JPH04142349A - Antibacterial and fungicidal polyolefin rein molding and preparation thereof - Google Patents

Antibacterial and fungicidal polyolefin rein molding and preparation thereof

Info

Publication number
JPH04142349A
JPH04142349A JP26303790A JP26303790A JPH04142349A JP H04142349 A JPH04142349 A JP H04142349A JP 26303790 A JP26303790 A JP 26303790A JP 26303790 A JP26303790 A JP 26303790A JP H04142349 A JPH04142349 A JP H04142349A
Authority
JP
Japan
Prior art keywords
antibacterial
calcium
ceramic
silver
hydroxyapatite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26303790A
Other languages
Japanese (ja)
Inventor
Shuji Sakuma
周治 佐久間
Kiminori Atsumi
公則 渥美
Hideo Mitsuyama
光山 秀男
Yoshikazu Usami
宇佐美 芳和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sangi Co Ltd
Original Assignee
Sangi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sangi Co Ltd filed Critical Sangi Co Ltd
Priority to JP26303790A priority Critical patent/JPH04142349A/en
Publication of JPH04142349A publication Critical patent/JPH04142349A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prepare the title molding usable safely for a long term and having a widely changeable antibacterial power by depositing an antibacterial metal on a calcium ceramic, backing and powdering the ceramic, compounding the powdered ceramic into a polyolefin resin, and molding the resulting compsn. CONSTITUTION:On a calcium ceramic selected from the group consisting of calcium phosphate, calcium carbonate, calcium silicate, and hydroxyapatite an antibacterial metal selected from the group consisting of silver, copper, and zinc. is deposited. The ceramic is then backed at 800 deg.C or higher and powdered into particles with a mean particle size of 10mum or lower. A polyolefin resin is compounded with the ceramic powder in an amt. of at least 0.03wt.% based on the resulting compsn., and molded to give the title molding. As the metal, silver and zinc are esp. pref., and an esp. pref. calcium ceramic is hydroxyapatite.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は抗菌および抗かび性を有するポリオレフィン系
樹脂成形体及びその製造法に関し、更に詳しくは、抗菌
性を有する金属を担持させた抗菌性カルシウム系セラミ
ックス、特に抗菌性ハイドロキシアパタイト、の焼成物
を含有させた抗菌及び抗かび性を有するポリオレフィン
系樹脂成形体及びその製造法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a polyolefin resin molded article having antibacterial and antifungal properties and a method for producing the same. The present invention relates to a polyolefin resin molded article having antibacterial and antifungal properties containing a fired product of calcium ceramics, particularly antibacterial hydroxyapatite, and a method for producing the same.

(従来の技術) プラスチック類はかび、細菌などの微生物に対して抵抗
性を有する物質であると考えられていたが、最近、それ
らの微生物による被害が報じられ、その用途によっては
抗微生物処理が必要とされるようになった。抗微生物処
理として、殺菌剤のプラスチックへの添加が考えられる
が、一般に殺菌剤は有機化合物が多く使用されているた
め、熱に対して弱く、プラスチック加工温度により変質
し、殺菌性を失うことがあるため、有機殺菌剤のプラス
チックへの使用は行われ難い。
(Prior art) Plastics were thought to be resistant to microorganisms such as mold and bacteria, but recently there have been reports of damage caused by these microorganisms, and depending on their use, antimicrobial treatment is required. It has become necessary. As an antimicrobial treatment, adding disinfectants to plastics can be considered, but since disinfectants generally contain many organic compounds, they are sensitive to heat and may deteriorate due to plastic processing temperatures and lose their bactericidal properties. Therefore, it is difficult to use organic disinfectants on plastics.

プラスチックには可塑剤、安定剤、充填剤、滑剤、その
他有機薬剤がその性質保持のため混合使用されている。
Plastics are mixed with plasticizers, stabilizers, fillers, lubricants, and other organic agents to maintain their properties.

充填剤は補強材又は増量剤として使用され、炭酸カルシ
ウム、タルク、珪藻土その他の無機物が使用されている
ので、有機殺菌剤の代りに、無機殺菌剤を作用してプラ
スチックに抗微生物性を付与することが考えられている
。例えば特開昭62−241939号公報は、ポリオレ
フィン樹脂に抗菌作用を有する金属を保持させたゼオラ
イト(以下抗菌性ゼオライトと記す)を含有させた抗菌
性ポリオレフィン樹脂成形体を開示している。抗菌性ゼ
オライトはイオン交換体であるゼオライトに抗菌性金属
をイオン交換により保持させたものであるので、成形時
の温度で失活することはないが、含水量によっては成形
温度で水蒸気による気泡を発生し、ポリオレフィン樹脂
成形物の性状を損うので、抗菌性ゼオライトは十分に脱
水して使用する必要があり、加えてポリオレフィン樹脂
との均質な混合物をえるため、微粉砕した抗菌性ゼオラ
イトを一旦少量のポリオレフィン樹脂と300℃以下の
温度で処理して均質に分散させた(予備混合と記す)混
合物をえ、それを更にポリオレフィン樹脂と混合成形す
るという複雑な工程をすすめている。然しながらゼオラ
イトはアミン酸基をイオン交換基とし、物理的に不安定
であることが認められているので、加熱処理には特に注
意が必要となり、加えてイオン交換により抗菌性金属を
保持させるため、その保持量は使用するゼオライトのイ
オン交換能及びその処理法により変動する。一方その抗
菌性は抗菌性金属の保持量に依存すると考えられるため
、使用する原料ゼオライトの選択及びその処理法は抗菌
性ゼオライトの生成に重要な因子となる。従って特開昭
62−241939号公報では使用する原料ゼオライト
の種類及び抗菌性ゼオライトの含水量及び使用量を規定
し、えられた抗菌性ゼオライトを加熱活性化して使用す
ることを記している。
Fillers are used as reinforcing materials or extenders, and calcium carbonate, talc, diatomaceous earth, and other inorganic substances are used, so instead of organic fungicides, inorganic fungicides act to impart antimicrobial properties to plastics. That is what is being considered. For example, Japanese Patent Application Laid-Open No. 62-241939 discloses an antibacterial polyolefin resin molded article in which a polyolefin resin contains zeolite (hereinafter referred to as antibacterial zeolite) in which a metal having an antibacterial effect is retained. Antibacterial zeolite is made by retaining antibacterial metals in zeolite, which is an ion exchanger, through ion exchange, so it will not be deactivated at the temperature during molding, but depending on the water content, bubbles due to water vapor may be formed at the molding temperature. The antibacterial zeolite must be thoroughly dehydrated before use, as this can damage the properties of the polyolefin resin molded product. We are proceeding with a complex process in which a small amount of polyolefin resin is treated at a temperature below 300°C to obtain a homogeneously dispersed mixture (referred to as premixing), which is then mixed and molded with polyolefin resin. However, since zeolite uses an amine acid group as an ion exchange group and is recognized to be physically unstable, special care must be taken during heat treatment. The amount retained varies depending on the ion exchange capacity of the zeolite used and its processing method. On the other hand, since its antibacterial properties are thought to depend on the amount of antibacterial metals retained, the selection of the raw material zeolite to be used and its treatment method are important factors in the production of antibacterial zeolite. Therefore, JP-A-62-241939 specifies the type of raw material zeolite to be used, the water content and amount of antibacterial zeolite used, and describes that the obtained antibacterial zeolite is used after being activated by heat.

(本発明が解決しようとする課B) 抗菌性ゼオライトを含有したポリオレフィン樹脂混合体
は、成形処理にも安定で、含有抗菌性金属の溶出が少な
く、抗菌力の低下、品質の劣化などの発生し難くすぐれ
た成形体かえられるであろうが、それでも抗菌性金属の
溶出が皆無ではなく、微量であるが溶出してくるので、
長期間の使用では成形体の変質を生じる。例えば抗菌性
金属として銀を使用した抗菌性ゼオライトを含む抗菌性
ポリオレフィン樹脂成形体は、長期間太陽光にさらされ
ると変色を生じる。又抗菌性ゼオライトの製造には前記
のような制約をうけるため、抗菌性ゼオライト含有抗菌
性ポリオレフィン樹脂成形体の製造は、相当に困難な工
程を含まざるをえない。
(Problem B to be solved by the present invention) The polyolefin resin mixture containing antibacterial zeolite is stable during molding treatment, and the contained antibacterial metals are less likely to be eluted, resulting in a decrease in antibacterial activity and quality deterioration. Although it may be difficult to replace the molded product with excellent quality, the elution of antibacterial metals will still occur, albeit in small amounts.
If used for a long period of time, the quality of the molded product will change. For example, an antibacterial polyolefin resin molded article containing antibacterial zeolite using silver as an antibacterial metal will discolor if exposed to sunlight for a long period of time. Furthermore, since the production of antibacterial zeolite is subject to the above-mentioned restrictions, the production of antibacterial polyolefin resin molded articles containing antibacterial zeolite must involve considerably difficult steps.

本発明は、抗菌性ゼオライI・に代え、抗菌性金属の溶
出が、抗菌性ゼオライトに比し著しく少(、殆んど溶出
せず、抗菌力を任意に選択でき、ポリオレフィン系樹脂
への分散も良好で予備混合を必要とせず、かつ合成容易
な無機抗菌体を使用した抗菌及び抗かび性ポリオレフィ
ン系樹脂成形物及びその製造法を提供することを目的と
している。
The present invention replaces antibacterial zeolite I with antibacterial metals that elute significantly less than antibacterial zeolite (almost no elution), allows the antibacterial activity to be selected arbitrarily, and disperses antibacterial metals in polyolefin resins. It is an object of the present invention to provide an antibacterial and antifungal polyolefin resin molded article using an inorganic antibacterial substance that has good antibacterial properties, does not require premixing, and is easy to synthesize, and a method for producing the same.

(課題を解決するための手段及び作用)上記の課題を解
決するため、抗菌性ゼオライトの代りに、抗菌性金属を
担持させた抗菌性カルシウム系セラミックス、特に抗菌
性ハイドロキシアパタイト、の高温、好ましくは800
 ”C以上での焼成物を使用することを本発明は提案す
る。
(Means and effects for solving the problems) In order to solve the above problems, in place of antibacterial zeolite, antibacterial calcium-based ceramics supported with antibacterial metals, especially antibacterial hydroxyapatite, can be used at high temperatures. 800
The present invention proposes the use of a product fired at a temperature higher than "C".

本発明に使用する抗菌性カルシウム系セラミックスは、
例えば抗菌性を有する金属の塩をカルシウム系セラミッ
クスに吸着又はイオン交換で常法により担持、或はそれ
らの金属塩の共存下にカルシウム系セラミックスを常法
により生成させた後、高温、好ましくは800 ’C以
上で焼成することにより容易にえることができる。使用
する抗菌性金属は、銀、銅及び亜鉛から選ばれるが、特
に銀及び亜鉛の使用が好ましく、カルシウム系セラミッ
クスはリン酸カルシウム、炭酸カルシウム、珪酸カルシ
ウム及びハイドロキシアパタイトより選ばれるが、特に
ハイドロキシアパタイトの使用が好ましい。ハイドロキ
シアパタイトはCa 、o (PO4) b(OH) 
zなる組成を有し、骨、歯の生成物で、弱アルカリ性(
pH7−9)で蛋白、脂質を良く吸着し、生体成分との
親和性も良好で、イオン交換能を有していることが認め
られている。然しなから上記のCa/P=10/6の化
学量論モル比を有するハイドロキシアパタイトの、カル
シウム塩及びリン酸塩からの合成は、ある種の困難を伴
うので経済的でない。一方Ca/ p = 1.4〜1
.8のモル比を有するハイドロキシアパタイト類似物の
、カルシウム塩及びリン酸塩よりの合成は容易であり、
これら類(U物もハイドロキシアパタイトと同様本発明
に使用できるので、これら類似物もハイドロキシアパタ
イトなる語に含まれていると解されるべきである。カル
シウム系セラミックスに担持させる金属の量は、吸着又
はイオン交換の範囲内で任意に選択できるが、担体カル
シウム系セラミックスの構造保持、抗菌力の点からセラ
ミックスに対し重量で50%以下、好ましくは0.00
1〜30%、更に好ましくは0.01から10%である
。このようにしてえられた抗菌性カルシウム系セラミッ
クスを高温、好ましくは800℃以上、で焼成し、それ
を出来るだけ微粉化、好ましくは平均粒径10μm以下
に微粉砕してポリオレフィン樹脂に分散させて使用する
。本発明の抗菌性カルシウム系セラミックスは高温で焼
成されているため、担持された金属とセラミックスとの
結合が強化され、焼成によりセラミックス自体が収縮安
定化しているためセラミックスより金属の溶出が生ぜず
、ポリオレフィン樹脂への混合分散も容易であり、抗菌
ゼオライトの製造及びその使用に比し原料及び処理方法
ともに簡単である。
The antibacterial calcium-based ceramics used in the present invention are
For example, a metal salt having antibacterial properties is supported on calcium-based ceramics by adsorption or ion exchange using a conventional method, or calcium-based ceramics are formed by a conventional method in the coexistence of these metal salts, and then heated at a high temperature, preferably 800°C. It can be easily obtained by firing at a temperature of 'C or higher. The antibacterial metal used is selected from silver, copper and zinc, with silver and zinc being particularly preferred, and the calcium-based ceramic being selected from calcium phosphate, calcium carbonate, calcium silicate and hydroxyapatite, particularly hydroxyapatite. is preferred. Hydroxyapatite is Ca, o (PO4) b (OH)
It has a composition of z, is a product of bones and teeth, and is slightly alkaline (
It has been recognized that it adsorbs proteins and lipids well at pH 7-9), has good affinity with biological components, and has ion exchange ability. However, the synthesis of hydroxyapatite having the above-mentioned stoichiometric molar ratio of Ca/P=10/6 from calcium salts and phosphates is not economical due to certain difficulties. On the other hand, Ca/p = 1.4~1
.. Synthesis of hydroxyapatite analogs with a molar ratio of 8 from calcium salts and phosphates is easy;
These types (U) can be used in the present invention as well as hydroxyapatite, so these analogs should also be understood to be included in the term hydroxyapatite.The amount of metal supported on calcium-based ceramics depends on the adsorption Alternatively, it can be selected arbitrarily within the range of ion exchange, but from the viewpoint of maintaining the structure of the calcium-based ceramic carrier and antibacterial activity, it is less than 50% by weight of the ceramic, preferably 0.00%.
It is 1 to 30%, more preferably 0.01 to 10%. The antibacterial calcium-based ceramic thus obtained is fired at a high temperature, preferably at 800°C or higher, and it is pulverized as finely as possible, preferably to an average particle size of 10 μm or less, and dispersed in a polyolefin resin. use. Since the antibacterial calcium-based ceramics of the present invention are fired at high temperatures, the bond between the supported metal and the ceramics is strengthened, and the ceramic itself shrinks and stabilizes due to firing, so metals do not elute from the ceramics. It is easy to mix and disperse into polyolefin resins, and both raw materials and processing methods are simpler than those for producing and using antibacterial zeolites.

本発明に云うポリオレフィン系樹脂とは、ポリエチレン
、ポリプロピレン、プロピレンコポリマ、エチレン低級
α・オレフィンコポリマー及びエチレン系コポリマーが
含まれるが、これらの樹脂は各種の添加剤との混合下、
その性能により広(使用されている。然しなから、これ
らの添加剤の含有により、微生物汚染をうけ易い。従っ
てこれらポリオレフィン系樹脂に抗菌性カルシウム系セ
ラミックスを含有させることはその微生物汚染よりも防
御として好ましい。即ち抗菌性カルシウム系セラミック
スを樹脂重量に対し少くとも0.03%以上混合して成
形すると成形体は微生物により汚染されることがない。
The polyolefin resin referred to in the present invention includes polyethylene, polypropylene, propylene copolymer, ethylene lower α-olefin copolymer, and ethylene copolymer, and these resins can be mixed with various additives,
Due to its performance, it is widely used. However, the inclusion of these additives makes it susceptible to microbial contamination. Therefore, incorporating antibacterial calcium ceramics into these polyolefin resins is more effective in preventing microbial contamination. That is, if at least 0.03% of the weight of the resin is mixed with antibacterial calcium-based ceramics and molded, the molded product will not be contaminated by microorganisms.

抗菌性カルシウム系セラミックスの混合上限は目的とす
る樹脂成形物の性状により任意に決定するが、一般には
10%程度までの混合で十分である。これらの混合成形
は抗菌性ゼオライトの混合の場合のように、予備混合後
混合成形してもよいが、直接樹脂と混合成形することも
できる。
The upper limit of mixing of antibacterial calcium ceramics is arbitrarily determined depending on the properties of the intended resin molded product, but mixing up to about 10% is generally sufficient. These mixture moldings may be carried out after premixing, as in the case of mixing antibacterial zeolite, but they can also be mixed and molded directly with the resin.

二のように抗菌性カルシウム系セラミックスを含有させ
たポリオレフィン系樹脂素材を常法により成形してえら
れるポリオレフィン系樹脂成形体は、抗菌性ゼオライト
含有ポリオレフィン系樹脂成形体に比し、抗菌性金属の
溶出がないので長期間変質がなく、安全に使用できると
ともに、抗菌性ゼオライト含量樹脂成形体より、抗菌力
を広い範囲に変えることが容易である。
A polyolefin resin molded article obtained by molding a polyolefin resin material containing antibacterial calcium-based ceramics as shown in 2. Since there is no elution, there is no deterioration over a long period of time, making it safe to use, and it is easier to vary the antibacterial activity over a wider range than with antibacterial zeolite-containing resin moldings.

以下に実施例を示して本発明を具体的に説明する。EXAMPLES The present invention will be specifically described below with reference to Examples.

■上。■Top.

使用した抗菌性カルシウム系セラミックスの製造 例1−1.抗菌性ハイドロキシアパタイトの製造101
の蒸留水にハイドロキシアパタイト1.OR1硝酸銀3
2g、硝酸亜鉛69gを加え、攪拌する。生成物を蒸留
水で良く洗い、乾燥、1.200℃で焼成し、粉砕して
銀を約2%、亜鉛を約1.5%担持した抗菌性ハイドロ
キシアパタイトを得た(1−1)。
Production example 1-1 of the antibacterial calcium-based ceramics used. Production of antibacterial hydroxyapatite 101
Hydroxyapatite in distilled water 1. OR1 silver nitrate 3
Add 2g of zinc nitrate and 69g of zinc nitrate, and stir. The product was thoroughly washed with distilled water, dried, calcined at 1.200°C, and ground to obtain antibacterial hydroxyapatite carrying about 2% silver and about 1.5% zinc (1-1).

例1−2゜抗菌性リン酸3カルシウムの製造1042の
蒸留水にリン酸三カルシウム1.0kg、硝酸銀30g
、硝酸亜鉛45gを加え、攪拌する。
Example 1-2 Production of antibacterial tricalcium phosphate 1.0 kg of tricalcium phosphate and 30 g of silver nitrate in 1042 distilled water
, add 45 g of zinc nitrate and stir.

生成物を蒸留水で良く洗い、乾燥、1,100”Cで焼
成し、粉砕して銀を約0.5%、亜鉛を約1%担持した
抗菌性リン酸三カルシウムを得た(1−2)例1−3.
抗菌性炭酸カルシウムの製造lO1の蒸留水に炭酸カル
シウム1.0kg、硝酸銀0.01gを加え、攪拌する
。生成物を蒸留水で良く洗い、乾燥、800″Cで焼成
し、粉砕して銀を0.0001%担持した抗菌性炭酸カ
ルシウムを得た(1−3)。
The product was thoroughly washed with distilled water, dried, calcined at 1,100"C, and ground to obtain antibacterial tricalcium phosphate carrying about 0.5% silver and about 1% zinc (1- 2) Example 1-3.
Preparation of antibacterial calcium carbonate 1.0 kg of calcium carbonate and 0.01 g of silver nitrate are added to 101 liters of distilled water and stirred. The product was thoroughly washed with distilled water, dried, calcined at 800''C, and ground to obtain antibacterial calcium carbonate carrying 0.0001% silver (1-3).

例1−4.抗菌性珪酸カルシウムの製造102の蒸留水
に珪酸カルシウム1.0kg、硝酸銀180g、硝酸銅
200gを加え、煮沸しながら攪拌する。生成物を蒸留
水で良(洗い、乾燥、1、200℃で焼成し、粉砕して
銀を約10%、銅を約5%担持した抗菌性珪酸カルシウ
ムを得た(1−4)。
Example 1-4. Production of antibacterial calcium silicate 1.0 kg of calcium silicate, 180 g of silver nitrate, and 200 g of copper nitrate are added to the distilled water of step 102, and the mixture is stirred while boiling. The product was washed with distilled water, dried, calcined at 1 and 200°C, and ground to obtain an antibacterial calcium silicate carrying about 10% silver and about 5% copper (1-4).

例2.金属イオン溶出試験 例1−1〜1−4でえられた抗菌性カルシウム系セラミ
ックス及び銀及び亜鉛を含む市販抗菌性ゼオライトの脱
水物(Aと記す)の夫々Igを蒸留水100蔵に加え、
30分撹拌した後、原子吸光分光々変針を用いて溶液中
の金属イオンを測定し、その溶出量を求めた。
Example 2. Add Ig of each of the antibacterial calcium-based ceramics obtained in Metal Ion Elution Test Examples 1-1 to 1-4 and the dehydrated product (denoted as A) of a commercially available antibacterial zeolite containing silver and zinc to 100 g of distilled water.
After stirring for 30 minutes, metal ions in the solution were measured using an atomic absorption spectrometer, and the amount eluted was determined.

表中くは検出限界以下であることを示している。The values in the table indicate that the values are below the detection limit.

焼成抗菌性カルシウム系セラミックスの金属溶出量は抗
菌性ゼオライトに比し著しく少いことを示している。
The results show that the amount of metal eluted from the fired antibacterial calcium-based ceramics is significantly lower than that from the antibacterial zeolite.

例3.変色試験 (1)銀を1重量%担持させた焼成抗菌性ゼオライト及
び担体ゼオライト;銀を1重量%イオン交換したゼオラ
イト及び担体ゼオライトを夫々6ケ月室内に放置し、そ
の白色の変化を測定した。
Example 3. Discoloration test (1) Calcined antibacterial zeolite and carrier zeolite carrying 1% by weight of silver; Zeolite and carrier zeolite with 1% by weight of silver ion-exchanged were each left indoors for 6 months, and changes in their white color were measured.

変色試験結果 以上の結果より、銀含有ハイドロキシアパタイト(銀、
1%含有)を6力月間室内放置した場合でも、全く変色
しないことがわかる。なお、Agイオンをわずかに溶出
する銀含有ゼオライトにおいては変色が激しく、白色度
の大きな低下が見られた。
Discoloration test results Based on the above results, silver-containing hydroxyapatite (silver,
1%) was left indoors for 6 months without any discoloration. In addition, in the silver-containing zeolite that slightly elutes Ag ions, discoloration was severe and a large decrease in whiteness was observed.

例4.ポリエチレン樹脂成形体の生成 低密度ポリエチレンに対し、重量で5%になるよう例1
−1〜1−4で作成された抗菌性カルシウム系セラミッ
クスの平均10μm以下の微粒子を混合し、プラベンダ
・−にて約185℃で処理し、えられた混合物を180
’Cで2分、43kg/ct[’加圧し、φ20cmの
円板(厚さlIr1l′fi)に成形した。
Example 4. Production of polyethylene resin molding Example 1: 5% by weight of low density polyethylene
The antibacterial calcium-based ceramic particles prepared in steps 1 to 1-4 with an average size of 10 μm or less were mixed and treated with a plastic bender at about 185°C.
It was pressurized at 43 kg/ct [' for 2 minutes at 'C' and formed into a φ20 cm disc (thickness lIr1l'fi).

この円板を5 X 5 cmに切断し、以下の抗菌試験
に使用した。尚比較のため例2で使用した抗菌性ゼオラ
イトを抗菌性カルシウム系セラミックスの代りに使用し
た以外は例4と同じ操作をしてえられた抗菌性ゼオライ
ト含有ポリエチレン樹脂成形体を作成し比較例として使
用した。
This disk was cut into 5 x 5 cm and used for the following antibacterial test. For comparison, an antibacterial zeolite-containing polyethylene resin molded body was prepared in the same manner as in Example 4, except that the antibacterial zeolite used in Example 2 was used instead of the antibacterial calcium ceramic. used.

例5.抗菌及び防かび試験 (1)抗菌試験 細菌として大腸菌を使用し、大腸菌菌液を5×51の成
形体表面に噴霧し、24時間培養してその抗菌力を測定
した。
Example 5. Antibacterial and antifungal test (1) Antibacterial test Escherichia coli was used as the bacteria, and an Escherichia coli solution was sprayed onto the surface of a 5 x 51 molded product, cultured for 24 hours, and its antibacterial activity was measured.

表中〈1は菌数測定の限界以下であったことを示す。In the table, <1 indicates that the bacterial count was below the limit.

試料1−1とは例1−1により製造した抗菌性カルシウ
ム系セラミックス含有の成形体であることを意味してい
る。
Sample 1-1 means a molded article containing antibacterial calcium-based ceramics manufactured according to Example 1-1.

(2)防かび試験 かびとしてアスペルギルスニガーを使用し、抗菌試験に
準じて表面にスプレーし、24時間培養後、試験片より
かびを抽出し、この抽出液中のかび数を常法により測定
してかびの発育が認められなかったことを認めた。
(2) Anti-mold test Using Aspergillus niger as the mold, spray it on the surface according to the antibacterial test, and after culturing for 24 hours, extract the mold from the test piece and measure the number of molds in this extract using the usual method. It was acknowledged that no mold growth was observed.

例6.ポリエチレン樹脂成形体の変色試験例1−1でえ
られた抗菌性ハイドロキシアパタイトを含む例4でえた
成形体(試料1−1)及び比較のため例4でえた成形体
(比較例)を夫々5X5X0.5cTAに切断し、太陽
光のもとに6ケ月間曝光した。試料1−1は6ケ月後変
色はみられなかったが、比較例は黒ずみ明らかな変色が
みとめられた。
Example 6. Discoloration Test of Polyethylene Resin Molded Body The molded body obtained in Example 4 containing the antibacterial hydroxyapatite obtained in Example 1-1 (Sample 1-1) and the molded body obtained in Example 4 for comparison (Comparative Example) were each 5X5X0 It was cut into .5cTA and exposed to sunlight for 6 months. Although sample 1-1 showed no discoloration after 6 months, clear darkening and discoloration were observed in the comparative example.

(発明の効果) 抗菌性ゼオライトにかわり、抗菌性カルシウム系セラミ
ックスを使用して作成される抗菌及び防かび性ポリオレ
フィン系樹脂成形体は抗菌性金属の溶出がないため金属
による変質がなく安全に長期間使用できるとともに、抗
菌性カルシウム性セラミックスの作成が抗菌性ゼオライ
トの作成に比し簡単であり、任意の抗菌力を有する成形
体を容易にえることができる。
(Effects of the invention) Antibacterial and antifungal polyolefin resin molded products made using antibacterial calcium ceramics instead of antibacterial zeolite do not elute antibacterial metals, so they are safe and long-lasting without deterioration due to metals. In addition to being usable for a long period of time, the production of antibacterial calcium ceramics is simpler than the production of antibacterial zeolites, and molded bodies having any desired antibacterial activity can be easily obtained.

Claims (6)

【特許請求の範囲】[Claims] (1)銀、銅及び亜鉛から選ばれた抗菌性金属を、リン
酸カルシウム、炭酸カルシウム、珪酸カルシウム及びハ
イドロキシアパタイトから選ばれたカルシウム系セラミ
ックスに担持させた抗菌性カルシウム系セラミックスの
焼成物をポリオレフィン系樹脂に組込んだことを特徴と
する抗菌及び抗かび性ポリオレフィン系樹脂成形体。
(1) An antibacterial calcium ceramic ceramic selected from calcium phosphate, calcium carbonate, calcium silicate, and hydroxyapatite is loaded with an antibacterial metal selected from silver, copper, and zinc. An antibacterial and antifungal polyolefin resin molded article characterized by being incorporated into.
(2)カルシウム系セラミックスがハイドロキシアパタ
イトである請求項(1)の樹脂成形体。
(2) The resin molded article according to claim (1), wherein the calcium-based ceramic is hydroxyapatite.
(3)抗菌性金属が銀及び/又は亜鉛である請求項(1
)又は(2)の樹脂成形体。
(3) Claim (1) in which the antibacterial metal is silver and/or zinc
) or the resin molded article of (2).
(4)抗菌性カルシウム系セラミックスの抗菌性金属の
含量が抗菌性カルシウム系セラミックス0.01重量%
から10重量%である請求項(1)乃至(3)のいずれ
か1項の樹脂成形体。
(4) The content of antibacterial metal in antibacterial calcium-based ceramics is 0.01% by weight of antibacterial calcium-based ceramics.
10% by weight of the resin molded article according to any one of claims (1) to (3).
(5)抗菌性カルシウム系セラミックスの含量が成形体
に対し少くとも0.03重量%である請求項(1)乃至
(4)のいずれか1項の樹脂成形体。
(5) The resin molded article according to any one of claims (1) to (4), wherein the content of the antibacterial calcium-based ceramic is at least 0.03% by weight based on the molded article.
(6)銀、銅及び亜鉛から選ばれた抗菌性金属を、リン
酸カルシウム、炭酸カルシウム、珪酸カルシウム及びハ
イドロキシアパタイトから選ばれたカルシウム系セラミ
ックスに担持させた後、該セラミックスを800℃以上
で焼成し、焼成物を平均粒度10μm以下に粉砕し、え
られた微粉末とポリオレフィン系樹脂とを、該微粉末の
含量が少くとも0.03重量%になるよう混合すること
を含むポリオレフィン系樹脂成形体の製造法。
(6) After supporting an antibacterial metal selected from silver, copper, and zinc on a calcium-based ceramic selected from calcium phosphate, calcium carbonate, calcium silicate, and hydroxyapatite, the ceramic is fired at 800°C or higher, A method of producing a polyolefin resin molded article, which comprises pulverizing the fired product to an average particle size of 10 μm or less, and mixing the obtained fine powder with a polyolefin resin so that the content of the fine powder is at least 0.03% by weight. Manufacturing method.
JP26303790A 1990-10-02 1990-10-02 Antibacterial and fungicidal polyolefin rein molding and preparation thereof Pending JPH04142349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26303790A JPH04142349A (en) 1990-10-02 1990-10-02 Antibacterial and fungicidal polyolefin rein molding and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26303790A JPH04142349A (en) 1990-10-02 1990-10-02 Antibacterial and fungicidal polyolefin rein molding and preparation thereof

Publications (1)

Publication Number Publication Date
JPH04142349A true JPH04142349A (en) 1992-05-15

Family

ID=17383994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26303790A Pending JPH04142349A (en) 1990-10-02 1990-10-02 Antibacterial and fungicidal polyolefin rein molding and preparation thereof

Country Status (1)

Country Link
JP (1) JPH04142349A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161603A3 (en) * 2011-05-24 2013-06-06 Uniwersytet Jagiellonski Hybrid material containing silver nanoparticles, method for obtaining the same and use thereof
WO2021148938A1 (en) * 2020-01-20 2021-07-29 Association For The Advancement Of Tissue Engineering And Cell Based Technologies & Therapies (A4Tec) - Associação Ceramic-based composites materials methods and uses thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161603A3 (en) * 2011-05-24 2013-06-06 Uniwersytet Jagiellonski Hybrid material containing silver nanoparticles, method for obtaining the same and use thereof
WO2021148938A1 (en) * 2020-01-20 2021-07-29 Association For The Advancement Of Tissue Engineering And Cell Based Technologies & Therapies (A4Tec) - Associação Ceramic-based composites materials methods and uses thereof

Similar Documents

Publication Publication Date Title
JPS63265958A (en) Antibacterial resin composition
JPS6270221A (en) Amorphous aluminosilicate having antimicrobial and/or germicidal action
KR940000032B1 (en) Disinfectant bioceramic composition
EP1450609B1 (en) Antimicrobial composite material
JPH04142349A (en) Antibacterial and fungicidal polyolefin rein molding and preparation thereof
JPH0383906A (en) Antimicrobial agent
JP3705920B2 (en) Antibacterial zeolite
JPH04243908A (en) Antimicrobial phosphate intercalation compound and its production
JPH04142340A (en) Antibacterial and fungicidal polymer foam and preparation thereof
JP3064753B2 (en) Method for producing antibacterial thermoplastic resin molding
KR960006791B1 (en) Antibacterial and anti-mold polyolefin resin molding articles and the process thereof
JP2762423B2 (en) Antibacterial ceramic material
JPH0390007A (en) Antimicrobial agent
US7179530B2 (en) Antimicrobial composite material
JP3333791B2 (en) Antibacterial resin composition
JP3085682B2 (en) Antimicrobial composition
JP4052526B2 (en) Antibacterial resin
JP3571373B2 (en) Antibacterial resin composition for stationery and antibacterial stationery
JP3460348B2 (en) Antimicrobial polyolefin resin composition
JP2001010850A (en) Inorganic filling admixture
JPH01306473A (en) Expandable thermoplastic resin composition
JPH06212019A (en) Antimicrobial resin composition
EP1342411A1 (en) Antimicrobacterial composite material
JPH04273803A (en) Antimicrobial agent
JPH1192314A (en) Inorganic antimicrobial composition