of forming
JPH02216760A (en) Zinc alkaline battery
CN115863751A (en) Gel-state electrolyte and preparation method thereof
JP2805796B2 (en) Zinc alkaline battery
JPS5925169A (en) Manufacture of negative pole for alkaline primary battery
JP3237261B2 (en) Reversible composite electrode and lithium secondary battery using the same
JPS63226881A (en) Nonaqueous electrolyte cell
JPS60182657A (en) Manufacture of silver oxide battery
JP2568590B2 (en) Alkaline battery
JP3042743B2 (en) Electrode manufacturing method
JPS5978452A (en) Alkaline battery
JPH038272A (en) Power generation or power storage device.