JPH041424Y2 - - Google Patents

Info

Publication number
JPH041424Y2
JPH041424Y2 JP859187U JP859187U JPH041424Y2 JP H041424 Y2 JPH041424 Y2 JP H041424Y2 JP 859187 U JP859187 U JP 859187U JP 859187 U JP859187 U JP 859187U JP H041424 Y2 JPH041424 Y2 JP H041424Y2
Authority
JP
Japan
Prior art keywords
valve
back pressure
pressure chamber
hole
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP859187U
Other languages
Japanese (ja)
Other versions
JPS63118484U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP859187U priority Critical patent/JPH041424Y2/ja
Publication of JPS63118484U publication Critical patent/JPS63118484U/ja
Application granted granted Critical
Publication of JPH041424Y2 publication Critical patent/JPH041424Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Fluid-Driven Valves (AREA)
  • Details Of Valves (AREA)
  • Magnetically Actuated Valves (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は配管中の水の流れを停止したときに水
撃作用の発生を防止乃至緩和する手段を備えたパ
イロツト形電磁弁の改良に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an improvement in a pilot type solenoid valve that is equipped with means for preventing or mitigating the occurrence of water hammer when the flow of water in a pipe is stopped.

[従来技術とその問題点] 第2図は特開昭56−18182号に開示されている
パイロツト形電磁弁の構成を示す。その構成と作
用の概略とを説明すると、符号1は弁筐体で1a
が水の流入路、1bが流出路で流入路1aと流出
路1bとの間に弁座1cが形成されている。2は
前記弁座1cと協同して弁作用をするダイアフラ
ム弁で可撓性のダイアフラム3と、該ダイアフラ
ム3に固定された弁体4とからなる。5は前記弁
筐体1の蓋体で、前記ダイアフラム3の外周縁部
を前記弁筐体1との間に気密に挾持する。6はプ
ランジヤ7を摺動自在に収容する筒体で、前記蓋
体5と前記筒体6とは一体に形成されている。前
記蓋体5と前記ダイアフラム弁2とを以て背圧室
8が画成される。9はソレノイドアセンブリでヨ
ーク10、ボビン11に巻いた励磁巻線12、コ
ア13a及び13bとからなる。14は前記ダイ
アフラム弁2の中心部に開口し前記背圧室8を前
記流出路1bに連通させる透孔、15は前記流入
路1aと前記背圧室8とを連通し、流入路1aか
ら背圧室8への水の流入流量を規制する透孔であ
る。16はスプリングで前記プランジヤ7が前記
透孔14の開口端部に当接する方向に前記プラン
ジヤ7を付勢する。第2図は励磁巻線12に通電
されていないときの状態を示し、プランジヤ7が
スプリング16によつてダイアフラム弁2の透孔
14の開口端部に押圧され、透孔14が閉じられ
ていて、流入路1a内の水圧が透孔15を通して
背圧室8に作用しているから流入路1aと流出路
1bとの間はダイアフラム弁2が弁座1cに着座
することによつて確実に閉ざされている。励磁巻
線12に通電されるとヨーク10、コア13a、
プランジヤ7、コア13bを磁路として磁束が形
成され、プランジヤ7が引上げられて透孔14が
開くから、背圧室8内の圧力が下がつてダイアフ
ラム弁2が流入路1a内の水圧によつて押し上げ
られ、ダイアフラム弁2が弁座1cから離れて流
入路1aと流出路1bとが導通する。励磁巻線1
2への通電が断たれると、プランジヤ7はスプリ
ング16の力によつてダイアフラム弁2の透孔1
4を閉じ、背圧室8から流出路1bへの水の流出
が止り、流入路1a内の水は引続いて透孔15に
よつて規制されて徐々に背圧室8内に流入して背
圧室8内の圧力が高くなり、ダイアフラム弁2と
弁座1cとが徐々に接触して流入路1aと流出路
1bとの間が遮断される。通常の電磁弁では流入
路と流出路は瞬時に遮断されるから流入側の配管
中に水撃が起こるが、上述の構成のパイロツト形
電磁弁では流入路1aと流出路1bとの遮断がダ
イアフラム弁2によつて徐々に行なわれるから水
撃の発生が防止乃至緩和される。
[Prior art and its problems] FIG. 2 shows the structure of a pilot type solenoid valve disclosed in Japanese Patent Application Laid-open No. 18182/1982. To explain the outline of its structure and operation, reference numeral 1 is the valve housing 1a.
is an inflow path for water, 1b is an outflow path, and a valve seat 1c is formed between the inflow path 1a and the outflow path 1b. Reference numeral 2 denotes a diaphragm valve which performs a valve action in cooperation with the valve seat 1c, and is composed of a flexible diaphragm 3 and a valve body 4 fixed to the diaphragm 3. Reference numeral 5 denotes a lid of the valve housing 1, which airtightly sandwiches the outer peripheral edge of the diaphragm 3 with the valve housing 1. Reference numeral 6 denotes a cylindrical body that slidably accommodates the plunger 7, and the lid 5 and the cylindrical body 6 are integrally formed. A back pressure chamber 8 is defined by the lid 5 and the diaphragm valve 2. 9 is a solenoid assembly consisting of a yoke 10, an excitation winding 12 wound around a bobbin 11, and cores 13a and 13b. 14 is a through hole that opens in the center of the diaphragm valve 2 and communicates the back pressure chamber 8 with the outflow path 1b; 15 communicates the inflow path 1a with the back pressure chamber 8, and connects the inflow path 1a with the back pressure chamber 8; This is a through hole that regulates the flow rate of water into the pressure chamber 8. A spring 16 urges the plunger 7 in a direction in which the plunger 7 comes into contact with the open end of the through hole 14 . FIG. 2 shows the state when the excitation winding 12 is not energized, and the plunger 7 is pressed by the spring 16 against the open end of the through hole 14 of the diaphragm valve 2, and the through hole 14 is closed. Since the water pressure in the inflow path 1a acts on the back pressure chamber 8 through the through hole 15, the diaphragm valve 2 is securely closed between the inflow path 1a and the outflow path 1b by seating on the valve seat 1c. It is. When the excitation winding 12 is energized, the yoke 10, the core 13a,
A magnetic flux is formed using the plunger 7 and core 13b as a magnetic path, and as the plunger 7 is pulled up and the through hole 14 is opened, the pressure in the back pressure chamber 8 is reduced and the diaphragm valve 2 is activated by the water pressure in the inflow path 1a. The diaphragm valve 2 is moved away from the valve seat 1c, and the inflow path 1a and the outflow path 1b are brought into communication with each other. Excitation winding 1
2 is cut off, the plunger 7 closes the through hole 1 of the diaphragm valve 2 by the force of the spring 16.
4 is closed, the outflow of water from the back pressure chamber 8 to the outflow path 1b is stopped, and the water in the inflow path 1a continues to be regulated by the through hole 15 and gradually flows into the back pressure chamber 8. The pressure in the back pressure chamber 8 increases, and the diaphragm valve 2 and the valve seat 1c gradually come into contact with each other, thereby blocking the inflow path 1a and the outflow path 1b. In a normal solenoid valve, the inflow path and outflow path are instantaneously shut off, which causes water hammer in the piping on the inflow side, but in the pilot type solenoid valve with the above configuration, the inflow path 1a and the outflow path 1b are shut off by a diaphragm. Since the water hammer is gradually applied by the valve 2, the occurrence of water hammer is prevented or alleviated.

しかるに上述の構成のパイロツト形電磁弁では
次のような問題がある。即ち流入路1aと背圧室
8との間を連通する透孔15は孔径が一定である
から、流入路1a内の圧力が著しく上昇すると背
圧室8内への水の流入速度が速くなり閉弁速度が
上がつて、水撃防止効果が十分発揮できないこと
である。この対策として実公昭59−8052号を以て
第3図に示す構成の水撃防止弁が開示されてい
る。1が弁筐体、1aが流入路、1bが流出路、
1cが弁座、2がダイアフラム弁、5が蓋体、8
が背圧室であるが、背圧室8と流出路1bとを連
通する透孔、及び流入路1aと背圧室8とを連通
する透孔がダイアフラム弁2ではなく弁筐体1及
び蓋体5に形成されている点が第2図の構成と異
なる。弁筐体1に開口する透孔18、蓋体5に開
口する透孔20、及び透孔18と透孔20とを連
通する通路19が第2図の構成における透孔14
に相当し、透孔17、通路19、透孔20が第2
図の構成における透孔15に相当する。通路19
及び透孔20には正逆両方向の流れを生じ、通路
19と透孔20との間には流量制御弁21が配置
されスプリング22によつて開方向に付勢されて
いる。ソレノイドアセンブリ9がプランジヤ7に
よつて透孔18を開閉制御するように配置されて
いる。第3図は励磁巻線12に通電されていない
ときの状態を示し、流入路1aの水圧は透孔1
7、通路19、透孔20を介して背圧室8に作用
してダイアフラム弁2が弁座1cに接触して流入
路1aと流出路1bとを遮断している。励磁巻線
12に通電されると透孔18が開き、背圧室8内
の水は透孔20、通路19、透孔18を通つて流
出路1bに流出し、流入路1a内の水圧によつて
ダイアフラム弁2が開かれる。次に励磁巻線12
の通電が断たれるとプランジヤ7が透孔18を閉
じ、流入路1aの水圧が透孔17、通路19、透
孔20を通つて背圧室8内に流入するが、流入路
1a内の水圧に水撃の発生がないときはスプリン
グ22によつて流量制御弁21は全開状態にあつ
て、透孔20が規制する流量で、背圧室8内に水
が流入してダイアフラム弁2が弁座1cに近付く
が、閉弁過程で起こる水撃で流入路1aの水圧が
著しく上昇すると、スプリング22を圧縮して流
量制御弁21が透孔20に当接する。その場合に
おいても流量制御弁21に形成された流路断面積
の小さい流路を通して背圧室8に水が流入するか
ら、ダイアフラム弁2が弁座1cに接近する速度
が小さくなつて、流入路1a内の水圧の上昇によ
つて水撃の発生が促進されるおそれがない。
However, the pilot type solenoid valve having the above structure has the following problems. That is, since the diameter of the through hole 15 communicating between the inflow path 1a and the back pressure chamber 8 is constant, when the pressure in the inflow path 1a increases significantly, the speed of water flowing into the back pressure chamber 8 increases. The problem is that the valve closing speed increases and the water hammer prevention effect cannot be fully exerted. As a countermeasure against this problem, a water hammer prevention valve having a structure shown in FIG. 3 is disclosed in Japanese Utility Model Publication No. 59-8052. 1 is the valve housing, 1a is the inflow path, 1b is the outflow path,
1c is the valve seat, 2 is the diaphragm valve, 5 is the lid body, 8
is a back pressure chamber, but the through hole that communicates the back pressure chamber 8 and the outflow path 1b and the through hole that communicates the inflow path 1a and the back pressure chamber 8 are not the diaphragm valve 2 but the valve housing 1 and the lid. The structure differs from that shown in FIG. 2 in that it is formed on the body 5. The through hole 18 that opens into the valve housing 1, the through hole 20 that opens into the lid body 5, and the passage 19 that communicates the through hole 18 and the through hole 20 are the through hole 14 in the configuration shown in FIG.
The through hole 17, the passage 19, and the through hole 20 correspond to the second
This corresponds to the through hole 15 in the configuration shown in the figure. aisle 19
A flow in both forward and reverse directions is generated in the through hole 20, and a flow control valve 21 is disposed between the passage 19 and the through hole 20 and is urged in the opening direction by a spring 22. A solenoid assembly 9 is arranged to control opening and closing of the through hole 18 by the plunger 7. FIG. 3 shows the state when the excitation winding 12 is not energized, and the water pressure in the inflow channel 1a is
7. The diaphragm valve 2 acts on the back pressure chamber 8 through the passage 19 and the through hole 20, and contacts the valve seat 1c, thereby blocking the inflow path 1a and the outflow path 1b. When the excitation winding 12 is energized, the through hole 18 opens, and the water in the back pressure chamber 8 flows out into the outflow path 1b through the through hole 20, the passage 19, and the through hole 18, and the water pressure in the inflow path 1a increases. The diaphragm valve 2 is then opened. Next, the excitation winding 12
When the power is cut off, the plunger 7 closes the through hole 18, and the water pressure in the inflow path 1a flows into the back pressure chamber 8 through the through hole 17, the passage 19, and the through hole 20, but the water pressure in the inflow path 1a When no water hammer occurs in the water pressure, the flow rate control valve 21 is fully opened by the spring 22, and water flows into the back pressure chamber 8 at the flow rate regulated by the through hole 20, and the diaphragm valve 2 is closed. As it approaches the valve seat 1c, when the water pressure in the inlet passage 1a increases significantly due to the water hammer that occurs during the valve closing process, the spring 22 is compressed and the flow rate control valve 21 comes into contact with the through hole 20. Even in that case, water flows into the back pressure chamber 8 through the flow path with a small cross-sectional area formed in the flow rate control valve 21, so the speed at which the diaphragm valve 2 approaches the valve seat 1c decreases, and the inflow path There is no risk that water hammer will occur due to an increase in water pressure within 1a.

而して第3図の構成の水撃防止弁は水撃防止効
果は達成されているが、複雑な構成はコスト高を
招く。
Although the water hammer prevention valve having the configuration shown in FIG. 3 achieves the water hammer prevention effect, the complicated configuration increases the cost.

第4図は流入路1aと背圧室8とを連通して流
入路1aから背圧室8への水の流入流量を規制す
る透孔15をダイアフラム弁2に設けないで、流
入路1aと背圧室8とを通路23で結んで途中に
空気室24を配置し、空気室24と流入路1aと
の間の通路23に水の流量を規制する絞り25を
配置し、ダイアフラム弁2の閉弁過程の水撃によ
つて流入路1aの水圧が上昇したとき、空気室2
4内の空気を圧縮することによつて、背圧室8内
への水の流入量の増加を遅延させて、1つの水撃
が次の水撃を起こすのを防止した構成であるが、
空気室24内で空気と水とが直接接触しているた
め、空気が水に吸収され、又通路23の中の水の
流れによつて持ち去られて徐々に減少し機能が安
定しないという欠点があつた。
FIG. 4 shows that the diaphragm valve 2 is not provided with a through hole 15 that communicates the inflow path 1a and the back pressure chamber 8 and regulates the inflow flow rate of water from the inflow path 1a to the back pressure chamber 8. A passage 23 connects the back pressure chamber 8 and an air chamber 24 is disposed in the middle, and a throttle 25 for regulating the flow rate of water is disposed in the passage 23 between the air chamber 24 and the inflow passage 1a. When the water pressure in the inlet passage 1a increases due to water hammer during the valve closing process, the air chamber 2
By compressing the air in the back pressure chamber 8, the increase in the amount of water flowing into the back pressure chamber 8 is delayed, and one water hammer is prevented from causing the next water hammer.
Since the air and water are in direct contact within the air chamber 24, the air is absorbed by the water and carried away by the flow of water in the passage 23, resulting in a gradual decrease in function. It was hot.

[考案の目的] コスト高を招くことなく水撃防止機能を向上し
たパイロツト形電磁弁を提供することを目的とす
る。
[Purpose of the invention] The object is to provide a pilot type solenoid valve with improved water hammer prevention function without increasing costs.

[考案の構成] 弁筐体の流入路と流出路との間に弁座が形成さ
れ、該弁座と協同して弁作用をするダイアフラム
弁は外周縁部が前記弁筐体と蓋体とによつて挾持
され、該蓋体と前記ダイアフラム弁とによつて背
圧室が画成され、前記ダイアフラム弁には前記背
圧室と前記流出路とを連通する透孔が開口し、該
透孔の前記流出路とは反対側の開口端と相対して
該透孔を電磁力によつて開閉するプランジヤが配
置されているパイロツト形電磁弁において、前記
弁筐体及び前記蓋体には前記流入路と前記背圧室
とを結ぶ水の通路が形成され、該水の通路にはダ
イアフラムを介して接する空気室が配置され、前
記ダイアフラムは前記空気室内を摺動自在のピス
トンを介してスプリングによつて前記水の通路に
向つて付勢され、前記水の通路は前記空気室と接
する部分と流入路との間で、背圧室に流入する水
の流量を規制する絞りが形成されている構成とす
る。
[Structure of the invention] A valve seat is formed between an inflow passage and an outflow passage of a valve housing, and a diaphragm valve that performs a valve action in cooperation with the valve seat has an outer peripheral edge that is connected to the valve housing and the lid body. A back pressure chamber is defined by the lid and the diaphragm valve, and the diaphragm valve has a through hole that communicates the back pressure chamber and the outflow path. In the pilot type solenoid valve, a plunger is disposed opposite to the opening end of the hole on the side opposite to the outflow path, and opens and closes the through hole by electromagnetic force. A water passage connecting the inflow passage and the back pressure chamber is formed, and an air chamber is disposed in contact with the water passage via a diaphragm, and the diaphragm receives a spring via a piston that is slidable within the air chamber. The water passage is biased toward the water passage, and the water passage has a restriction formed between a portion in contact with the air chamber and an inflow passage to regulate the flow rate of water flowing into the back pressure chamber. The configuration is as follows.

[実施例] 第1図は本考案のパイロツト形電磁弁の構成を
示す縦断面図で符号101は弁筐体、101aは
水の流入路、101bが流出路、101cが前記
流入路101aと流出路101bとの間に形成さ
れた弁座である。102は前記弁座101cと協
同して弁作用をするダイアフラム弁で、可撓性の
ダイアフラム103と該ダイアフラム103に固
定された弁体104とからなる(ダイアフラム1
03と弁体104は一体成形でもよい)。105
は前記弁筐体101の蓋体で、前記ダイアフラム
弁102の外周縁部が前記弁筐体101と前記蓋
体105とによつて挾持され、該蓋体105と前
記ダイアフラム弁102との間に背圧室106が
形成されている。107は前記ダイアフラム弁1
02の中心部に開口して前記背圧室106と前記
流出路101bとを連通する透孔で、一般にパイ
ロツト孔と呼ばれている。108は前記透孔10
7の前記流出路101bとは反対側の開口端と相
対して配置され、電磁力によつて前記透孔107
を開閉するプランジヤである。109はソレノイ
ドアセンブリでヨーク110、ボビン111に巻
かれた励磁巻線112、コア113を以て構成す
る。114は前記プランジヤ108が内部を自在
に摺動するシリンダで非磁性材料からなる。11
5はプランジヤ108を前記ダイアフラム弁10
2方向に付勢するスプリングである。前記流入路
101aと前記背圧室106とは流量を規制する
絞り116、空間117、透孔118、空間11
9、透孔120からなる水の通路が形成され、前
記空間117がダイアフラム121を介して空気
室122と接している。前記ダイアフラム121
は外周縁部が筒状部材123を介して蓋板124
によつて気密に押圧され、ピストン125を介し
てスプリング126によつて水の通路(空間11
7)に向つて付勢されていて、空間117の圧力
が上昇するとスプリング126を圧縮して空気室
122側に後退し、実質的に背圧室106の容積
を拡大してダイアフラム弁102が閉弁する速度
を遅くする。
[Example] Fig. 1 is a vertical cross-sectional view showing the configuration of a pilot type solenoid valve of the present invention, in which reference numeral 101 is a valve housing, 101a is a water inflow path, 101b is an outflow path, and 101c is the inflow path 101a and the outflow path. It is a valve seat formed between the passage 101b and the passage 101b. A diaphragm valve 102 performs a valve action in cooperation with the valve seat 101c, and is composed of a flexible diaphragm 103 and a valve body 104 fixed to the diaphragm 103 (diaphragm 1
03 and the valve body 104 may be integrally molded). 105
is a lid of the valve housing 101, the outer peripheral edge of the diaphragm valve 102 is held between the valve housing 101 and the lid 105, and there is a gap between the lid 105 and the diaphragm valve 102. A back pressure chamber 106 is formed. 107 is the diaphragm valve 1
This is a through hole that opens at the center of the 02 and communicates the back pressure chamber 106 and the outflow path 101b, and is generally called a pilot hole. 108 is the through hole 10
7, and is arranged opposite to the opening end on the opposite side to the outflow passage 101b, and the through hole 107 is opened by electromagnetic force.
It is a plunger that opens and closes. A solenoid assembly 109 includes a yoke 110, an excitation winding 112 wound around a bobbin 111, and a core 113. 114 is a cylinder in which the plunger 108 freely slides, and is made of a non-magnetic material. 11
5 connects the plunger 108 to the diaphragm valve 10
It is a spring that biases in two directions. The inflow path 101a and the back pressure chamber 106 include a throttle 116 that regulates the flow rate, a space 117, a through hole 118, and a space 11.
9. A water passage consisting of a through hole 120 is formed, and the space 117 is in contact with an air chamber 122 via a diaphragm 121. The diaphragm 121
The outer peripheral edge is connected to the cover plate 124 via the cylindrical member 123.
The water passage (space 11
7), and when the pressure in the space 117 rises, the spring 126 is compressed and retreats toward the air chamber 122, substantially expanding the volume of the back pressure chamber 106 and closing the diaphragm valve 102. Slow down the valve speed.

[作用] 第1図は励磁巻線112が通電されていない
で、プランジヤ108が透孔107を閉じ流入路
101a内の水圧が背圧室106内に作用してダ
イアフラム弁102が弁座101cに着座してい
る状態を示している。励磁巻線112に通電し、
プランジヤ108が引上げられて透孔107が開
口すると背圧室106内の水が流出路101bに
流出して背圧室106内の水圧が下がり、流入路
101aの水圧が作用してダイアフラム弁102
が弁座101cから離座し、流入路101aから
流出路101bへ水が流れる。次に励磁巻線11
2の通電が断たれるとプランジヤ108はスプリ
ング115の力によつて透孔107の開口端部に
押圧されて、透孔107を閉じ、一方絞り11
6、空間117、透孔118、空間119、透孔
120からなる水の通路を通つて流入路101a
内の水が絞り116の開口面積によつて規制され
て背圧室106内に流入し、ダイアフラム弁10
2が徐々に弁座101cに接近する。流入路10
1aから流出路101bに向つて流れる水の流量
が減少して幾らかでも水撃が起きて流入路101
a内の水圧は上昇するが、空間117の水圧の上
昇速度は絞り116の絞り作用とダイアフラム1
21の弾力的後退による実質的な背圧室106の
容積の増大によつて減衰するから、上記の水撃が
ダイアフラム弁102の閉弁速度を増大して水撃
が水撃を招くことを防止でき、パイロツト形電磁
弁の水撃防止効果が高められる。
[Operation] In FIG. 1, when the excitation winding 112 is not energized, the plunger 108 closes the through hole 107, and the water pressure in the inflow passage 101a acts in the back pressure chamber 106, causing the diaphragm valve 102 to press against the valve seat 101c. It shows a seated state. energize the excitation winding 112,
When the plunger 108 is pulled up and the through hole 107 is opened, the water in the back pressure chamber 106 flows out into the outflow path 101b, the water pressure in the back pressure chamber 106 decreases, and the water pressure in the inflow path 101a acts on the diaphragm valve 102.
is removed from the valve seat 101c, and water flows from the inflow path 101a to the outflow path 101b. Next, the excitation winding 11
When the power to the diaphragm 11 is cut off, the plunger 108 is pressed against the open end of the through hole 107 by the force of the spring 115, closing the through hole 107.
6. The inflow path 101a passes through the water passage consisting of the space 117, the through hole 118, the space 119, and the through hole 120.
The water inside is regulated by the opening area of the throttle 116 and flows into the back pressure chamber 106, and the water flows into the back pressure chamber 106.
2 gradually approaches the valve seat 101c. Inflow path 10
The flow rate of water flowing from 1a toward the outflow path 101b decreases, and some water hammer occurs, causing the inflow path 101
Although the water pressure in the space 117 increases, the rate of increase in the water pressure in the space 117 is due to the throttling action of the restrictor 116 and the diaphragm 1.
Since the water hammer is attenuated by the substantial increase in the volume of the back pressure chamber 106 due to the elastic retraction of the diaphragm valve 21, the water hammer is prevented from increasing the closing speed of the diaphragm valve 102 and causing water hammer. This increases the water hammer prevention effect of the pilot type solenoid valve.

流入路101aから背圧室106に至る上述の
水の通路は弁筐体101、蓋体105の形態上形
成されたものであつて必ずしも絞り116、空間
117、透孔118、空間119、透孔120か
らなる通路構成に限定するものではなく、流入路
101a内の水圧上昇速度を減衰させるため流量
を規制する絞り116と、該絞り116の下流側
(背圧室106側)の水の通路に接して前記水の
通路とダイアフラム121で仕切られた空気室1
22が配置されることが必須要件である。
The above-mentioned water passage from the inflow path 101a to the back pressure chamber 106 is formed due to the configuration of the valve housing 101 and the lid 105, and does not necessarily include the aperture 116, the space 117, the through hole 118, the space 119, and the through hole. The passage structure is not limited to the passage configuration consisting of 120, but includes a restriction 116 that regulates the flow rate to attenuate the rate of increase in water pressure in the inflow passage 101a, and a water passage downstream of the restriction 116 (on the back pressure chamber 106 side). an air chamber 1 which is in contact with the water passage and partitioned by a diaphragm 121;
It is an essential requirement that 22 be placed.

[効果] コストアツプを招く複雑な構成とすることな
く、パイロツト形電磁弁の水撃防止効果を高める
ことができる。
[Effect] The water hammer prevention effect of the pilot type solenoid valve can be enhanced without creating a complicated structure that increases costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案のパイロツト形電磁弁の縦断面
図、第2図は特開昭56−18182号に開示されてい
るパイロツト形電磁弁の縦断面図、第3図は実公
昭59−8052号開示のパイロツト形電磁弁の縦断面
図、第4図は第1図に示す本考案のパイロツト形
電磁弁を考案する前に試作したパイロツト形電磁
弁の断面を示す略図である。 符号の説明:101……弁筐体、101a……
流入路、101b……流出路、101c……弁
座、102……ダイアフラム弁、103……ダイ
アフラム、104……弁体、105……蓋体、1
06……背圧室、107……透孔、108……プ
ランジヤ、109……ソレノイドアセンブリ、1
10……ヨーク、111……ボビン、112……
励磁巻線、113……コア、114……シリン
ダ、115……スプリング、116……絞り、1
17、119……空間、118,120……透
孔、121……ダイアフラム、122……空気
室、123……筒状部材、124……蓋板、12
5……ピストン、126……スプリング。
Fig. 1 is a vertical sectional view of the pilot type solenoid valve of the present invention, Fig. 2 is a longitudinal sectional view of the pilot type solenoid valve disclosed in Japanese Patent Application Laid-Open No. 18182/1982, and Fig. 3 is a longitudinal sectional view of the pilot type solenoid valve disclosed in Japanese Patent Publication No. 59-8052. FIG. 4 is a schematic cross-sectional view of a pilot-type solenoid valve that was prototyped before devising the pilot-type solenoid valve of the present invention shown in FIG. 1. Explanation of symbols: 101... Valve housing, 101a...
Inflow channel, 101b...Outflow channel, 101c...Valve seat, 102...Diaphragm valve, 103...Diaphragm, 104...Valve body, 105...Lid body, 1
06...Back pressure chamber, 107...Through hole, 108...Plunger, 109...Solenoid assembly, 1
10...Yoke, 111...Bobbin, 112...
Excitation winding, 113...Core, 114...Cylinder, 115...Spring, 116...Aperture, 1
17, 119... Space, 118, 120... Through hole, 121... Diaphragm, 122... Air chamber, 123... Cylindrical member, 124... Lid plate, 12
5... Piston, 126... Spring.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 弁筐体101の流入路101aと流出路101
bとの間に弁座101cが形成され、該弁座10
1cと協同して弁作用をするダイアフラム弁10
2は外周縁部が前記弁筐体101と蓋体105と
によつて挾持され、該蓋体105と前記ダイアフ
ラム弁102とによつて背圧室106が画成さ
れ、前記ダイアフラム弁102には前記背圧室1
06と前記流出路101bとを連通する透孔10
7が開口し、該透孔107の前記流出路101b
とは反対側の開口端と相対して該透孔107を電
磁力によつて開閉するプランジヤ108が配置さ
れているパイロツト形電磁弁において、前記弁筐
体101及び前記蓋体105には前記流入路10
1aと前記背圧室106とを結ぶ水の通路が形成
され、該水の通路には、ダイアフラム121を介
して接する空気室122が配置され、前記ダイア
フラム121は前記空気室122内を摺動自在の
ピストン125を介してスプリング126によつ
て前記水の通路に向つて付勢され、前記水の通路
は前記空気室122と接する部分と流入路101
aとの間で、背圧室106に流入する水の流量を
規制する絞り116が形成されていることを特徴
とするパイロツト形電磁弁。
Inflow path 101a and outflow path 101 of valve housing 101
A valve seat 101c is formed between the valve seat 10
A diaphragm valve 10 that acts in cooperation with 1c
2 has an outer peripheral edge held between the valve housing 101 and the lid 105, a back pressure chamber 106 is defined by the lid 105 and the diaphragm valve 102, and the diaphragm valve 102 has a The back pressure chamber 1
06 and the outflow path 101b communicate with each other.
7 is open, and the outflow path 101b of the through hole 107
In the pilot type solenoid valve, a plunger 108 is disposed opposite to the opening end of the through hole 107 by electromagnetic force, and the valve housing 101 and the lid 105 are provided with the inflow. Road 10
A water passage connecting 1a and the back pressure chamber 106 is formed, and an air chamber 122 is arranged in contact with the water passage through a diaphragm 121, and the diaphragm 121 can freely slide within the air chamber 122. is urged toward the water passage by a spring 126 through a piston 125 of
A pilot type solenoid valve characterized in that a throttle 116 is formed between the back pressure chamber 106 and the back pressure chamber 106 to regulate the flow rate of water flowing into the back pressure chamber 106.
JP859187U 1987-01-26 1987-01-26 Expired JPH041424Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP859187U JPH041424Y2 (en) 1987-01-26 1987-01-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP859187U JPH041424Y2 (en) 1987-01-26 1987-01-26

Publications (2)

Publication Number Publication Date
JPS63118484U JPS63118484U (en) 1988-07-30
JPH041424Y2 true JPH041424Y2 (en) 1992-01-17

Family

ID=30793112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP859187U Expired JPH041424Y2 (en) 1987-01-26 1987-01-26

Country Status (1)

Country Link
JP (1) JPH041424Y2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2565814Y2 (en) * 1993-06-21 1998-03-25 シーケーディ株式会社 Pilot type control valve
AU2001229548A1 (en) * 2000-02-18 2001-08-27 Asco Controls, L.P. Extended range proportional valve
JP4533114B2 (en) * 2004-11-30 2010-09-01 株式会社ケーヒン Electromagnetic shut-off valve for fuel cell
JP6066456B2 (en) * 2013-03-29 2017-01-25 Toto株式会社 Channel opening / closing device
CN106122564B (en) * 2016-08-29 2018-03-23 浙江达威电子股份有限公司 It is a kind of that there is anti-blocking and silencing function waste water ratio electromagnetic valve
WO2022009283A1 (en) * 2020-07-06 2022-01-13 三菱電機株式会社 Purge solenoid valve

Also Published As

Publication number Publication date
JPS63118484U (en) 1988-07-30

Similar Documents

Publication Publication Date Title
JPH094747A (en) Electromagnetic proportional type pressure valve
US4717116A (en) Pilot mode two-port solenoid valve
JPH041424Y2 (en)
JP3227471B2 (en) Piston type pilot type 2-way solenoid valve
US4832313A (en) Solenoid valve
US3759293A (en) Solenoid valve
JPH041425Y2 (en)
JP2001041340A (en) Solenoid valve
JP3927145B2 (en) Pilot solenoid valve
JPH0616181Y2 (en) Pilot type solenoid valve
CN112747162A (en) Gas proportional valve
JP4166908B2 (en) Pressure reducing valve
JPH01193480A (en) Solenoid valve
JP2841576B2 (en) Automatic on-off valve
JP3307696B2 (en) Pilot operated solenoid valve
JPS5838211Y2 (en) Water hammer mitigation solenoid valve
JPH0240366Y2 (en)
JPH04357507A (en) Electropneumatic regulator
JPH0531334Y2 (en)
JPH0542292Y2 (en)
JPS592366Y2 (en) Direct-acting 3-way solenoid switching valve
GB880131A (en) Improvements in solenoid operated fluid control valves
JPS598052Y2 (en) water hammer prevention valve
JPS6212149Y2 (en)
CN112747161A (en) Gas proportional valve