JPH04144290A - Manufacture of crystal silicon solar battery element - Google Patents

Manufacture of crystal silicon solar battery element

Info

Publication number
JPH04144290A
JPH04144290A JP2267859A JP26785990A JPH04144290A JP H04144290 A JPH04144290 A JP H04144290A JP 2267859 A JP2267859 A JP 2267859A JP 26785990 A JP26785990 A JP 26785990A JP H04144290 A JPH04144290 A JP H04144290A
Authority
JP
Japan
Prior art keywords
layer
electrode
light
mesh
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2267859A
Other languages
Japanese (ja)
Other versions
JP2981916B2 (en
Inventor
Yasuhiro Kida
康博 木田
Nobutaka Tomura
都村 伸孝
Kimio Hatsumi
初見 君男
Tadao Nemoto
根本 忠夫
Minoru Uchiyama
実 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2267859A priority Critical patent/JP2981916B2/en
Publication of JPH04144290A publication Critical patent/JPH04144290A/en
Application granted granted Critical
Publication of JP2981916B2 publication Critical patent/JP2981916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Abstract

PURPOSE:To get a solar battery element with high conversion efficiency, wherein the loss by current collecting resistors at the rear of an element is reduced and light shut-in effect is improved, by forming the p-type silicon substrate and the p<+>-layer in the region surrounded by a mesh-shaped electrode in the shape of grooves crossing each other at right angles. CONSTITUTION:By providing grooves 16, which cross each other at right angles, in the region, which is surrounded by the mesh-shaped Ag electrode 10 made at the rear of the element of a p-type semiconductor base layer 12, opportunity increases such as that one part of the light, which has entered the light receiving face of a solar battery 1, reaches the rear and is reflected at the rear, and that one part of the light, which has gone out of the side of the groove, enters the bottom of the groove or the side of other groove again, so the utilization factor of the incident light rises. Moreover, in the p<+>-type semiconductor layer 11 at the rear, the sectional area to the direction of an electrode increases, and the loss by current collecting resistors decreases. Furthermore, in the groove part 16, the depth is approximately 30mum, so the effective thickness of the substrate is approximately 170mum, and the effect of collecting the light generating carriers improves in the region near the junction of the light receiving face without thinning the real thickness of the substrate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は−n”/P/p+型結晶シリコン太陽電池素子
における素子裏面構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device backside structure in a -n''/P/p+ type crystalline silicon solar cell device.

〔従来の技術〕[Conventional technology]

従来太陽電池素子の変換効率を高めるため素子の薄型化
が検討されてきた。素子を薄型化する為には素子内部に
入射した光が素子の裏面で反射され外部へ抜は出ること
なく再び内部へ反射される構造すなわち光閉じ込め構造
とすることが変換効率向上のため必要となる。
Conventionally, attempts have been made to make solar cell elements thinner in order to increase their conversion efficiency. In order to make the device thinner, it is necessary to create a structure in which the light incident inside the device is reflected from the back surface of the device and reflected back into the device without exiting to the outside, that is, a light confinement structure, to improve conversion efficiency. Become.

さらに、ペーストを用いた印刷電極形成法では、シリコ
ンとペーストとの熱膨張係数の差により焼成工程におい
て基板割れが多発する。従って、電極面積率を低減する
ことも必要である。
Furthermore, in the printed electrode forming method using paste, substrate cracks frequently occur during the firing process due to the difference in thermal expansion coefficient between silicon and paste. Therefore, it is also necessary to reduce the electrode area ratio.

光閉じ込め構造に関しては、文献1(JamesM、 
Gee、 20 t h  I E’Potovolt
aic 5peci−alist cont、 198
8 、 p 549 )で■溝の表裏面構造の効果につ
いて報告されている。また、文献2 (M、A、 Gr
een、 et al、 Technical D−i
gest of Int’l PVSEC4’5ydn
ey、 NewAustralia、 1989 、 
p l 59 )では、受光面n十層でのフィンガー電
極方向への直列抵抗ロス低減さらに、光の反射率低減を
目的とした受光面V溝構造太陽電池素子について報告さ
れている。
Regarding the optical confinement structure, see Reference 1 (James M,
Gee, 20th I E'Potovolt
aic 5peci-alist cont, 198
8, p. 549) reports on the effects of the structure of the front and back surfaces of the groove. In addition, Reference 2 (M, A, Gr
een, et al, Technical D-i
gest of Int'l PVSEC4'5ydn
ey, New Australia, 1989,
p l 59) reports on a solar cell element with a V-groove structure on the light-receiving surface, which aims to reduce series resistance loss in the direction of finger electrodes in the n-th layer of the light-receiving surface and to reduce light reflectance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、光閉じ込め構造及び受光面電極面積率
低減(n土層での集電抵抗ロスの低減)、反射率低減の
ための報告であり、特に、裏面光閉じ込め構造と裏面電
極面積率低減のための構造の両方を配慮した構造とはな
っていない。さらに、従来技術では■溝構造パターンが
非常に高精細となるため、素子製造方法は、ホトリゾ技
術による微細パターンニング工程が必要となり、非常に
複雑で、コストの高いプロセスとなっている。
The above-mentioned conventional technology is a report on a light confinement structure, a reduction in the area ratio of the light-receiving surface electrode (reduction of current collecting resistance loss in the n-soil layer), and a reduction in reflectance. The structure does not take into account both the structure for reducing the Furthermore, in the prior art, (1) the groove structure pattern is very fine, so the device manufacturing method requires a fine patterning process using photolithography, making it a very complicated and expensive process.

本発明の目的は、素子裏面の集電抵抗損失を低減し、さ
らに、光閉じ込め効果を向上させた変換効率の高い太陽
電池素子及び印刷法による経済性の高い製造方法を提供
することにある。
An object of the present invention is to provide a solar cell element with high conversion efficiency that reduces current collection resistance loss on the back side of the element and improves the light confinement effect, and a highly economical manufacturing method using a printing method.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、P型シリコン基板の光が入射する側の表面
にn+層を形成し、前記P型シリコン基板の裏側の表面
にP+層を形成し該P+層上にメツシュ状電極を形成し
た結晶シリコン太陽電池素子において、前記メツシュ状
電極で囲まれた領域の前記P型シリコン基板とP+層を
互に直交した溝状に形成したことにより達成される。
The above purpose is to form a crystal with an n+ layer formed on the surface of the P-type silicon substrate on the side where light enters, a P+ layer formed on the back surface of the P-type silicon substrate, and a mesh-like electrode formed on the P+ layer. In the silicon solar cell element, this is achieved by forming the P-type silicon substrate and the P+ layer in the region surrounded by the mesh-like electrode into grooves that are orthogonal to each other.

上記目的は、前記P+層を前記メツシュ状@極と接合す
る位置にのみ形成したことにより達成される。
The above object is achieved by forming the P+ layer only at the position where it joins the mesh-like @pole.

上記目的は、前記メツシュ状電極とP+層がアルミニウ
ムとシリコンの合金であるアルミニウム・シリコン合金
層及びp+型の再成長層であることにより達成される。
The above object is achieved because the mesh-like electrode and the P+ layer are an aluminum-silicon alloy layer, which is an alloy of aluminum and silicon, and a p+ type regrowth layer.

上記目的は、前記メツシュ状電極の面積率が25%以下
であることにより達成される。
The above object is achieved by setting the area ratio of the mesh electrode to 25% or less.

上記目的は、P型シリコン基板の光が入射する側の表面
にn+層を形成し、前記P型シリコン基板の裏側の表面
にP+層を形成し該P+層上にメツシュ状電極を形成す
る結晶シリコン太陽電池素子の製造方法において、前記
メツシュ状電極で囲まれた領域の前記P型シリコン基板
とP+層を、エツチングレジスト印刷後エツチングによ
り互に直交した溝状に形成することにより達成される。
The above purpose is to form an n+ layer on the surface of a P-type silicon substrate on the side where light is incident, to form a P+ layer on the back surface of the P-type silicon substrate, and to form a mesh-like electrode on the P+ layer. In the method of manufacturing a silicon solar cell element, this is achieved by forming the P type silicon substrate and the P+ layer in the region surrounded by the mesh electrode into mutually orthogonal groove shapes by etching after printing an etching resist.

〔作用〕[Effect]

上記構成によれば、メツシュ状電極で囲まれた領域を直
交した溝状に形成することにより、裏面のP+層で平坦
な場合に比較して溝の壁面が多く形成され、その壁面が
電極方向に対して断面積を増加させることになり、集電
抵抗損失が少なくなる。
According to the above configuration, by forming the region surrounded by the mesh-like electrode in the shape of orthogonal grooves, more wall surfaces of the groove are formed than in the case where the P+ layer on the back surface is flat, and the wall surfaces are directed toward the electrode. This results in an increase in the cross-sectional area relative to the current flow rate, which reduces current collection resistance loss.

また、太陽電池素子のn+層に入射した光はn+層、P
型シリコン基板及びP+層で吸収されるが一部の光は裏
面に到達する。裏面に到達した光は裏面側から見た溝の
底部で反射し、受光面の接合部即ち、n+層とP型シリ
コン基板の接合部が近いため吸収損失が小さく光の利用
率が高くなる。
In addition, the light incident on the n+ layer of the solar cell element is transmitted to the n+ layer, P
Although the light is absorbed by the silicon substrate and the P+ layer, some of the light reaches the back surface. The light reaching the back surface is reflected at the bottom of the groove as seen from the back surface side, and since the junction of the light-receiving surface, that is, the junction between the n+ layer and the P-type silicon substrate is close, absorption loss is small and the light utilization rate is high.

そして、裏面のP+層で反射し溝の壁面から屈折して飛
び出した光の一部は、上記溝の底部若しくは他の溝の壁
面に再び入射する確率が高くなるので光閉じ込め効果に
より入射光の利用率が高くなる。
A part of the light that is reflected by the P+ layer on the back surface, refracted from the wall surface of the groove, and jumped out has a high probability of entering the bottom of the groove or the wall surface of another groove again, so the light confinement effect reduces the amount of incident light. Utilization rate increases.

更に、溝を形成することにより、太陽電池素子の厚さを
光学的に薄くすることになるので変換効率が高まり、溝
以外の凸部が補強材として機能し機械的な強度が高くな
る。
Furthermore, by forming the grooves, the thickness of the solar cell element is optically reduced, so the conversion efficiency is increased, and the convex portions other than the grooves function as reinforcing materials, increasing the mechanical strength.

〔実施例〕〔Example〕

以下、本発明の一実施例を図に基づいて説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図に示すように第1実施例の太陽電池1は、P型半
導体ベース層12の素子裏面に、P+半導体層11、そ
の上部にメツシュ状Ag電極10、この電極で囲まれた
領域内に直交する溝]6、受光面にn+型型半体体層1
3反射防止膜を兼ねた厚い酸化膜14、受光面電極15
を有する。
As shown in FIG. 1, the solar cell 1 of the first embodiment has a P+ semiconductor layer 11 on the back surface of the element of a P-type semiconductor base layer 12, a mesh-like Ag electrode 10 on top of the P+ semiconductor layer 11, and a region surrounded by this electrode. groove perpendicular to] 6, n+ type half body layer 1 on the light receiving surface
3 Thick oxide film 14 that also serves as an antireflection film, light-receiving surface electrode 15
has.

太陽電池1において、P型半導体ベース層12は、厚さ
がほぼ200μmとなっている。第2図に示すように素
子裏面のメツシュ状Ag電極10は、ピッチが2mm、
 1+am、線巾が約200μm、厚さが約45μm(
電極面積率がほぼ25%)の埋込み構造となっている。
In solar cell 1, P-type semiconductor base layer 12 has a thickness of approximately 200 μm. As shown in FIG. 2, the mesh-like Ag electrodes 10 on the back side of the device have a pitch of 2 mm,
1+am, line width approximately 200μm, thickness approximately 45μm (
It has a buried structure with an electrode area ratio of approximately 25%.

この電極に囲まれた領域内の直交する溝16は、巾が約
100μm、ピッチが200μm、深さが約30μmと
なっている。p+型型半体体層11、深さが約0.2μ
m。
The orthogonal grooves 16 in the area surrounded by the electrodes have a width of about 100 μm, a pitch of 200 μm, and a depth of about 30 μm. p+ type half body layer 11, depth is approximately 0.2μ
m.

シート抵抗が約70Ω/口となっている。n+型型半体
体層13、深さが約1.0μm、シート抵抗が約100
Ω/口となっている。反射防止膜を兼ねた厚い酸化膜1
4は、厚さが約0.1μmとなっている。
Sheet resistance is approximately 70Ω/mouth. N+ type half body layer 13, depth is approximately 1.0 μm, sheet resistance is approximately 100
Ω/mouth. Thick oxide film 1 that also serves as an anti-reflection film
No. 4 has a thickness of approximately 0.1 μm.

このような構造においては、次の理由によって変換効率
が高くなる。P型半導体ベース層12の素子裏面に形成
したメツシュ状Ag電極10の電極で囲まれた領域内に
直交する溝16を設けることにより、太陽電池1の受光
面に入射した光の一部は裏面に到達し、裏面で反射し溝
の側面から外へ出た光の一部は、溝の底部もしくは、別
の溝の側面に再度入射する機会が高まるため入射光の利
用率が高まる。また、裏面P+型半導体層11において
、電極方向に対する断面積が増加し集電抵抗ロスが低減
する。さらに、溝部16では、深さが約30μmである
ため、実効的な基板の厚さは、約170μmとなり、実
基板厚さを薄くすることなく受光面の接合(n生型半導
体層13とP型半導体ベース層12の接合部)に近い領
域における光生成キャリアの集電効果が向上する。
In such a structure, the conversion efficiency increases for the following reasons. By providing orthogonal grooves 16 in the area surrounded by the electrodes of the mesh-like Ag electrode 10 formed on the back surface of the element of the P-type semiconductor base layer 12, a portion of the light incident on the light-receiving surface of the solar cell 1 is transmitted to the back surface. A portion of the light that reaches the groove, reflects on the back surface, and exits from the side surface of the groove has a higher chance of re-entering the bottom of the groove or the side surface of another groove, increasing the utilization rate of the incident light. Further, in the back P+ type semiconductor layer 11, the cross-sectional area with respect to the electrode direction increases, and current collection resistance loss is reduced. Furthermore, since the depth of the groove 16 is about 30 μm, the effective thickness of the substrate is about 170 μm, and the bonding of the light-receiving surface (n-type semiconductor layer 13 and P The current collection effect of photogenerated carriers in the region close to the junction of the type semiconductor base layer 12 is improved.

ここで、素子裏面のメツシュ状Ag電極10、および直
交する溝16の溝巾、深さ、ピッチについては、後述す
る製造方法による一実施例であり、印刷技術の向上、太
陽電池製造方法の向上等が期待され本実施例に限定され
るものではない。
Here, the groove width, depth, and pitch of the mesh-like Ag electrode 10 on the back surface of the element and the orthogonal grooves 16 are an example of the manufacturing method described later, and improve printing technology and solar cell manufacturing method. etc., and is not limited to this example.

次に、本実施例の太陽電池の製造方法を示す。Next, a method for manufacturing the solar cell of this example will be described.

P型半導体ベース層12は、初期の厚さが約260μm
、比抵抗が約1Ω・Cl11、少数キャリア拡散長は、
約170μmである。素子裏面となる面に、埋込み電極
用溝形成のためのピッチ2mm、 1mmt線巾約20
0μmのメツシュパターン、及びその領域内に直交する
溝形成のためのピッチ200μm、線巾約100μmの
直交パターンのエツチングレジストを印刷法により塗布
する。次に、HF/HNO,系エツチング液により1分
間エツチング後エツチングレジストを除去すると、深さ
が約30μmの前述パターンが同時に形成される。
The P-type semiconductor base layer 12 has an initial thickness of about 260 μm.
, the specific resistance is about 1Ω・Cl11, and the minority carrier diffusion length is
It is approximately 170 μm. On the back side of the element, a pitch of 2 mm for forming grooves for buried electrodes, and a line width of 1 mm and approximately 20
An etching resist having a mesh pattern of 0 .mu.m and an orthogonal pattern with a pitch of 200 .mu.m and a line width of about 100 .mu.m for forming grooves perpendicular to the region is applied by a printing method. Next, when the etching resist is removed after etching for 1 minute using an HF/HNO etching solution, the aforementioned pattern having a depth of about 30 μm is simultaneously formed.

次に、表面無反射化のための凸凹化処理としてアルカリ
エツチングを行なう。このエツチング後P型半導体ベー
ス層12の厚さは、約200μmとなる。次に、リン拡
散により、深さが約0.25μm、シート抵抗約150
Ω/口のn生型半導体層13を形成する。その後、反射
防止膜を兼ねた厚い酸化膜14を熱酸化により約0.1
μm形成し受光面の処理が完了する。次に裏面の処理を
行うに先たち受光面を保護するため全面にエツチングレ
ジストを印刷法により塗布する。次にHF/H2O液に
より前の工程で裏面に形成された酸化膜を除去し、さら
にHF/HNO,系エツチング液により裏面に形成され
たn++半導体層を除去後、エツチングレジストを除去
するとP型半導体ベース層12が露出する。次に、ボロ
ン拡散により、裏面のP型半導体ベース層12に、深さ
約0.2μm、シート抵抗約70Ω/口のp中型半導体
層11を形成する。
Next, alkali etching is performed as an uneven treatment to make the surface non-reflective. After this etching, the thickness of the P-type semiconductor base layer 12 is approximately 200 μm. Next, due to phosphorus diffusion, the depth is approximately 0.25 μm and the sheet resistance is approximately 150 μm.
An n-type semiconductor layer 13 of Ω/hole is formed. After that, the thick oxide film 14, which also serves as an anti-reflection film, is thermally oxidized to approximately 0.1
μm formation and processing of the light-receiving surface is completed. Next, before processing the back surface, an etching resist is applied to the entire surface by a printing method in order to protect the light-receiving surface. Next, the oxide film formed on the back surface in the previous step is removed using HF/H2O solution, and the n++ semiconductor layer formed on the back surface is removed using HF/HNO and etchant. When the etching resist is removed, a P-type etchant is formed. Semiconductor base layer 12 is exposed. Next, a p-type semiconductor layer 11 having a depth of about 0.2 μm and a sheet resistance of about 70 Ω/hole is formed in the P-type semiconductor base layer 12 on the back surface by boron diffusion.

以後、裏面及び受光面にAgペースト印刷・乾燥後、6
00℃、1分間、窒素雰囲気中で加熱し冷却してメツシ
ュ状Ag電極10を形成し、本実施例の太陽電池が得ら
れる。この素子の特性は、素子裏面にメツシュ状Ag電
極1oで囲まれた領域に直交した溝16のない従来の素
子(メツシュ状電極面積率は同一)に比べ、特に短絡電
流密度、曲線因子が向上しており、前述効果が実験によ
り確認された。
After that, after printing and drying Ag paste on the back side and light receiving side, 6
The mesh-like Ag electrode 10 is formed by heating at 00° C. for 1 minute in a nitrogen atmosphere and cooling, thereby obtaining the solar cell of this example. The characteristics of this device are particularly improved in short-circuit current density and fill factor compared to a conventional device that does not have the groove 16 perpendicular to the area surrounded by the mesh-like Ag electrode 1o on the back surface of the device (the mesh-like electrode area ratio is the same). The above-mentioned effect was confirmed through experiments.

さらに、第3図に、本発明の第2実施例を示す。Furthermore, FIG. 3 shows a second embodiment of the present invention.

この太陽電池2は、P型半導体ベース層12の素子裏面
に、メツシュ状Ag−AQ電極17.この電極で囲まれ
た領域内に直交する溝16及び厚い酸化膜14、この電
極と接合する位置のみに設けたP+型半導体層11、受
光面にn+型半導体M13、反射防止膜を兼ねた厚い酸
化膜]4、受光面電極15を有する。
This solar cell 2 has a mesh-like Ag-AQ electrode 17. A groove 16 perpendicular to the area surrounded by this electrode, a thick oxide film 14, a P+ type semiconductor layer 11 provided only at the position where it joins with this electrode, an n+ type semiconductor M13 on the light receiving surface, and a thick oxide film that also serves as an antireflection film. oxide film] 4 and a light-receiving surface electrode 15.

この太陽電池2は、第1実施例の太陽電池1において、
P+型半導体層11が裏面全面に形成されているのに対
して、電極部のみに形成されており、電極で囲まれた領
域内はP+型半導体層11によるBSF構造にかわり裏
面パッシベーションのための酸化膜14が形成されてい
る。この裏面酸化膜14は、受光面反射防止膜を兼ねた
酸化膜と同時に形成され、さらに、裏面メツシュ状Ag
−AQ電極17及び電極部のp千手導体層11は、Ag
−AQペーストを用いることにより、アルミニウムとシ
リコンとの合金反応によって形成されるアルミニウムシ
リコン合金層及びP+型の再成長層である。従って、本
実施例の製造方法は、p千生導体層形成のためのボロン
拡散工程を省略できるため、製造工程が単純になりコス
トと時間が節減される。
This solar cell 2 has the following features in the solar cell 1 of the first embodiment:
While the P+ type semiconductor layer 11 is formed on the entire back surface, it is formed only on the electrode part, and the area surrounded by the electrode is replaced by the BSF structure of the P+ type semiconductor layer 11 for back surface passivation. An oxide film 14 is formed. This back oxide film 14 is formed at the same time as an oxide film that also serves as a light-receiving surface antireflection film.
- The AQ electrode 17 and the p-senju conductor layer 11 of the electrode part are made of Ag
- An aluminum-silicon alloy layer and a P+ type regrowth layer formed by an alloy reaction between aluminum and silicon by using AQ paste. Therefore, in the manufacturing method of this embodiment, the boron diffusion step for forming the p-sensitivity conductor layer can be omitted, which simplifies the manufacturing process and saves cost and time.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、メツシュ状電極で囲まれた領域を直交
した溝状に形成することにより、溝の壁面が多く形成さ
れ、その壁面が電極方向に対して断面積を増加させるこ
とになり、集電抵抗損失を低減し、また光閉じ込め効果
により入射光の利用率が高くなるので、結晶シリコン太
陽電池素子の光を電力に変換する効率を高める効果が得
られる。
According to the present invention, by forming the region surrounded by the mesh-like electrode in the shape of orthogonal grooves, many wall surfaces of the groove are formed, and the cross-sectional area of the wall surfaces increases in the direction of the electrode. Since the current collection resistance loss is reduced and the utilization rate of incident light is increased due to the light confinement effect, the effect of increasing the efficiency of converting light into electric power of the crystalline silicon solar cell element can be obtained.

更に印刷法により製造方法の経済性を高める効果が得ら
れる2
Furthermore, the printing method has the effect of increasing the economic efficiency of the manufacturing method 2

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例に係る結晶シリコン太陽電
池素子の裏面斜視図、第2図は第1図に示したメツシュ
状電極の全体パタンを示す平面図、第3図は本発明の第
2実施例に係る結晶シリコン太陽電池素子の裏面斜視図
である。 1・・・太陽電池素子、2・・・太陽電池素子、10・
・・メツシュ状Ag電極、11・・・P十型半導体層、
12・・・P型半導体ベース層、13・・n十型半導体
層、14・・・酸化膜、15・・受光面Ag電極、16
・・直交した溝、17・・・メツシュ状Ag−AQ電極
FIG. 1 is a rear perspective view of a crystalline silicon solar cell element according to a first embodiment of the present invention, FIG. 2 is a plan view showing the entire pattern of the mesh-like electrode shown in FIG. 1, and FIG. FIG. 2 is a rear perspective view of a crystalline silicon solar cell element according to a second example. 1... Solar cell element, 2... Solar cell element, 10.
...Mesh-like Ag electrode, 11...P ten-type semiconductor layer,
12... P-type semiconductor base layer, 13... n-type semiconductor layer, 14... oxide film, 15... light-receiving surface Ag electrode, 16
...Orthogonal grooves, 17...Mesh-like Ag-AQ electrode.

Claims (1)

【特許請求の範囲】 1、P型シリコン基板の光が入射する側の表面にn^+
層を形成し、前記P型シリコン基板の裏側の表面にp^
+層を形成し該p^+層上にメッシュ状電極を形成した
結晶シリコン太陽電池素子において、前記メッシュ状電
極で囲まれた領域の前記P型シリコン基板とp^+層を
互に直交した溝状に形成したことを特徴とする結晶シリ
コン太陽電池素子。 2、前記p^+層を前記メッシュ状電極と接合する位置
にのみ形成したことを特徴とする請求項1に記載の結晶
シリコン太陽電池素子。 3、前記メッシュ状電極とp^+層がアルミニウムとシ
リコンの合金であるアルミニウム・シリコン合金層及び
p^+型の再成長層であることを特徴とする請求項2に
記載の結晶シリコン太陽電池素子。 4、前記メッシュ状電極の面積率が25%以下であるこ
とを特徴とする請求項1から請求項3のうち何れか1項
に記載の結晶シリコン太陽電池素子。 5、P型シリコン基板の光が入射する側の表面にn^+
層を形成し、前記P型シリコン基板の裏側の表面にp^
+層を形成し該p^+層上にメッシュ状電極を形成する
結晶シリコン太陽電池素子の製造方法において、前記メ
ッシュ状電極で囲まれた領域の前記P型シリコン基板と
p^+層を、エッチングレジスト印刷後エッチングによ
り互に直交した溝状に形成することを特徴とする結晶シ
リコン太陽電池素子の製造方法。
[Claims] 1. n^+ on the surface of the P-type silicon substrate on the side where light enters.
A layer is formed on the back surface of the P-type silicon substrate.
In a crystalline silicon solar cell element in which a + layer is formed and a mesh-like electrode is formed on the p^+ layer, the P-type silicon substrate and the p^+ layer in a region surrounded by the mesh-like electrode are mutually orthogonal. A crystalline silicon solar cell element characterized by being formed in a groove shape. 2. The crystalline silicon solar cell element according to claim 1, wherein the p^+ layer is formed only at a position where it is bonded to the mesh electrode. 3. The crystalline silicon solar cell according to claim 2, wherein the mesh electrode and the p^+ layer are an aluminum-silicon alloy layer that is an alloy of aluminum and silicon, and a p^+ type regrowth layer. element. 4. The crystalline silicon solar cell element according to any one of claims 1 to 3, wherein the area ratio of the mesh electrode is 25% or less. 5. n^+ on the surface of the P-type silicon substrate on the side where light enters.
A layer is formed on the back surface of the P-type silicon substrate.
In a method for manufacturing a crystalline silicon solar cell element in which a + layer is formed and a mesh-like electrode is formed on the p^+ layer, the P-type silicon substrate and the p^+ layer in a region surrounded by the mesh-like electrode are 1. A method for producing a crystalline silicon solar cell element, which comprises printing an etching resist and then etching it to form grooves that are perpendicular to each other.
JP2267859A 1990-10-05 1990-10-05 Crystalline silicon solar cell element Expired - Fee Related JP2981916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2267859A JP2981916B2 (en) 1990-10-05 1990-10-05 Crystalline silicon solar cell element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2267859A JP2981916B2 (en) 1990-10-05 1990-10-05 Crystalline silicon solar cell element

Publications (2)

Publication Number Publication Date
JPH04144290A true JPH04144290A (en) 1992-05-18
JP2981916B2 JP2981916B2 (en) 1999-11-22

Family

ID=17450630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2267859A Expired - Fee Related JP2981916B2 (en) 1990-10-05 1990-10-05 Crystalline silicon solar cell element

Country Status (1)

Country Link
JP (1) JP2981916B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010519732A (en) * 2007-02-15 2010-06-03 マサチューセッツ インスティテュート オブ テクノロジー Solar cell with uneven surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010519732A (en) * 2007-02-15 2010-06-03 マサチューセッツ インスティテュート オブ テクノロジー Solar cell with uneven surface

Also Published As

Publication number Publication date
JP2981916B2 (en) 1999-11-22

Similar Documents

Publication Publication Date Title
JP5174903B2 (en) Method for manufacturing solar battery cell
US8035028B2 (en) Pyramidal three-dimensional thin-film solar cells
US20090107545A1 (en) Template for pyramidal three-dimensional thin-film solar cell manufacturing and methods of use
WO2009118861A1 (en) Photovolatic power device and method for manufacturing the same
JP2007214372A (en) Solar battery and its manufacturing method
JP5851284B2 (en) Manufacturing method of solar cell
JP2007266262A (en) Solar cell with interconnector, solar cell module, and method for manufacturing solar cell module
JPWO2009133607A1 (en) Method for manufacturing photovoltaic device
JPH0682854B2 (en) Solar cell
JP5777798B2 (en) Method for manufacturing solar battery cell
JPH0415962A (en) Solar cell and manufacture thereof
JP2016122749A (en) Solar battery element and solar battery module
JP2989373B2 (en) Method for manufacturing photoelectric conversion device
KR101023144B1 (en) Solar cell using layer transfer process and fabrication method thereof
JPH11330517A (en) Solar battery and solar battery module
WO2010150358A1 (en) Photoelectromotive device, and method for manufacturing the same
JPH04144290A (en) Manufacture of crystal silicon solar battery element
JP5349523B2 (en) Manufacturing method of solar cell
JPS63234566A (en) Solar cell
JPH06181323A (en) Manufacture of solar cell element
JP6125042B2 (en) Method for manufacturing solar battery cell
JPH05235385A (en) Silicon solar cell
JP4964222B2 (en) Method for manufacturing photovoltaic device
JPH0448660A (en) Solar battery module
JP2997538B2 (en) Polycrystalline silicon solar cell element

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees