JPH04143267A - Anode for vacuum arc vapor deposition device - Google Patents

Anode for vacuum arc vapor deposition device

Info

Publication number
JPH04143267A
JPH04143267A JP26905790A JP26905790A JPH04143267A JP H04143267 A JPH04143267 A JP H04143267A JP 26905790 A JP26905790 A JP 26905790A JP 26905790 A JP26905790 A JP 26905790A JP H04143267 A JPH04143267 A JP H04143267A
Authority
JP
Japan
Prior art keywords
anode
film
magnetic field
insulating
vacuum arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26905790A
Other languages
Japanese (ja)
Inventor
Tetsuya Yoshikawa
哲也 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP26905790A priority Critical patent/JPH04143267A/en
Publication of JPH04143267A publication Critical patent/JPH04143267A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To enable continuous and stable formation of a film comprising an insulating material with uniform thickness for a long time by generating a magnetic field near the front of the effective surface of an anode for arc discharge. CONSTITUTION:In a vacuum chamber 3, plasma 26 is produced by arc discharge between a cathode 5 and anode 6A to vaporize and ionize the metal of a target 4 on the cathode 5. This metal is made to react with a reactive gas from the reaction gas system 9 to produce an insulating metal compd. and to deposit on the substrate surface 1. In this vacuum arc vapor deposition device, a magnetic field generator comprising permanent magnets 24 which generate lines of magnetic force is provided on the back side of the effective surface of the anode 6A. Thereby, a magnetic field is applied near the front of the effective surface 20 to generate plasma 27, which prevents deposition of the insulating compd. on the surface of the anode 6A. Thus, stable and continuous application of electric current is possible, which prevents variation in film thickness.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、真空アーク蒸着装置の改良、特に基材上に絶
縁性物質の被膜を継続的に成膜することを可能とする真
空アーク蒸着装置に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to improvements in vacuum arc evaporation equipment, and particularly to vacuum arc evaporation equipment that enables continuous formation of a film of an insulating substance on a substrate. Regarding equipment.

(従来の技術) 一般的な真空アーク蒸着装置の従来構造を第7図に示す
。この装置により基材(1)を処理物としてその表面上
に絶縁性物質の被膜を成膜するには、排気系(2)によ
り真空化される真空チャンバー(3)内において膜成分
となる金属材料のターゲット(4)を陰極(5)に取付
け、陽極(6)と陰極とをアーク電源(7)に接続しア
ーク放電開始手段(8)により両極間にアーク放電を発
生させ、陰極からターゲット金属の気化およびイオン化
を行わせ、反応ガス系(9)より導入する反応ガスと反
応させ、生成する絶縁性金属化合物をテーブル0ω上の
基材(1)の表面上に堆積させる。
(Prior Art) The conventional structure of a general vacuum arc evaporation apparatus is shown in FIG. In order to form a film of an insulating material on the surface of a substrate (1) as a processing object using this device, the metal that will be the film component is placed in a vacuum chamber (3) that is evacuated by an exhaust system (2). A material target (4) is attached to the cathode (5), the anode (6) and the cathode are connected to an arc power source (7), an arc discharge is generated between the two electrodes by the arc discharge starting means (8), and the target is removed from the cathode. The metal is vaporized and ionized, reacted with a reaction gas introduced from the reaction gas system (9), and the resulting insulating metal compound is deposited on the surface of the base material (1) on the table 0ω.

この装置では生成される金属化合物は基材表面のみに集
中的に堆積するのではなく、真空チャンバー内のいたる
ところに、また陽極の表面にも堆積する。
In this device, the metal compound produced is not concentrated only on the surface of the substrate, but is deposited everywhere within the vacuum chamber and also on the surface of the anode.

陽極表面に堆積する金属化合物の膜はその金属化合物が
導電性のものである限りにおいてはアーク放電の継続に
支障を来さないが、絶縁性のものである場合には通電を
困難にして遂にはアーク回路を遮断するので真空アーク
蒸着の続行が不可能となる。
The metal compound film deposited on the anode surface does not interfere with the continuation of arc discharge as long as the metal compound is conductive, but if it is insulating, it becomes difficult to conduct electricity and eventually breaks the arc circuit, making it impossible to continue vacuum arc deposition.

先頭の特願昭63−324148号はこの問題の1つの
解決手段を与えたもので、第8図に示すように、ターゲ
ット(4)を取付ける電極(11)を複数設けてアーク
電源〔7)に極性切替手段(12)を介して接続し、一
定時間毎に極性を切り替えることにより、陽極接続の間
に電極上に堆積する絶縁性金属化合物の膜を陰極接続に
切り替えたときにアークスポットにより蒸発消失させて
通電継続に対する支障がなくなるようにし、基材上への
絶縁性金属化合物の継続成膜が可能なようにしている。
The first Japanese Patent Application No. 63-324148 provides one solution to this problem, and as shown in Figure 8, a plurality of electrodes (11) are provided to which the target (4) is attached, and an arc power source [7] is provided. By connecting to the electrode via a polarity switching means (12) and switching the polarity at regular intervals, an insulating metal compound film deposited on the electrode during anodic connection is removed by an arc spot when switched to cathode connection. The insulating metal compound is evaporated and disappeared so that there is no hindrance to continued current supply, and it is possible to continuously form a film of the insulating metal compound on the base material.

(発明が解決しようとする問題点) 従来技術の一般的な真空アーク蒸着装置では、前記のよ
うに、絶縁性金属化合物をはしめ絶縁性物質については
安定な成膜を長時間継続して実施することができない。
(Problems to be Solved by the Invention) As mentioned above, in the general vacuum arc evaporation apparatus of the prior art, stable film formation of insulating metal compounds and insulating substances is performed continuously for a long time. I can't.

第8図に示す真空アーク蒸着装置は極性切り替え操作に
より絶縁性金属化合物の成膜の場合にも長時間アーク放
電の継続を可能として継続的成膜を可能とするが、この
装置は電極の取付位置が限定されるために成膜基材の形
状によっては膜厚むらが発生することが避けられず、特
に連続的に長い板あるいはシート状基材に成膜する場合
には電極切り替え時に顕著な膜厚むらが発生するという
問題があった。
The vacuum arc evaporation equipment shown in Figure 8 enables continuous film formation by allowing arc discharge to continue for a long time even when depositing films of insulating metal compounds by switching the polarity. Because the position is limited, it is inevitable that film thickness unevenness will occur depending on the shape of the film-forming substrate, and this is particularly noticeable when switching electrodes when film is continuously formed on a long plate or sheet-like base material. There was a problem of uneven film thickness.

(問題点を解決するための手段) 本発明は従来技術の真空アーク蒸着装置の前記問題に解
決を与えることを目的としてなされたものであって、そ
の陽極として陽極の有効表面すなわち空間から電子を受
は取る面部分の近傍に磁界を発生させる装置を設けるこ
とを解決手段とするものである。
(Means for Solving the Problems) The present invention has been made for the purpose of providing a solution to the above-mentioned problems of the vacuum arc evaporation apparatus of the prior art. The solution to this problem is to provide a device that generates a magnetic field near the surface to be removed.

具体的には、板状の陽極有効表面の裏側に永久磁石ある
いは電磁コイルを設けて、その発生磁力線が陽極表面材
料を貫通してその有効表面の前方直近の領域に陽極表面
にほぼ平行な磁場を形成した後、再び陽極表面を貫通す
る形のものとする。
Specifically, a permanent magnet or an electromagnetic coil is installed on the back side of the plate-shaped anode effective surface, and the lines of magnetic force generated by it penetrate the anode surface material and create a magnetic field almost parallel to the anode surface in the area immediately in front of the effective surface. After forming the anode, it is again shaped to penetrate through the anode surface.

さらに陽極表面にあられれた磁場の形状について言うと
、陽極前の電場と磁場の影響でドリフトする電子が閉し
たドリフト軌道を形成可能であると良い。この磁場の形
状は、いわゆるマグ不トロンスパ、タリングで採用され
る磁場の形状と基本的に同一である。
Furthermore, regarding the shape of the magnetic field formed on the anode surface, it is preferable that electrons drifting under the influence of the electric and magnetic fields in front of the anode can form closed drift orbits. The shape of this magnetic field is basically the same as the shape of the magnetic field employed in so-called magtron spacing and taring.

(作用) 真空アーク蒸着装置でターゲット金属の化合物を成膜す
る場合、通常用いる真空チャンバー内雰囲気ガス圧力(
I X 10− ’Torr、〜1×10−“Torr
、)のもとで本発明の陽極を使用すると、アーク放電電
圧が上昇するのが観察されるとともに陽極の有効表面の
前方近傍の空間では磁界の影響により電子の運動が活性
化しあるいは擾乱されてグロー状のプラズマ発光が発生
するのが観察された。
(Function) When forming a target metal compound into a film using a vacuum arc evaporation device, the atmospheric gas pressure (
I x 10-'Torr, ~1 x 10-'Torr
When the anode of the present invention is used under conditions such as Glow-like plasma emission was observed to occur.

このように陽極の有効表面の近傍に磁界の影響によるプ
ラズマが発生している状態のもとでは陽極表面には膜が
堆積し得ないよう番こなることが実験的に確認された。
It has been experimentally confirmed that under such conditions where plasma is generated near the effective surface of the anode due to the influence of the magnetic field, a film is prevented from being deposited on the anode surface.

この様に陽極表面に被膜が堆積されなくなる詳細な機構
は不明であるが、本発明において放電電圧の上昇をとも
なって観察される陽極表面のグロー状の放電中の電子が
放電圧の上昇分に相当するエネルギーを持って衝突する
ことの影響が関係すると推定している。
Although the detailed mechanism by which a film is no longer deposited on the anode surface is unknown, in the present invention, the electrons in the glow-like discharge on the anode surface observed with an increase in discharge voltage are It is assumed that this is related to the impact of collisions with corresponding energy.

従って絶縁性化合物の成膜時に本発明の陽極を使用すれ
ば陽極表面に絶縁化合物の被膜が堆積することができな
くなり、通常の真空アーク蒸発法で導電性被膜を成膜す
る場合と同様に継続通電により安定して成膜することが
可能となり、また陰極の取付位置も制約が少なくなりシ
ート状基材にもむらなく連続して成膜することが可能と
なる。
Therefore, if the anode of the present invention is used when forming an insulating compound film, the insulating compound film will not be deposited on the anode surface, and the process will continue as in the case of forming a conductive film using the normal vacuum arc evaporation method. It becomes possible to form a film stably by applying electricity, and there are fewer restrictions on the mounting position of the cathode, making it possible to form a film evenly and continuously on a sheet-like base material.

(実施例) 以下、本発明を第1〜6図を参照し実施例により一層具
体的に説明しその特質を明らかにする。第1図は本発明
の第1実施例の陽極の縦断側面図、第2図はその八方向
矢視正面図で、陽極の有効表面裏側の磁極位置を併示し
た図、第3図はこの実施例の陽極を備える真空アーク蒸
着装置の縦断側面図である。
(Examples) Hereinafter, the present invention will be explained in more detail by way of examples with reference to FIGS. 1 to 6, and its characteristics will be clarified. FIG. 1 is a vertical side view of the anode according to the first embodiment of the present invention, FIG. 2 is a front view of the anode as viewed from eight directions, and also shows the position of the magnetic pole on the back side of the effective surface of the anode. FIG. 1 is a longitudinal sectional side view of a vacuum arc evaporation apparatus including an anode according to an example.

第3図に示すように真空アーク蒸着装置の全体としては
金属化合物膜成膜の従来の構造とほぼ均等で、基材(1
)を被処理物としてその表面上に金属化合物を成膜する
ため排気系(2)により真空化される真空チャンバー(
3)内において、膜成分となる金属材料のターゲット(
4)を陰極(5)に取付け、本発明実施例の陽極(6A
)と陰極(5)とをアーク電源(7)に接続し、アーク
放電開始手段(8)により両極間にアーク放電を発生さ
せ、陰極からターゲット金属の気化およびイオン化を行
わせ、反応ガス系(9)より導入する反応ガスと反応さ
せ、生成金属化合物をテーブル(10)に取付けた基材
(1)の表面上に堆積させるようになっている。
As shown in Figure 3, the overall structure of the vacuum arc evaporation apparatus is almost the same as the conventional structure for forming metal compound films,
) is used as an object to be processed, and a vacuum chamber (
3), the target (
4) is attached to the cathode (5), and the anode (6A
) and the cathode (5) are connected to an arc power source (7), an arc discharge is generated between the two electrodes by the arc discharge starting means (8), the target metal is vaporized and ionized from the cathode, and the reaction gas system ( 9) The metal compound is caused to react with the reactant gas introduced from the base plate (10), and the generated metal compound is deposited on the surface of the base material (1) attached to the table (10).

この実施例の陽極は(6A)は、第1および2図に示す
ように、前方の有効表面(20) (空間から電子を受
は取る部分)を含む陽極本体(21)が熱伝導のよい金
属で箱形につくられ、その内部に冷却水を通流させる構
造となっており、冷却水(22)の導入導出およびアー
ク電源(7)との接続のためのフィードスルー(23)
がその背面側に一体に結合され、フィードスルーにより
真空チャンバー(3)を封気状態で貫通し陰極(5)に
対する所定位置に配置される。
As shown in Figures 1 and 2, the anode (6A) of this embodiment has an anode main body (21) including a front effective surface (20) (a part that receives and takes electrons from space) that has good thermal conductivity. It is made of metal and has a box shape, and has a structure that allows cooling water to flow inside it, and has a feed through (23) for introducing and extracting the cooling water (22) and connecting it to the arc power source (7).
is integrally coupled to the back side thereof, passes through the vacuum chamber (3) in a sealed state through a feed-through, and is placed at a predetermined position relative to the cathode (5).

箱形の陽極本体の内部には永久磁石(24)がそのN極
およびS極を有効表面側に向けて配置され、その磁束は
有効表面を貫通しその前面の近傍に表面と平行な成分を
持つ磁力線(25)の場が発生する。この磁場形状は陽
極前の電場との作用によって閉じた電子のドリフト軌道
を形成できる。この永久磁石は一体構造のものであって
もよいし、ヨーク等を組み合わせた組合わせ磁石であっ
てもよい。
A permanent magnet (24) is placed inside the box-shaped anode body with its N and S poles facing the effective surface, and its magnetic flux penetrates the effective surface and creates a component parallel to the surface near the front surface. A field of magnetic lines of force (25) is generated. This magnetic field shape can form closed electron drift orbits by interacting with the electric field in front of the anode. This permanent magnet may have an integral structure or may be a combination magnet including a yoke and the like.

この陽極(6A)を使用すると、アーク放電中に、第3
図に示すように、アーク放電によるプラズマ(26)と
同時に陽極の有効表面(20)の近傍にも局部的なプラ
ズマ(27)が発生し陽極表面上に膜の堆積しない部分
が生ずる。第2図に斜線ハツチングで指摘した部分が膜
の堆積が起こらない局部となる。
When this anode (6A) is used, the third
As shown in the figure, local plasma (27) is generated near the effective surface (20) of the anode at the same time as the plasma (26) caused by the arc discharge, resulting in a portion on the anode surface where no film is deposited. The areas indicated by diagonal hatching in FIG. 2 are local areas where film deposition does not occur.

このように陽極表面に膜の堆積しない部分が生ずると、
絶縁性金属化合物を基材に成膜する場合、例えばターゲ
ット(4)材料としてチタンTi、反応ガスとして酸素
0□ を使用し、絶縁性の酸化チタンTiO□を成膜す
る場合でも、陽極が絶縁性のTiO2膜で覆われること
がなくなり、従ってアーク通電が阻害されることがなく
、安定して長時間成膜を継続することが可能となる。
If there are areas on the anode surface where no film is deposited,
When forming a film of an insulating metal compound on a base material, for example, when using titanium Ti as the target (4) material and oxygen 0□ as the reaction gas, even when forming a film of insulating titanium oxide TiO□, the anode is insulated. Therefore, arc current flow is not inhibited, and film formation can be stably continued for a long time.

本発明は通常用いられる真空アーク蒸着装置の陽極に前
面磁界発生装置を付属させたものであればよく、種々の
形態で実施できる。
The present invention can be implemented in various forms as long as the front magnetic field generating device is attached to the anode of a commonly used vacuum arc evaporation device.

例えば第4図に示す変形の第2実施例は平板表面の箱形
の陽極(6B)の内部に円環形の永久磁石(24B)を
2組組込んだものである。第5図および第6図により示
す第3実施例は、円形陰極(5C)に対しよく用いられ
るコーン形陽極(6C)の背面に磁場を発生する電磁コ
イル(28)を取付は陽極の有効表面の前方に磁力線を
発生させるものである。
For example, in the second modified embodiment shown in FIG. 4, two sets of annular permanent magnets (24B) are incorporated inside a box-shaped anode (6B) on the surface of a flat plate. In the third embodiment shown in FIGS. 5 and 6, an electromagnetic coil (28) that generates a magnetic field is attached to the back of a cone-shaped anode (6C), which is often used for a circular cathode (5C). This generates lines of magnetic force in front of the

(発明の効果) 前記のように、本発明によると、真空アーク蒸着法の装
置により基材上に絶縁性金属化合物の成膜をする場合に
も、アーク放電を長時間安定して継続して成膜すること
が可能となり、またシート状基材に連続成膜する場合に
も膜厚むらが生じないにようにすることができる。
(Effects of the Invention) As described above, according to the present invention, arc discharge can be stably continued for a long time even when a film of an insulating metal compound is formed on a substrate using a vacuum arc evaporation apparatus. It becomes possible to form a film, and even when a film is continuously formed on a sheet-like base material, unevenness in film thickness can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の真空アーク蒸着装置の陽
極の縦断側面図、第2図はそのA方向矢視正面図、第3
図はこの陽極を備える真空アーク蒸着装置の縦断側面図
、第4図は本発明の第2実施例の陽極の斜視図、第5図
は本発明の第3実施例の陽極の縦断側面図、第6図はそ
の半部正面図、第7図は従来技術の1例の真空アーク蒸
着装置の縦断側面図、第8図は従来技術の電極切替手段
を備える真空アーク蒸着装置の縦断側面図である。 (1)・・・基材、(2)・・・排気系、(3)・・・
真空チャンバー(4)新ターゲット、(5)(5c)・
・・陰極、(6) (6A) (6B)(6G) (6
D)・・・陽極、(7)・・・アーク電源、(8)・・
・アーク放電開始手段、(9)・・・反応ガス系、(1
0)・・・テーブル、(11)・・・電極、(12)・
・・極性切替手段、(20)・・・を効表面、(21)
・・・陽極本体、(22)・・・冷却水、(23)・・
・フィードスルー、(24) (24B)・・・永久磁
石、(25)・・・磁力線、(26) (27)・・・
プラズマ、(28) (29)・・・コイル。 を澁コイJし 第4図 第5図 第6図
FIG. 1 is a longitudinal cross-sectional side view of the anode of a vacuum arc evaporation apparatus according to the first embodiment of the present invention, FIG.
The figure is a longitudinal sectional side view of a vacuum arc evaporation apparatus equipped with this anode, FIG. 4 is a perspective view of an anode according to a second embodiment of the present invention, and FIG. 5 is a longitudinal sectional side view of an anode according to a third embodiment of the present invention. FIG. 6 is a front view of a half part thereof, FIG. 7 is a longitudinal sectional side view of a vacuum arc evaporation apparatus as an example of the prior art, and FIG. 8 is a longitudinal sectional side view of a vacuum arc evaporation apparatus equipped with electrode switching means of the prior art. be. (1)...Base material, (2)...Exhaust system, (3)...
Vacuum chamber (4) new target, (5) (5c)・
... Cathode, (6) (6A) (6B) (6G) (6
D)... Anode, (7)... Arc power supply, (8)...
- Arc discharge starting means, (9)...reactive gas system, (1
0)...Table, (11)...Electrode, (12)...
...Polarity switching means, (20) ... as an effective surface, (21)
... Anode body, (22) ... Cooling water, (23) ...
・Feed through, (24) (24B)...Permanent magnet, (25)...Magnetic field lines, (26) (27)...
Plasma, (28) (29)...Coil. Figure 4 Figure 5 Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)基材面上に絶縁性物質を成膜する真空アーク蒸着
装置において、アーク放電の陽極としての有効表面の前
方の近傍に磁界を発生する装置を付属させたことを特徴
とする真空アーク蒸着装置。
(1) A vacuum arc evaporation apparatus for forming an insulating material on a substrate surface, characterized in that a device for generating a magnetic field is attached in the vicinity of the front of the effective surface as an anode for arc discharge. Vapor deposition equipment.
(2)陽極有効表面の裏側に磁界発生装置を備えている
独立した陽極を持つことを特徴とする請求項1に記載の
真空アーク蒸着装置。
(2) The vacuum arc evaporation apparatus according to claim 1, having an independent anode provided with a magnetic field generator on the back side of the anode effective surface.
JP26905790A 1990-10-05 1990-10-05 Anode for vacuum arc vapor deposition device Pending JPH04143267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26905790A JPH04143267A (en) 1990-10-05 1990-10-05 Anode for vacuum arc vapor deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26905790A JPH04143267A (en) 1990-10-05 1990-10-05 Anode for vacuum arc vapor deposition device

Publications (1)

Publication Number Publication Date
JPH04143267A true JPH04143267A (en) 1992-05-18

Family

ID=17467065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26905790A Pending JPH04143267A (en) 1990-10-05 1990-10-05 Anode for vacuum arc vapor deposition device

Country Status (1)

Country Link
JP (1) JPH04143267A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012212200A1 (en) 2011-11-10 2013-05-16 Mitsubishi Electric Corp. Power management device, power management method, and power management system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012212200A1 (en) 2011-11-10 2013-05-16 Mitsubishi Electric Corp. Power management device, power management method, and power management system

Similar Documents

Publication Publication Date Title
US5656141A (en) Apparatus for coating substrates
RU2168233C2 (en) Cathode for spraying or electric-arc evaporation (alternatives) and device for coating or ion-beam implantation of substrates
JPH0627323B2 (en) Sputtering method and apparatus
KR20110118622A (en) Closed drift magnetic field ion source apparatus containing self-cleaning anode and a process for substrate modification therewith
JPS62290866A (en) Thin film forming device
JP3481953B2 (en) Equipment for coating substrates
US6245394B1 (en) Film growth method and film growth apparatus capable of forming magnesium oxide film with increased film growth speed
JPS61221363A (en) Sputtering apparatus
JP3454384B2 (en) Ion beam generator and method
JP3685670B2 (en) DC sputtering equipment
JPH04143267A (en) Anode for vacuum arc vapor deposition device
US4869835A (en) Ion source
JP3555033B2 (en) Apparatus for coating a substrate with a material vapor under negative pressure or vacuum
JP2843125B2 (en) Thin film forming equipment
JP4997596B2 (en) Ion plating method
JP3431174B2 (en) Substrate coating equipment
JPH0822802A (en) Plasma processor by double pressure gradient type pig discharge
JP3174313B2 (en) Thin film forming equipment
JP3030420B2 (en) Ion plating equipment
JPH0619565Y2 (en) Electrode structure of arc ion plating device
JPH09263933A (en) Mechanism of crucible part in vapor deposition device
JPS63213664A (en) Ion plating device
JP2000064052A (en) Plasma cvd device
JP3330632B2 (en) Thin film deposition equipment
UA44850C2 (en) CODES FOR SPRAYING OR ELECTRIC EVAPORATION (OPTIONS) AND DEVICES FOR COVERING OR ION IMPLEMENTATION OF SUBSTATIONS