JPH0414219A - Formation of electrode wiring of semiconductor element - Google Patents
Formation of electrode wiring of semiconductor elementInfo
- Publication number
- JPH0414219A JPH0414219A JP11713490A JP11713490A JPH0414219A JP H0414219 A JPH0414219 A JP H0414219A JP 11713490 A JP11713490 A JP 11713490A JP 11713490 A JP11713490 A JP 11713490A JP H0414219 A JPH0414219 A JP H0414219A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- gas
- substrate
- film
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 16
- 230000015572 biosynthetic process Effects 0.000 title description 6
- 239000010410 layer Substances 0.000 claims abstract description 117
- 229910052751 metal Inorganic materials 0.000 claims abstract description 58
- 239000002184 metal Substances 0.000 claims abstract description 58
- 239000000758 substrate Substances 0.000 claims abstract description 43
- 238000000034 method Methods 0.000 claims abstract description 29
- 238000002844 melting Methods 0.000 claims abstract description 27
- 238000001179 sorption measurement Methods 0.000 claims abstract description 21
- 230000004888 barrier function Effects 0.000 claims abstract description 20
- 230000008018 melting Effects 0.000 claims description 23
- 238000010438 heat treatment Methods 0.000 claims description 13
- 239000011229 interlayer Substances 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 7
- 238000002161 passivation Methods 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 40
- 239000007789 gas Substances 0.000 abstract description 26
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 abstract description 21
- 238000005121 nitriding Methods 0.000 abstract description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 7
- 150000004767 nitrides Chemical class 0.000 abstract description 7
- 238000010521 absorption reaction Methods 0.000 abstract description 6
- 230000005284 excitation Effects 0.000 abstract description 3
- 239000007788 liquid Substances 0.000 abstract description 3
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 3
- 239000002356 single layer Substances 0.000 abstract description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 37
- 239000010936 titanium Substances 0.000 description 19
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 17
- 229910008479 TiSi2 Inorganic materials 0.000 description 13
- DFJQEGUNXWZVAH-UHFFFAOYSA-N bis($l^{2}-silanylidene)titanium Chemical compound [Si]=[Ti]=[Si] DFJQEGUNXWZVAH-UHFFFAOYSA-N 0.000 description 13
- 238000009792 diffusion process Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 230000001443 photoexcitation Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 238000003746 solid phase reaction Methods 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910021354 zirconium(IV) silicide Inorganic materials 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910008484 TiSi Inorganic materials 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 229910008814 WSi2 Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- UGACIEPFGXRWCH-UHFFFAOYSA-N [Si].[Ti] Chemical compound [Si].[Ti] UGACIEPFGXRWCH-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、Si基板(シリコン基板)を用いたバイポー
ラ集積図&J(IC,LSI等)やMO8集積回H(I
C,LSI等)のような半導体素子の電極配線形成方法
に関するものである。Detailed Description of the Invention (Field of Industrial Application) The present invention is applicable to bipolar integrated circuits (IC, LSI, etc.) and MO8 integrated circuits (I) using a Si substrate (silicon substrate).
The present invention relates to a method for forming electrode wiring for semiconductor devices such as C, LSI, etc.).
(従来の技術)
従来、この種のLSI電極配線形成としては、例えば第
2図(a)〜(C)に示すようなものがあった。以下、
その各製造工程(1)〜(3〉を説明する。(Prior Art) Conventionally, this type of LSI electrode wiring formation has been performed, for example, as shown in FIGS. 2(a) to 2(C). below,
Each manufacturing process (1) to (3) will be explained.
(1〉 第2図(a)の工程
先ず、Si基板1上にソース・ドレイン拡散層等の半導
体素子を形成した後、全面に層間絶縁膜2を堆積し、所
定の領域にコンタクト孔3を開ける。次に、AfJ配線
(アルミニウム配線)のバリアメタル層となるTi膜(
チタン膜)4を500人堆積する。(1> Process shown in FIG. 2(a)) First, semiconductor elements such as source/drain diffusion layers are formed on the Si substrate 1, then an interlayer insulating film 2 is deposited on the entire surface, and contact holes 3 are formed in predetermined areas. Next, remove the Ti film (
Deposit titanium film) 4 by 500 people.
(2) 第2図(b)の工程
ランプアニール装置を用いてN2ガス(窒素ガス〉雰囲
気で、800℃、10sec加熱する。(2) Heating is performed at 800° C. for 10 seconds in a N2 gas (nitrogen gas) atmosphere using the process lamp annealing apparatus shown in FIG. 2(b).
その結果、コンタクト孔3におけるTi膜4とSi基板
1との界面には、TiSi2層(シリコンチタン層)5
が形成され、さらにそのTiSi2層5上及び層間絶縁
膜2上には、TiN層(窒化チタン層>4aが同時に形
成される。次に、全面に、1%のSiを含んだA、Q
−8i層6を1μm堆積させる。As a result, a TiSi2 layer (silicon titanium layer) 5 is formed at the interface between the Ti film 4 and the Si substrate 1 in the contact hole 3.
is formed, and furthermore, a TiN layer (titanium nitride layer>4a) is simultaneously formed on the TiSi2 layer 5 and the interlayer insulating film 2. Next, A and Q containing 1% Si are formed on the entire surface.
- Deposit 1 μm of 8i layer 6.
(3) 第2図(c)の工程
フォトリングラフィ技術と反応性イオンエ・ンチングに
より、A、f! −3i層6とTiN層4aを選択的に
工・lランプし、Aρ−3i/TiN構造の配線バタン
、つまり配線M7に加工する。その後、パッシベーショ
ン膜8としてPSG膜(リンガラス膜>8aと水分浸入
防止用のSiN膜(窒化シリコン膜>8bを堆積する。(3) In the process shown in Fig. 2(c), A, f! The -3i layer 6 and the TiN layer 4a are selectively processed and processed into a wiring pattern having an Aρ-3i/TiN structure, that is, a wiring M7. Thereafter, a PSG film (phosphorus glass film>8a) and a SiN film (silicon nitride film>8b) for preventing moisture intrusion are deposited as the passivation film 8.
(発明が解決しようとする課題)
しかしなから、上記の電極配線形成方法では、TiSi
2層5により、Si基板1内に形成した図示しない拡散
層とのオーミックをとり、配線層7におけるAN−8i
層6の熱反応に対するバリア効果をTiN層4aに受は
持たせるのが狙いとなっている。一方、N2ガス雰囲気
でのTiの反応は、Si基板1上において次の2つの競
合反応が同時に起こる。(Problem to be Solved by the Invention) However, in the above electrode wiring formation method, TiSi
The second layer 5 provides ohmic relationship with the diffusion layer (not shown) formed in the Si substrate 1, and the AN-8i in the wiring layer 7
The aim is to provide the TiN layer 4a with a barrier effect against the thermal reaction of the layer 6. On the other hand, in the reaction of Ti in the N2 gas atmosphere, the following two competing reactions occur simultaneously on the Si substrate 1.
Ti+28i−+TiSi2
ΔHf=−32,I Kca、I)/mo、[)・・
・(1〉
Ti十 N2→TiN
ΔHf=−80,4KcaF/mofJ・・・・・・(
2)
エンタルピΔHfからは(2〉式の反応の方か進み易い
。しかし、(1)式の固相反応の場合、反応物質の濃度
が格段に大きいので、反応速度的には(2)式よりも(
1)式の方が反応速度が大きい。前記第2図(b)の工
程において、800℃、10secのランプ加熱の場合
、TiN層4aの厚さは約100人に対し、T i S
i 2層5が約0.2μm形成される。TiSi2層
5が厚いと、そこに形成されるSi基板1内の図示しな
い拡散層が浅い場合、その拡散層のSi消費により、接
合リークが発生する。これに対してTiN層4aが薄い
と、耐熱性が低いため、A、Q−3i層6のA1スパイ
クによる接合リークが発生する。従って、半導体素子が
超LSI化されると、それに対応してTiSi2層5は
できるたけ薄くし、TiN層4aはもっと厚くしないと
、超LSIへの適用が困難となる。Ti+28i-+TiSi2 ΔHf=-32, I Kca, I)/mo, [)...
・(1> Ti×N2→TiN ΔHf=-80,4KcaF/mofJ・・・・・・(
2) From the enthalpy ΔHf, the reaction of equation (2>) is easier to proceed. However, in the case of the solid phase reaction of equation (1), the concentration of the reactant is much higher, so in terms of reaction rate, equation (2) than(
1) Equation has a higher reaction rate. In the process shown in FIG. 2(b), in the case of lamp heating at 800° C. for 10 seconds, the thickness of the TiN layer 4a is approximately 100 people,
The i2 layer 5 is formed to a thickness of about 0.2 μm. If the TiSi2 layer 5 is thick and the diffusion layer (not shown) formed therein in the Si substrate 1 is shallow, junction leakage will occur due to Si consumption in the diffusion layer. On the other hand, if the TiN layer 4a is thin, the heat resistance is low, and junction leakage occurs due to the A1 spike of the A and Q-3i layers 6. Therefore, when semiconductor devices are made into ultra-LSIs, the TiSi2 layer 5 must be made as thin as possible and the TiN layer 4a must be made thicker, otherwise application to the ultra-LSI will become difficult.
ところが、前記第2図(b)の工程において、ランプ加
熱温度を800°Cより高くすると、前記(1)式と(
2)式との反応速度の差が大きくなり、ますますTiN
層4aが薄くなり、TiSi2層5がますます厚くなっ
てしまう。逆に、加熱温度を下げると、層間絶縁膜2上
に未反応Tiが残り、配線層7におけるAfJの抵抗が
以後の熱処理で増大してしまう。そこで、前記(2)式
の反応速度を早くしてTiN層4aの膜厚を大きくする
ため、加熱雰囲気としてN2ガスの代わりにNH3ガス
(アンモニアガス)を使うことが考えられるが、しかし
NH3ガスを使っても(1)式の反応速度の方が進み易
いので、大きな効果は得られない。However, in the process shown in FIG. 2(b), if the lamp heating temperature is made higher than 800°C, the equation (1) and (
2) The difference in reaction rate with the formula becomes larger, and TiN
The layer 4a becomes thinner, and the TiSi2 layer 5 becomes even thicker. Conversely, if the heating temperature is lowered, unreacted Ti remains on the interlayer insulating film 2, and the resistance of AfJ in the wiring layer 7 increases during subsequent heat treatment. Therefore, in order to increase the reaction rate of the above equation (2) and increase the thickness of the TiN layer 4a, it is conceivable to use NH3 gas (ammonia gas) instead of N2 gas as the heating atmosphere. Even if , the reaction rate of equation (1) proceeds more easily, so no great effect can be obtained.
このように、Si基板1上では、オーミックメタル層で
あるT i S i 2層5が厚いと、Si基板1の消
費(Tiの膜厚し約2.4倍〉による接合リークが発生
するばかりか、そのTiSi2層5の厚さに反比例して
バリアメタル層であるTiN層4aが薄くなり、配線N
7中のA、Qに対するバリア効果が低下して接合リーク
が発生する。これを解決するため、前記第2図(b)の
工程において、低温窒化により完全なTiN層4aを形
成しない方法を用いることも考えられるが、そのような
方法を用いると、層間絶縁膜2上での配線層7が、未反
応Tiとの反応によりA、llの抵抗値が増大してしま
う。従って、いずれの方法を採用しても、技術的に満足
できるものが得られなかった。As described above, if the T i S i 2 layer 5, which is an ohmic metal layer, is thick on the Si substrate 1, junction leakage will occur due to consumption of the Si substrate 1 (approximately 2.4 times the thickness of the Ti film). Or, the TiN layer 4a, which is a barrier metal layer, becomes thinner in inverse proportion to the thickness of the TiSi2 layer 5, and the wiring N
The barrier effect against A and Q in 7 is reduced and junction leakage occurs. In order to solve this problem, it may be possible to use a method in which a complete TiN layer 4a is not formed by low-temperature nitridation in the process shown in FIG. The resistance value of A and 11 increases due to the reaction of the wiring layer 7 with unreacted Ti. Therefore, no matter which method was adopted, a technically satisfactory product could not be obtained.
本発明は前記従来技術が持っていた課題として、バリア
メタル層であるTiN層を厚く、オーミックメタル層で
あるTiSi2層をできるだけ薄くすることが困難であ
り、それによって耐熱性が低く、しかも浅い拡散層に対
してはコンタクト特性が劣化するという点について解決
した半導体素子の電極配線形成方法を提供するものであ
る。The present invention addresses the problems that the prior art had, in that it is difficult to make the TiN layer, which is a barrier metal layer, thick and the TiSi2 layer, which is an ohmic metal layer, as thin as possible, resulting in low heat resistance and shallow diffusion. The present invention provides a method for forming electrode wiring of a semiconductor device that solves the problem of deterioration of contact characteristics for layers.
(課題を解決するための手段)
第1の発明は前記課題を解決するために、 LSI等で
構成される半導体素子の電極配線形成方法において、素
子が形成されたSi基板上に層間絶縁膜を堆積し、所定
の領域にコンタクト孔を開けた後、全面に高融点金属膜
を被着する第1の工程と、前記Si基板を冷却し、前記
高融点金属膜上にNH3ガスの多層吸着層を形成した後
、N H3ガス中で該多層吸着層上から所定波長の紫外
光を照射して窒化高融点金属からなるバリアメタル層を
、所定の膜厚に形成する第2の工程と、前記Si基板を
所定温度に加熱し、N2ガスまたはNH3ガスで加熱し
て前記コンタクト孔における前記高融点金属膜と前記S
i基板とを反応させ、前記Si基板内にオーミックメタ
ル層を形成する第3の工程と、前記コンタクト孔上に配
線層を選択的に形成し、その上にパッシベーション膜を
形成する第4の工程とを、順に施すようにしたものであ
る。(Means for Solving the Problems) In order to solve the above-mentioned problems, the first invention provides a method for forming electrode wiring of a semiconductor element constituted by an LSI or the like, in which an interlayer insulating film is formed on a Si substrate on which an element is formed. After depositing and forming contact holes in predetermined areas, a first step of depositing a high melting point metal film on the entire surface, cooling the Si substrate, and forming a multilayer adsorption layer of NH3 gas on the high melting point metal film. a second step of forming a barrier metal layer made of a high melting point metal nitride to a predetermined thickness by irradiating ultraviolet light of a predetermined wavelength from above the multilayer adsorption layer in NH3 gas; The Si substrate is heated to a predetermined temperature and heated with N2 gas or NH3 gas to bond the high melting point metal film and the S in the contact hole.
a third step of reacting with the i-substrate to form an ohmic metal layer in the Si substrate; and a fourth step of selectively forming a wiring layer on the contact hole and forming a passivation film thereon. These steps are performed in order.
第2の発明では、第1の発明において、前記第2の工程
では、前記Si基板を0℃以下に冷却し、前記多層吸着
層上から波長210nm以下の紫外光を前記Si基板と
垂直に照射し、前記第3の工程ては、前記Si基板を6
75〜900℃に加熱するようにしている。In a second invention, in the first invention, in the second step, the Si substrate is cooled to 0° C. or less, and ultraviolet light with a wavelength of 210 nm or less is irradiated from above the multilayer adsorption layer perpendicularly to the Si substrate. In the third step, the Si substrate is
It is heated to 75-900°C.
(作用〉
第1の発明によれば、以上のように半導体素子の電極配
線形成方法を構成したので、第2の工程において、反応
ガスとしてN H3カスを用い、かつSi基板を冷却す
ることにより形成しなNH3ガスの多層吸着層は、反応
分子(NH3〉の高融点金属膜(例えば、チタンTi、
タングステンW、ジルコニウムZr等)への供給量を、
単層吸着層よりも多くする働きがある。(Function) According to the first invention, since the method for forming electrode wiring of a semiconductor element is configured as described above, in the second step, by using N H3 scum as a reaction gas and cooling the Si substrate, A multilayer adsorption layer of NH3 gas without forming is formed by a high melting point metal film (e.g., titanium, Ti, etc.) of reactive molecules (NH3).
tungsten W, zirconium Zr, etc.)
It has the function of increasing the amount of adsorption compared to a single layer adsorption layer.
この多層吸着層上から紫外光を照射して窒化高融点金属
(例えば、TiN、WN、ZrN等)からなるバリアメ
タル層を形成する時に、窒化反応に紫外光による励起反
応を用いているので、紫外光に対する吸収波長(例えば
、210nm)が気相中に比べて高波長側にシフトし、
紫外光に対するNH3の吸収量が増大する。When irradiating ultraviolet light from above this multilayer adsorption layer to form a barrier metal layer made of a nitrided high-melting point metal (e.g., TiN, WN, ZrN, etc.), an excitation reaction by ultraviolet light is used for the nitriding reaction. The absorption wavelength for ultraviolet light (for example, 210 nm) is shifted to the higher wavelength side compared to that in the gas phase,
The amount of absorption of NH3 to ultraviolet light increases.
このような多層吸着層と紫外光照射との効果により、低
温(例えば、0℃以下)でも、次の(3)式の反応によ
り、窒化高融点金属の成長レイトが、従来より大きくな
る。Due to the effects of such a multilayer adsorption layer and ultraviolet light irradiation, the growth rate of the high melting point metal nitride becomes larger than before, even at low temperatures (for example, below 0° C.), due to the reaction of the following equation (3).
2 T i + 2 N H3→2 T iN + 3
H2・・・・・(3)
この(3)式の反応時には、シリサイド反応は低温のた
め起こらない。光励起反応により、高融点金属膜を、所
望の厚さの窒化高融点金属からなるバリアメタル層に変
換した後、第3の工程へ進む。2 T i + 2 N H3 → 2 T iN + 3
H2...(3) During the reaction of formula (3), the silicide reaction does not occur due to the low temperature. After the high melting point metal film is converted into a barrier metal layer made of a high melting point metal nitride having a desired thickness by a photoexcitation reaction, the process proceeds to the third step.
第3の工程では、残りの未反応高融点金属膜を、オーミ
ックメタル層(例えば、T i S i 2 = WS
i2 、ZrSi2等)形成の臨界温度(例えば、70
0°C程度)で加熱することにより、所望の厚さのオー
ミックメタル層が形成されると共に、第2の工程で形成
した光励起バリアメタル層がより緻密化される。In the third step, the remaining unreacted high melting point metal film is coated with an ohmic metal layer (for example, T i S i 2 = WS
i2, ZrSi2, etc.) formation critical temperature (e.g. 70
By heating at a temperature of about 0° C.), an ohmic metal layer with a desired thickness is formed, and the photoexcitation barrier metal layer formed in the second step is made more dense.
このように、第2の工程において、高融点金属膜の窒化
反応だけが従来より大きな反応速度で起こり、所望の厚
さのバリアメタル層が形成される。In this manner, in the second step, only the nitriding reaction of the high melting point metal film occurs at a higher reaction rate than in the past, and a barrier metal layer with a desired thickness is formed.
その後、第3の工程において、残りの未反応高融点金属
膜とSi基板の固相反応により、所望の厚さのオーミッ
クメタル層が独立に形成される。Thereafter, in a third step, an ohmic metal layer having a desired thickness is independently formed by a solid phase reaction between the remaining unreacted high melting point metal film and the Si substrate.
第2の発明によれば、第2の工程において、Si基板を
0℃以下に冷却し、多層吸着層上から波長210nm以
下の紫外光を照射することは、0℃以下の低温でも、前
記(3)式の反応により、バリアメタル層の成長ルート
が従来より大きくなる。しかも、第3の工程において、
Si基板を675〜900℃に加熱することは、オーミ
ックメタル層の厚さの制御が簡単に行えると共に、第2
の工程で構成した光励起バリアメタル層のより緻密化が
図れる。According to the second invention, in the second step, cooling the Si substrate to 0° C. or lower and irradiating ultraviolet light with a wavelength of 210 nm or lower from above the multilayer adsorption layer can be performed even at a low temperature of 0° C. or lower. Due to the reaction in formula 3), the growth route of the barrier metal layer becomes larger than before. Moreover, in the third step,
Heating the Si substrate to 675-900°C allows easy control of the thickness of the ohmic metal layer and
The photo-excited barrier metal layer formed in the process can be made more dense.
従って、前記課題を解決できるのである。Therefore, the above problem can be solved.
(実施例)
第1図(a)〜(d)は、本発明の一実施例を示す半導
体素子の電極配線形成方法を説明するための製造工程図
であり、この図を参照しつつ各製造工程(1)〜(4)
を説明する。(Example) FIGS. 1(a) to 1(d) are manufacturing process diagrams for explaining a method for forming electrode wiring of a semiconductor device according to an example of the present invention. Steps (1) to (4)
Explain.
(1) 第1図(a)の工程
Si基板11上に、不純物を導入して拡散層を形成した
後、PSG膜等の層間絶縁膜12を気相成長法(CVD
法)等で堆積する。フォトリングラフィ技術により、層
間絶縁膜12の所定の領域に、コンタクト孔13を開け
る。そして、バリアメタル層となる高融点金属膜、例え
ばTi膜14をマグネトロンスパッタ法等で500八程
度堆積する。(1) Process of FIG. 1(a) After introducing impurities to form a diffusion layer on the Si substrate 11, an interlayer insulating film 12 such as a PSG film is formed by vapor phase growth (CVD).
method) etc. A contact hole 13 is formed in a predetermined region of the interlayer insulating film 12 by photolithography technology. Then, a high melting point metal film, for example, a Ti film 14, which will become a barrier metal layer, is deposited by magnetron sputtering or the like.
次に、Si基板11を液体窒素中等に漬け、そのSi基
板11を0℃以下、例えば−80°C程度に保持する。Next, the Si substrate 11 is immersed in liquid nitrogen or the like, and the Si substrate 11 is maintained at 0°C or lower, for example, about -80°C.
そして、NH3ガスを反応室に導入し、そのNH3ガス
により、Ti膜14の表面に、NH3ガスの多層吸着層
15を形成する。その後、NH3ガス中で、低圧水銀ラ
ンプ等を用いて波長210nm以下の紫外光HをSi基
板11と垂直に照射する。Then, NH3 gas is introduced into the reaction chamber, and the NH3 gas forms a multilayer adsorption layer 15 of NH3 gas on the surface of the Ti film 14. Thereafter, in NH3 gas, ultraviolet light H having a wavelength of 210 nm or less is irradiated perpendicularly to the Si substrate 11 using a low-pressure mercury lamp or the like.
(2) 第1図(b)の工程
前記紫外光照射工程において、NH3ガスの紫外光吸収
波長は気相の場合、200〜210nmであるが、多層
吸着層15の場合、高波長側ヘシフトすることが知られ
ている。一方、紫外光照射用に例えば低圧水銀ランプを
用いた場合、その低圧水銀ランプの共鳴線の波長が、1
85nm、254nmであるので、NH3ガスは紫外光
を十分に吸収し、励起する。この光励起反応により、8
0℃の低温でも、前記(3)式に従ってTi膜14の表
面から窒化反応が進行し、従来よりも大きな成長レイト
で、バリアメタル層であるTiN層16が、例えば45
0八程度の厚さに形成される。この窒化反応時には、低
温のためにシリサイド反応が起こらない。(2) Step of FIG. 1(b) In the ultraviolet light irradiation step, the ultraviolet light absorption wavelength of NH3 gas is 200 to 210 nm in the gas phase, but in the case of the multilayer adsorption layer 15, it shifts to the higher wavelength side. It is known. On the other hand, when a low-pressure mercury lamp, for example, is used for ultraviolet light irradiation, the wavelength of the resonance line of the low-pressure mercury lamp is 1
Since the wavelengths are 85 nm and 254 nm, NH3 gas sufficiently absorbs and excites ultraviolet light. This photoexcitation reaction causes 8
Even at a low temperature of 0° C., the nitridation reaction proceeds from the surface of the Ti film 14 according to equation (3) above, and the TiN layer 16, which is a barrier metal layer, grows at a growth rate of, for example, 45° C.
It is formed to a thickness of about 0.8 mm. During this nitriding reaction, no silicide reaction occurs due to the low temperature.
(3〉 第1図(c)の工程
Si基板11の冷却をやめ、ハロゲンランプ等により、
T 1S12形成の臨界温度675〜900℃、例えば
800℃で10秒程度、Si基板11を加熱し、N2ガ
スまたはN H3ガスで全体を加熱する。すると、前記
(1)式に従って、厚さ例えば500八程の未反応Ti
膜14とSi基板11とが固相反応し、コンタクト孔1
3の下方のみに、オーミックメタル層である厚さ100
八程度のT 1S12層17が形成される。この時、コ
ンタクト孔13上のTiN層16の厚みはほとんど増加
しないが、そのTiN層16はより緻密化される。層間
絶縁膜12上では、シリサイド化反応が起きないので、
前記第1図(b)の工程における厚さ50人の未反応T
i膜14がTiN層16に変質する。(3) Step in FIG. 1(c) Stop cooling the Si substrate 11, and use a halogen lamp etc.
The Si substrate 11 is heated for about 10 seconds at a critical temperature for T1S12 formation of 675 to 900°C, for example 800°C, and the whole is heated with N2 gas or NH3 gas. Then, according to the above formula (1), unreacted Ti with a thickness of, for example, about 500 mm is formed.
The film 14 and the Si substrate 11 undergo a solid phase reaction, and the contact hole 1
3, only below the ohmic metal layer with a thickness of 100 mm.
About eight T1S12 layers 17 are formed. At this time, the thickness of the TiN layer 16 above the contact hole 13 hardly increases, but the TiN layer 16 becomes more dense. Since no silicidation reaction occurs on the interlayer insulating film 12,
Unreacted T of 50 people in the process of FIG. 1(b)
The i film 14 changes into a TiN layer 16.
(4) 第1図(d)の工程
例えは、Siを1%含んだAρ−3i層18を1μm程
度堆積させる。そしてフォトリングラフィ技術と反応性
イオンエツチング等により、A1−8i層18及びTi
N層16を所定の配線パターンに加工し、コンタクト孔
13上に配線層1つを形成する。その後、パッシベーシ
ョン膜20としてPSG膜20aと5iNJlli20
bをプラズマCVD法等で堆積すれば、電極配線の形成
工程が終了する。(4) In the process example shown in FIG. 1(d), an Aρ-3i layer 18 containing 1% Si is deposited to a thickness of about 1 μm. Then, by photolithography technology and reactive ion etching, the A1-8i layer 18 and the Ti
The N layer 16 is processed into a predetermined wiring pattern, and one wiring layer is formed over the contact hole 13. After that, the PSG film 20a and 5iNJlli20 are used as the passivation film 20.
By depositing the layer b by plasma CVD or the like, the process of forming the electrode wiring is completed.
本実施例では、次のような利点を有している。This embodiment has the following advantages.
第1図(a>、(b)の工程において、0°C以下にS
i基板11を冷却してNH3カスの多層吸着層15を形
成する。この多層吸着層15は、反応分子であるNH3
ガスのTiiiiへの供給量が単層吸着層より多くなる
。そのため、窒化反応に紫外光による励起反応を用いる
と、その紫外光に対する吸収波長が高波長側にシフトし
て該紫外光に対するNH3ガスの吸収量が増大するので
、該多層吸着層15上から紫外光Hを照射する。すると
、Tiiiiの窒化反応だけが従来より大きな反応速度
で起こり、所望の膜厚のTiN層16が形成される。こ
のように、厚くしたいTiN層16を先に所望の厚さに
形成するようにしたので、耐熱性の向上が図れる。In the process of Figure 1 (a>, (b)), S
The i-substrate 11 is cooled to form a multilayer adsorption layer 15 of NH3 scum. This multilayer adsorption layer 15 is composed of NH3 which is a reactive molecule.
The amount of gas supplied to Tiii is larger than that of a single layer adsorption layer. Therefore, when an excitation reaction using ultraviolet light is used for the nitriding reaction, the absorption wavelength for the ultraviolet light shifts to the higher wavelength side and the amount of absorption of NH3 gas for the ultraviolet light increases. Irradiate the light H. Then, only the nitriding reaction of Tiii occurs at a higher reaction rate than before, and a TiN layer 16 with a desired thickness is formed. In this way, since the TiN layer 16 to be thickened is first formed to a desired thickness, heat resistance can be improved.
次に、薄くしたいTiSi2層17は、その膜厚が残り
の未反応Ti層14の厚みで決まるので、当初のTii
iiの膜厚とTiN層16の膜厚とを制御することによ
り、T i S i 2層17の膜厚も制御できる。そ
のため、TiSi2形成の臨界温度675〜900℃、
例えば800℃程度でランプ加熱し、残りの未反応Ti
膜14とSi基板11との前記(1)式に従った同相反
応により、所望の厚さのTiSi2層17を独立に形成
する。Next, the thickness of the TiSi2 layer 17 to be made thinner is determined by the thickness of the remaining unreacted Ti layer 14, so
By controlling the film thickness of ii and the film thickness of the TiN layer 16, the film thickness of the T i S i 2 layer 17 can also be controlled. Therefore, the critical temperature for TiSi2 formation is 675-900℃,
For example, by lamp heating at about 800°C, the remaining unreacted Ti
By an in-phase reaction between the film 14 and the Si substrate 11 according to the above equation (1), a TiSi2 layer 17 of a desired thickness is independently formed.
このように、窒化反応とシリサイド化反応を独立に起こ
させるので、浅い拡散層を有する半導体素子や、多層配
線等の熱処理の多い半導体素子に、本実施例の電極配線
形成方法を適用すれは、良好なコンタクト特性を持つ電
極配線の形成が可能となる。In this way, since the nitriding reaction and the silicidation reaction occur independently, the electrode wiring forming method of this embodiment can be applied to semiconductor devices having shallow diffusion layers or semiconductor devices that require a lot of heat treatment such as multilayer wiring. It becomes possible to form electrode wiring with good contact characteristics.
なお、本発明は、上記実施例に限定されず、種々の変形
が可能である。その変形例としては、例えば次のような
ものがある。Note that the present invention is not limited to the above embodiments, and various modifications are possible. Examples of such modifications include the following.
(i) 上記実施例では、高融点金属膜としてTiii
iを用いたが、W、Zr等の他の高融点金属膜を用いて
も良い。(i) In the above embodiment, Tiii is used as the high melting point metal film.
Although I was used, other high melting point metal films such as W and Zr may also be used.
(++) 窒化高融点金属からなるバリアメタル層は
、TiN層16で形成したが、WN、ZrN等の他の窒
化高融点金属で形成しても良い。(++) Although the barrier metal layer made of a high melting point metal nitride is formed of the TiN layer 16, it may be formed of other high melting point metal nitride such as WN or ZrN.
(iii > 第1図(a>の工程において、Si基
板11を一80℃に冷却したが、この冷却温度は0℃以
下から液体窒素温度の範囲内であれば、−80°C以外
の冷却温度であっても良い。(iii > In the process of Figure 1 (a), the Si substrate 11 was cooled to -80°C, but if this cooling temperature is within the range of 0°C or lower to liquid nitrogen temperature, cooling other than -80°C is possible. It may also be temperature.
(iv) 第1図(c)の工程において、Si基板1
1を800℃程度に加熱したが、窒化高融点金属膜形成
の臨界温度に応じて、例えば675〜900°Cの範囲
、あるいはそれ以外の温度で加熱しても良い。(iv) In the step of FIG. 1(c), the Si substrate 1
1 was heated to about 800° C., but depending on the critical temperature for forming the nitrided high-melting point metal film, heating may be performed at a temperature in the range of 675 to 900° C., or at a temperature other than that.
(V> オーミックメタル層はTiSi2層17で形
成したが、WSi2、ZrSi2等の他の金属層で形成
しても良い。(V> Although the ohmic metal layer is formed of the TiSi2 layer 17, it may be formed of other metal layers such as WSi2 and ZrSi2.
(発明の効果)
以上詳細に説明したように、第1及び第2の発明によれ
ば、厚くしたりバリアメタル層を先に所望の厚さに形成
するようにしたので、耐熱性の向上を図ることができる
。次に、薄くしたいオーミックメタル層は残りの未反応
高融点金属膜の厚みで決まるので、当初の高融点金属膜
の膜厚と、窒化高融点金属からなるバリアメタル層の膜
厚とを制御することにより、オーミックメタル層の膜厚
を所望の薄さに制御できる。このように、窒化反応とシ
リサイド化反応とを独立に起こさせるので、耐熱性が高
く、浅い拡散層に対しても良好なコンタクト特性を持つ
電極配線を、的確に形成することができる。(Effects of the Invention) As explained in detail above, according to the first and second inventions, the barrier metal layer is made thicker or the barrier metal layer is formed to a desired thickness first, so that heat resistance can be improved. can be achieved. Next, the thickness of the ohmic metal layer to be made thinner is determined by the thickness of the remaining unreacted high melting point metal film, so the thickness of the initial high melting point metal film and the thickness of the barrier metal layer made of the high melting point metal nitride are controlled. This allows the thickness of the ohmic metal layer to be controlled to a desired thickness. In this way, since the nitridation reaction and the silicidation reaction occur independently, it is possible to accurately form an electrode wiring having high heat resistance and good contact characteristics even to a shallow diffusion layer.
【図面の簡単な説明】
第1図(a)〜(d)は本発明の実施例を示す半導体素
子の電極配線形成方法を説明するための製造工程図、第
2図(a)〜(C)は従来の半導体素子の電極配線形成
方法を説明するための製造工程図である。
11・・・・・・Si基板、12・・・・・・層間絶縁
膜、13・・・・・・コンタクト孔、14・・・・・・
Ti膜、15・・・・・・多層吸着層、16・・・・・
・TiN層、17・・・・・・TiSi2層、18・・
・・・・A、ll−3i層、19・・・・・・配線層、
20・・・・・・パッシベーション膜、H・・・・・・
紫外光。[BRIEF DESCRIPTION OF THE DRAWINGS] FIGS. 1(a) to (d) are manufacturing process diagrams for explaining a method for forming electrode wiring of a semiconductor device according to an embodiment of the present invention, and FIGS. 2(a) to (C) ) is a manufacturing process diagram for explaining a conventional method for forming electrode wiring of a semiconductor element. 11... Si substrate, 12... Interlayer insulating film, 13... Contact hole, 14...
Ti film, 15...Multilayer adsorption layer, 16...
・TiN layer, 17...TiSi2 layer, 18...
...A, ll-3i layer, 19... wiring layer,
20... Passivation film, H...
ultraviolet light.
Claims (1)
、所定の領域にコンタクト孔を開けた後、全面に高融点
金属膜を被着する第1の工程と、前記Si基板を冷却し
、前記高融点金属膜上にNH_3ガスの多層吸着層を形
成した後、NH_3ガス中で該多層吸着層上から所定波
長の紫外光を照射して窒化高融点金属からなるバリアメ
タル層を、所定の膜厚に形成する第2の工程と、 前記Si基板を所定温度に加熱し、N_2ガスまたはN
H_3ガスで加熱して前記コンタクト孔における前記高
融点金属膜と前記Si基板とを反応させ、前記Si基板
内にオーミックメタル層を形成する第3の工程と、 前記コンタクト孔上に配線層を選択的に形成し、その上
にパッシベーション膜を形成する第4の工程とを、 順に施すことを特徴とする半導体素子の電極配線形成方
法。 2、請求項1記載の半導体素子の電極配線形成方法にお
いて、 前記第2の工程では、前記Si基板を0℃以下に冷却し
、前記多層吸着層上から波長210nm以下の紫外光を
前記Si基板と垂直に照射し、前記第3の工程では、前
記Si基板を675〜900℃に加熱することを特徴と
する半導体素子の電極配線形成方法。[Claims] 1. A first step of depositing an interlayer insulating film on the Si substrate on which the device is formed, forming contact holes in predetermined areas, and then coating the entire surface with a high melting point metal film. After cooling the Si substrate and forming a multilayer adsorption layer of NH_3 gas on the high melting point metal film, ultraviolet light of a predetermined wavelength is irradiated from above the multilayer adsorption layer in NH_3 gas to remove the nitrided high melting point metal. a second step of forming a barrier metal layer with a predetermined thickness; and heating the Si substrate to a predetermined temperature and injecting it with N_2 gas or N_2 gas or N_2 gas.
a third step of heating with H_3 gas to cause the high melting point metal film in the contact hole to react with the Si substrate to form an ohmic metal layer in the Si substrate; and selecting a wiring layer on the contact hole. A method for forming an electrode wiring of a semiconductor device, characterized in that a fourth step of forming a passivation film thereon is sequentially performed. 2. The method for forming electrode wiring of a semiconductor device according to claim 1, wherein in the second step, the Si substrate is cooled to 0° C. or less, and ultraviolet light with a wavelength of 210 nm or less is applied to the Si substrate from above the multilayer adsorption layer. A method for forming an electrode wiring of a semiconductor device, characterized in that the Si substrate is heated to 675 to 900° C. in the third step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11713490A JP2919552B2 (en) | 1990-05-07 | 1990-05-07 | Method for forming electrode wiring of semiconductor element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11713490A JP2919552B2 (en) | 1990-05-07 | 1990-05-07 | Method for forming electrode wiring of semiconductor element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0414219A true JPH0414219A (en) | 1992-01-20 |
JP2919552B2 JP2919552B2 (en) | 1999-07-12 |
Family
ID=14704294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11713490A Expired - Fee Related JP2919552B2 (en) | 1990-05-07 | 1990-05-07 | Method for forming electrode wiring of semiconductor element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2919552B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014045037A (en) * | 2012-08-24 | 2014-03-13 | Ulvac Japan Ltd | Deposition method of metal film |
JP2016225512A (en) * | 2015-06-01 | 2016-12-28 | 富士電機株式会社 | Semiconductor device manufacturing method |
-
1990
- 1990-05-07 JP JP11713490A patent/JP2919552B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014045037A (en) * | 2012-08-24 | 2014-03-13 | Ulvac Japan Ltd | Deposition method of metal film |
JP2016225512A (en) * | 2015-06-01 | 2016-12-28 | 富士電機株式会社 | Semiconductor device manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP2919552B2 (en) | 1999-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW525262B (en) | Method for forming a gate insulating film for semiconductor devices | |
JP2001507514A (en) | Plasma enhanced annealing treatment of titanium nitride | |
JPH10284440A (en) | Manufacture of semiconductor device | |
JP3914362B2 (en) | Capacitor manufacturing method provided with tantalum oxide film | |
US5597745A (en) | Method for forming TiN film and TiN film/thin TiSi2 film, and method for fabricating semiconductor element utilizing the same | |
US6436820B1 (en) | Method for the CVD deposition of a low residual halogen content multi-layered titanium nitride film having a combined thickness greater than 1000 Å | |
JPH1074898A (en) | Manufacture of capacitor for semiconductor device | |
JP2022506590A (en) | Chemical vapor deposition process using ruthenium precursor and reducing gas | |
JP2956693B1 (en) | Metal nitride film forming method | |
JPH09186102A (en) | Manufacture of semiconductor device | |
JPH0414219A (en) | Formation of electrode wiring of semiconductor element | |
JP2611466B2 (en) | Method of forming capacitive insulating film | |
JP3176069B2 (en) | Method of forming titanium monophosphide layer and use thereof | |
JP2001110750A5 (en) | ||
JP2803556B2 (en) | Method of forming barrier metal layer | |
US4871691A (en) | Selective deposition process of a refractory metal silicide onto silicon areas | |
JPH06188205A (en) | Method and device for forming thin film | |
JPH11307520A (en) | Organic metal vapor growth method, its equipment, and forming method of semiconductor film of capacitor for dram | |
JPH0661181A (en) | Method of forming barrier metal | |
JPH0327565A (en) | Method for forming capacitance insulating film | |
US5981387A (en) | Method for forming silicide film in semiconductor device | |
JPH0294476A (en) | Manufacture of gate electrode of semiconductor device | |
JPS61128521A (en) | Manufacture of semiconductor device | |
KR100431306B1 (en) | Method for formig gate of semiconductor device using gate oxide made of double film of aluminium oxide and yttrium oxynitride | |
KR100451507B1 (en) | Method for manufacturing semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |