JPH0414217A - Dry thin film processing device - Google Patents

Dry thin film processing device

Info

Publication number
JPH0414217A
JPH0414217A JP11719590A JP11719590A JPH0414217A JP H0414217 A JPH0414217 A JP H0414217A JP 11719590 A JP11719590 A JP 11719590A JP 11719590 A JP11719590 A JP 11719590A JP H0414217 A JPH0414217 A JP H0414217A
Authority
JP
Japan
Prior art keywords
gas
cylindrical body
resonator
processing chamber
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11719590A
Other languages
Japanese (ja)
Other versions
JP2650465B2 (en
Inventor
Hiroshi Sagara
相楽 広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP11719590A priority Critical patent/JP2650465B2/en
Publication of JPH0414217A publication Critical patent/JPH0414217A/en
Application granted granted Critical
Publication of JP2650465B2 publication Critical patent/JP2650465B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To contrive to make even the density of gas particles on a plasma transport road by a method wherein the route of a plasma flow is surrounded with a coaxial double cylinder- shaped cylindrical body, four pieces or more of gas introducing ports are provided in the inner wall surface of the cylindrical body in a rotationally symmetrical state and four pieces or more and even pieces of vacuum exhaust vents are provided in the inner wall surface of another coaxial double cylinder-shaped cylindrical body arranged coaxially with the above cylindrical body on the side closer to a substrate of this cylindrical body in a rotationally symmetrical state. CONSTITUTION:A coaxial double cylinder-shaped cylindrical body 24 is arranged between a plasma producing chamber 3 and a substrate 11 in such a way that the axial line of the cylindrical body 24 is made to coincide with the axial line of the chamber 3. The body 24 is connected to a gas line 12 penetrating a treating chamber 9 and four pieces or more of gas introducing ports 24a are formed in the inner wall surface of the body 24 in a rotationally symmetrical state so that reaction gas is turned into a viscous flow in the interior of the body 24 and can be uniformly introduced in the chamber 9 at a low speed in the peripheral direction of the chamber 9. A coaxial double cylinder-shaped cylindrical body 25 is arranged in such a way that the axial line of the cylindrical body 25 is made to coincide with the axial line of the chamber 3. The flow of evacuation of air from a vacuum exhaust vent 25d is prevented from concentrating on a vacuum exhaust vent on the side closer to a vacuum pump 23, bypasses along a rack surface and exhaust gas is made to evenly flow around the substrate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はLSI製造装置に代表される半導体製造装置
のなかでとくに低温成膜を必要とする超LSI成膜工程
に用いるECR方式の乾式薄膜加工装置に関する。
[Detailed Description of the Invention] [Industrial Field of Application] This invention is an ECR method dry thin film used in the ultra-LSI film formation process that requires low-temperature film formation in semiconductor manufacturing equipment represented by LSI manufacturing equipment. Regarding processing equipment.

〔従来の技術〕[Conventional technology]

低温成膜における膜質の向上を目的としてマイクロ波A
itta共鳴効果を用いたECR(電子サイクロトロン
共鳴)プラズマを用いたCVD、エツチング装置が研究
されている。第8図および第9図にこの種の薄膜加工装
置の従来の構成例を示す。
Microwave A for the purpose of improving film quality in low-temperature film formation
CVD and etching equipment using ECR (electron cyclotron resonance) plasma using the itta resonance effect are being studied. FIGS. 8 and 9 show examples of conventional configurations of this type of thin film processing apparatus.

マイクロ波共振器を兼ねるプラズマ生成室3と処理室9
とを真空排気しておき、プラズマ生成室3へ目的に応し
てN2.0□、 Ar等のキャリアカ゛ス(プラズマ生
成用ガス)をガス供給手段4を通して流したところへマ
イクロ波を導波管1.マイクロ波導入窓2を介して送り
込む、マイクロ波共振器3の外部には励磁ソレノイド6
が配置され、共振器内部にECR条件を満たす磁場が発
生してし)るとECRプラズマが発生する。このプラズ
マが処理室9内に押し出され半導体ウェハがl!!され
るit台10へ向かう空間内にガス導入手段12を通し
てシランガスを送りこんでこのガスを上記プラズマによ
り活性化すると、発生した活性種の作用により半導体ウ
ェハ (以下単に基板とも記す)11の表面にシリコン
系薄膜が形成される。
Plasma generation chamber 3 and processing chamber 9 that also serve as microwave resonators
is evacuated, and a carrier gas (plasma generation gas) such as N2.0□ or Ar is flowed into the plasma generation chamber 3 through the gas supply means 4 according to the purpose, and microwaves are passed through the waveguide. 1. An excitation solenoid 6 is installed outside the microwave resonator 3 into which the microwave is fed through the microwave introduction window 2.
is placed and a magnetic field that satisfies the ECR conditions is generated inside the resonator), and ECR plasma is generated. This plasma is pushed into the processing chamber 9 and the semiconductor wafer l! ! When silane gas is sent through the gas introducing means 12 into the space facing the IT table 10 to be processed and activated by the plasma, silicon is deposited on the surface of the semiconductor wafer (hereinafter simply referred to as substrate) 11 due to the action of the generated active species. A thin film is formed.

このような従来装置において、シランガスの導入口は第
8図においてシランガス導入手段12として例示したポ
ート式を用いるか、もしくはボートからさらに装置内部
に向けて延びる管路を介してガスが供給される。第9図
に例示するツヤワーリング15を設けるかのいずれかが
従来行われてきた。
In such a conventional device, the silane gas inlet is of the port type illustrated as the silane gas introducing means 12 in FIG. 8, or the gas is supplied through a pipe line extending further into the device from the boat. Conventionally, either a gloss whirling ring 15 as shown in FIG. 9 has been provided.

シャワーリング15は中空パイプで形成した円環に周方
向に間隔をおいてガス導入のための小孔15aを形成し
たものである。
The shower ring 15 is an annular ring made of a hollow pipe, and small holes 15a for introducing gas are formed at intervals in the circumferential direction.

また、プラズマ生成室3の開ロアと基板11との距離を
変化させ最適な薄膜形成条件とするため、基板台10は
伸縮継手13を介して処理室9に支承しである。
Further, in order to change the distance between the open lower part of the plasma generation chamber 3 and the substrate 11 to obtain optimum thin film forming conditions, the substrate stand 10 is supported in the processing chamber 9 via an expansion joint 13.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

超LSIチップ製造に用いるウエノ\サイズは6インチ
ないし8インチと大型化の傾向にあり、形成された薄膜
膜厚のウェハ面内分布の不均一度をこうした大口径ウェ
ハに対しても±5%以内におさめることが一般的に要求
されている。TR膜形成速度はプラズマ密度および電子
温度によって主に決定されるためこれの面方向の均一化
が重要であるが、これらの均一化が成しとげられてもそ
れだけでは成長速度を均一化することはできず、ガスの
流れを均一化することが不可欠である。従来用いられて
きたガス導入方法および真空排気方法ではガス流量の変
動につれてガス流の均一性がくずれ、例えば成膜速度の
向上と膜厚分布改善の要求とが二律背反となるという欠
点があった。
The size of wafers used for manufacturing VLSI chips tends to be larger, ranging from 6 inches to 8 inches, and the non-uniformity of the distribution of the formed thin film thickness within the wafer surface can be reduced by ±5% even on such large diameter wafers. Generally, it is required to keep it within the following range. Since the TR film formation rate is mainly determined by the plasma density and electron temperature, it is important to make them uniform in the plane direction, but even if these things are made uniform, it is not enough to make the growth rate uniform. It is essential to equalize the gas flow. Conventionally used gas introduction methods and vacuum evacuation methods have the drawback that the uniformity of the gas flow deteriorates as the gas flow rate fluctuates, and for example, the demands for increasing the film formation rate and improving the film thickness distribution are at odds with each other.

また、ウェハの大口径化に伴い、成長速度の均一化とと
もにパーティクル汚損の低減が強く要求されている。従
来の方式では、基板11以外のプラズマ生成室3や処理
室9の内壁にfl膜が形成され、一定の厚さに達すると
剥離してパーティクルとなり、これが基板11上に落下
し堆積するパーティクル汚損を避けることができず、大
口径化によって多量のLSIチップが生産できても、パ
ーティクルによって不良の膜およびLSIチップが多量
に発生するという欠点があった。
Furthermore, as wafers become larger in diameter, there is a strong demand for uniform growth rate and reduction of particle contamination. In the conventional method, a fl film is formed on the inner walls of the plasma generation chamber 3 and the processing chamber 9 other than the substrate 11, and when it reaches a certain thickness, it peels off and becomes particles, which fall and accumulate on the substrate 11, causing particle contamination. This cannot be avoided, and even if a large number of LSI chips can be produced by increasing the diameter, there is a drawback that a large number of defective films and LSI chips are generated due to particles.

本発明の目的は、ガス流量が変動しても常時ガス流の均
一性が得られ、パーティクルが基illの上に堆積しな
い乾式薄膜加工装置を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a dry thin film processing apparatus that can always maintain uniformity of the gas flow even when the gas flow rate fluctuates, and that particles do not accumulate on the substrate.

〔課題を解決するための手段] 上記課題を解決するために、本発明においては、次の手
段をとるものとする。
[Means for Solving the Problems] In order to solve the above problems, the present invention takes the following measures.

(1)プラズマ生成室から膜形成用基板に至るプラズマ
流の経路を軸対称の同軸二重円筒状筒体で囲み、処理室
外から同軸二重円筒状筒体を経てプラズマ流の経路へ至
るガスの導入口を少なくとも4個、同軸二重円筒状筒体
内壁の回転対称な位置に設け、供給ガスの偏在化を防止
する。
(1) The path of the plasma flow from the plasma generation chamber to the film forming substrate is surrounded by an axially symmetrical coaxial double cylindrical body, and the gas flows from outside the processing chamber through the coaxial double cylindrical body to the path of the plasma flow. At least four inlets are provided at rotationally symmetrical positions on the inner wall of the coaxial double cylinder to prevent uneven distribution of the supplied gas.

(2)プラズマ生成室から膜形成用基板に至るプラズマ
流の経路とウェハ保持機構とを、前記同軸二重円筒状筒
体とは別の同軸二重円筒状筒体で囲み、プラズマ流の経
路から同軸二重円筒状筒体を経て処理室外へ至るガスの
真空排気口を2の整数倍個、少なくとも4個を同軸二重
円筒状筒体内壁の回転対称な位置に設け、基板近傍のガ
ス流を均一化する。
(2) The path of the plasma flow from the plasma generation chamber to the film forming substrate and the wafer holding mechanism are surrounded by a coaxial double cylindrical body different from the coaxial double cylindrical body, and the path of the plasma flow is A number of integer multiples of 2, at least 4, are provided at rotationally symmetrical positions on the inner wall of the coaxial double cylindrical body to exhaust gas from the coaxial double cylindrical body to the outside of the processing chamber through the coaxial double cylindrical body. Equalize the flow.

(3)ウェハ保持機構を静電チャックを用いて構成する
とともに、静電チャックの吸着面に吸着、保持されたウ
ェハの被成膜面が鉛直方向下向きもしくは鉛直方向とな
るような方向に装置を構成する。
(3) The wafer holding mechanism is configured using an electrostatic chuck, and the device is oriented so that the film-forming surface of the wafer, which is attracted and held by the attraction surface of the electrostatic chuck, faces vertically downward or vertically. Configure.

〔作用〕[Effect]

ECRプラズマの動作圧力は通常約1〜5ミリトール近
傍であり、圧力領域としては粘性流と分子流との中間の
性質が現れる領域に属する。従って、ガス分子に働く力
としては、荷電粒子に対しては電子の磁場拡散効果にと
もなうクーロン引力。
The operating pressure of ECR plasma is usually around 1 to 5 mTorr, and it belongs to a pressure range where properties intermediate between viscous flow and molecular flow appear. Therefore, the force acting on gas molecules is Coulomb attraction due to the magnetic field diffusion effect of electrons on charged particles.

中性分子(原子団)に対しては弾性衝突の力が主たるも
のである。こうした系において膜の成長速度をウェハ内
で均一に保つためには、プラズマの輸送される空間にお
いてガス粒子の密度分布を均一に保つことが重要である
For neutral molecules (atomic groups), the primary force is elastic collision. In order to maintain a uniform film growth rate within a wafer in such a system, it is important to maintain a uniform density distribution of gas particles in the space through which plasma is transported.

前記の手段(1)より、同軸二重円筒状筒体の内壁に形
成されたガス導入口から噴出するガスのガス量は、噴出
ガスのガス源を構成するガス導入口背後のガス空間が、
同軸二重円筒状筒体の内筒と外筒との間に形成され、ガ
ス導入口の断面積と対比して十分大きい容積を有するた
め、このガス空間に外部からガスを送入する管路の大き
さや外筒との接続位置が変っても、各ガス導入口の間で
実質的な差を生じない また、手段(2)により、同軸二重円筒状筒体の内壁に
形成される真空排気口は、ウェハへの成膜速度を早める
ためにガスを多量に供給して処理室内を一定の低圧力に
保持する必要から、さほど小さくはできないが、この真
空排気口は2の整数倍個。
According to the above means (1), the amount of gas ejected from the gas inlet formed on the inner wall of the coaxial double cylindrical body is such that the gas space behind the gas inlet that constitutes the gas source of the ejected gas is
A conduit that is formed between the inner tube and the outer tube of the coaxial double cylindrical body and has a sufficiently large volume compared to the cross-sectional area of the gas inlet, so that gas is introduced from the outside into this gas space. Even if the size of the gas inlet or the connection position with the outer cylinder changes, there is no substantial difference between the gas inlets. The exhaust port cannot be made very small because it is necessary to maintain a constant low pressure in the processing chamber by supplying a large amount of gas to accelerate the rate of film formation on the wafer, but the number of vacuum exhaust ports is an integral multiple of 2. .

少なくとも4個が内壁の回転対称の位置に形成されるか
ら、これらの真空排気口を、同軸二重円筒状筒体の外筒
に設けられる真空排気口を通る該筒体の直径の両側に左
右対称となるように配することができ、ウェハ前面側の
比較的遠方に均一に供給されたガスがウェハ近傍でも均
一に排気され、プラズマ生成室からウェハに至るプラズ
マ流の全経路でガス流密度の分布が均一となる。
Since at least four vacuum exhaust ports are formed at rotationally symmetrical positions on the inner wall, these vacuum exhaust ports are arranged on both sides of the diameter of the coaxial double cylindrical body through the vacuum exhaust ports provided in the outer cylinder of the coaxial double cylindrical body. The gas can be arranged symmetrically, and the gas that is uniformly supplied to a relatively far distance in front of the wafer is evenly exhausted near the wafer, reducing the gas flow density throughout the entire path of the plasma flow from the plasma generation chamber to the wafer. distribution becomes uniform.

さらに、手段(3)により、ウェハの保持に機械的な可
動部を必要としない静電チャックを用い、ウェハの被成
膜面が鉛直方向下向きもしくは鉛直方向となる方向の装
置とすることにより、ウェハ保持部から発生するパーテ
ィクルは皆無となり、また、プラズマ生成室や同軸二重
円筒状筒体の内壁に形成された薄膜が剥離したとしても
、パーティクルはウェハ上には一切堆積しない。
Furthermore, according to means (3), by using an electrostatic chuck that does not require a mechanically movable part to hold the wafer, and by configuring the device so that the surface of the wafer on which the film is to be deposited faces vertically downward or in the vertical direction, There are no particles generated from the wafer holding part, and even if the thin film formed on the inner wall of the plasma generation chamber or the coaxial double cylindrical body is peeled off, no particles will be deposited on the wafer.

〔実施例〕〔Example〕

第1図は本発明の一実施例による乾式薄膜加工装置の構
成を薄膜加工の準備段階で示す図であり、第2図は第1
図に示す装置の動作中の状態を示す。
FIG. 1 is a diagram showing the configuration of a dry thin film processing apparatus according to an embodiment of the present invention at a preparatory stage for thin film processing, and FIG.
Figure 2 shows the device shown in operation;

図中、第8図および第9図と同一の部材には同一符号を
付し、説明を省略する。
In the figure, the same members as in FIGS. 8 and 9 are denoted by the same reference numerals, and explanations thereof will be omitted.

図において、被処理基板11を処理室9へ搬送する搬送
機構先端部の支持台18に支持された基板11は、処理
面を鉛直方向下向きにして搬送され、以下に詳細を説明
する静電チャック16を固着した基板台lOの下降によ
って、基板11は静電チャック16に吸着される。吸着
後、支持台18は退避し、基板台lOの更なる下降によ
って、薄膜加工位置である第2図の状態で処理が開始さ
れる。
In the figure, the substrate 11 supported by the support stand 18 at the tip of the transport mechanism that transports the substrate 11 to be processed to the processing chamber 9 is transported with the processing surface facing downward in the vertical direction, and the substrate 11 is transported using an electrostatic chuck, which will be described in detail below. The substrate 11 is attracted to the electrostatic chuck 16 by lowering the substrate stand 10 to which the substrate 16 is fixed. After suction, the support stand 18 is retracted and the substrate stand 10 is further lowered to start processing at the thin film processing position shown in FIG. 2.

静電チャック16は、通常、半円状の2枚の板状電極を
同一平面内に直径側を対向させて並べ、これを酸化アル
ミセラミックスなどの固体誘電体内に埋め込んでなる平
板状のものであり、この両電極間に直流高圧iit′a
19から電圧が印加される。また、この実施例では、静
電チャック16.基板台10を主要構成要素とするウェ
ハ保持機構を軸線方向に細孔27が貫通し、薄膜加工完
了後に加圧気体源22からtm弁21.絞り弁20を介
して加圧気体を静電チャック16と基板11との接触間
隙に送り込み、基板を静電チャックから離脱させて搬送
機構の支持台18上に落下させるようにしている。
The electrostatic chuck 16 is usually a flat plate made by arranging two semicircular plate electrodes in the same plane with their diameter sides facing each other and embedding them in a solid dielectric material such as aluminum oxide ceramics. There is a DC high voltage iit'a between these two electrodes.
A voltage is applied from 19. Further, in this embodiment, the electrostatic chuck 16. A fine hole 27 passes through the wafer holding mechanism whose main component is the substrate table 10 in the axial direction, and after thin film processing is completed, a pressurized gas source 22 is supplied to the tm valve 21. Pressurized gas is fed into the contact gap between the electrostatic chuck 16 and the substrate 11 through the throttle valve 20, so that the substrate is separated from the electrostatic chuck and dropped onto the support table 18 of the transport mechanism.

処理室9の内側には、プラズマ生成室3と基板11の間
に同軸二重円筒状筒体(以下筒体と略記する)24が該
筒体の軸線をプラズマ生成室3の軸線と一致させて配置
されている。この筒体24は処理室9を貫通してガスラ
イン12に接続され、内壁面には回転対称の位置にガス
導入口24aが複数個形成されており、ガスの流れを整
えるガイドの役割を果たすとともに処理室9の壁面への
膜の付着を防止する防着筒として機能する。第6図は第
2図のC−C断面を示したものであり、ガスライン12
と左右対称に8個のガス導入口24aが形成されている
。ガス流が分子流になるか粘性流になるかは管路の圧力
と管路径で決まる。従って、ガスライン12から導入さ
れた反応ガスが筒体24の内部で粘性流となり、周方向
に低速で均一に流れて処理室9に導入できるように、ガ
ス導入口24aを絞ってオリフィスとし、管路を筒体の
内部空間で構成して管路径を大きくする工夫がしである
。実験の結果ではガス導入口24aは少なくとも4個必
要である。
Inside the processing chamber 9, between the plasma generation chamber 3 and the substrate 11, a coaxial double cylindrical cylinder (hereinafter abbreviated as cylinder) 24 is arranged so that the axis of the cylinder coincides with the axis of the plasma generation chamber 3. It is arranged as follows. This cylindrical body 24 passes through the processing chamber 9 and is connected to the gas line 12, and has a plurality of gas inlet ports 24a formed at rotationally symmetrical positions on the inner wall surface, and serves as a guide to adjust the flow of gas. Together with this, it functions as an anti-adhesion cylinder that prevents the film from adhering to the wall surface of the processing chamber 9. FIG. 6 shows a cross section along the line C-C in FIG. 2, and shows the gas line 12.
Eight gas introduction ports 24a are formed laterally symmetrically. Whether the gas flow becomes a molecular flow or a viscous flow is determined by the pressure and diameter of the pipe. Therefore, the gas introduction port 24a is narrowed to form an orifice so that the reaction gas introduced from the gas line 12 becomes a viscous flow inside the cylinder 24, flows uniformly in the circumferential direction at a low speed, and is introduced into the processing chamber 9. A contrivance is to increase the diameter of the pipe by constructing the pipe in the internal space of the cylindrical body. According to experimental results, at least four gas inlet ports 24a are required.

また、処理室9の内側には、プラズマ生成室3と基板1
1との間で筒体24よりも基板寄りに同軸二重円筒状筒
体(以下筒体と略記する)25が該筒体の軸線をプラズ
マ生成室3の軸線と一致させて配置されている。この筒
体25の内部空間はリング状の棚25eにより空間2)
aと空間25cとの2つの空間に仕切られ、基板ll寄
りの空間25cの内壁面に真空排気口25 dが複数個
形成されるとともに、以下に説明するように、棚25e
に雨空間25a、 25cを連通させる複数の孔が形成
され、この筒体25もガスの流れを整えるガイドの役割
を果たすとともに処理室9の壁面への膜の付着を防止す
る防着筒として機能する。第4図は第2図のA−A断面
を示したものであり、第2図および第4図において、筒
体25内の空間25aは処理室9に形成された真空排気
路9aと連通しており、この真空排気路9aの排出端に
真空排気ポンプ23が取り付けられている。
Further, inside the processing chamber 9, a plasma generation chamber 3 and a substrate 1 are provided.
A coaxial double cylindrical cylinder (hereinafter abbreviated as cylinder) 25 is arranged between the cylinder 1 and the cylinder 24 closer to the substrate with the axis of the cylinder coincident with the axis of the plasma generation chamber 3. . The internal space of this cylindrical body 25 is a space 2) formed by a ring-shaped shelf 25e.
A plurality of vacuum exhaust ports 25d are formed on the inner wall surface of the space 25c near the substrate 11, and a shelf 25e is partitioned into two spaces, a space 25c and a space 25c.
A plurality of holes are formed in the rain spaces 25a and 25c to communicate with each other, and this cylinder body 25 also functions as a guide to adjust the gas flow and as an anti-adhesion cylinder to prevent the film from adhering to the wall surface of the processing chamber 9. do. 4 shows a cross section taken along line A-A in FIG. 2, and in FIG. 2 and FIG. A vacuum pump 23 is attached to the discharge end of the vacuum exhaust path 9a.

さらに、筒体25内の空間25aは真空排気口25bを
経て筒体内の空間25cおよび真空排気口25dと連通
しており、真空排気ポンプ23によって処理室9の内部
が真空引きできる。同一の性能を有する真空排気ポンプ
23に対して真空排気口25bを左右対称にそれぞれ2
個配置し、各真空排気口25bに対して真空排気口25
dを左右対称にそれぞれ1個配置することによって、円
周状に8個の真空排気口が等分に配置できる。成膜速度
を早めるためにはガスを多量に流して一定の低圧力にキ
ープする必要があり、図においては、真空排気速度を大
きくするため、真空排気路9a、筒体25の空間25a
、真空排気口25b、空間25c、真空排気口25dは
可能な限り大きくし、真空排気ポンプを2台使用してい
る。
Furthermore, the space 25a inside the cylinder 25 communicates with the space 25c inside the cylinder and the vacuum exhaust port 25d via the vacuum exhaust port 25b, and the inside of the processing chamber 9 can be evacuated by the vacuum pump 23. For vacuum pumps 23 having the same performance, two vacuum exhaust ports 25b are provided symmetrically on the left and right.
A vacuum exhaust port 25 is arranged for each vacuum exhaust port 25b.
By arranging one each d symmetrically, eight vacuum exhaust ports can be equally spaced circumferentially. In order to accelerate the film formation rate, it is necessary to maintain a constant low pressure by flowing a large amount of gas.
, the vacuum exhaust port 25b, the space 25c, and the vacuum exhaust port 25d are made as large as possible, and two vacuum pumps are used.

このように、筒体25の内部空間を棚25eにより2つ
の空間に仕切る理由は、この棚25eがないと、ポンプ
23の中心を結ぶ直線を挟んで左右対称の位置に真空排
気口25dを形成した場合、排気の流れが真空ポンプ2
3に近い方の真空排気口に集中し、前記直線と直角の方
向に流れのよどみが生して基板上のfIWj4加工速度
が基板面の周方向に差異を生じるためである。しかし、
棚25eを設けると、真空排気口25dから排気された
ガスは直接真空ポンプ23へ向かうことができず、棚面
に沿って迂回しなければならないから、排気されるガス
は基板まわりで均一に流れ、基板面の薄膜加工速度の均
一性が大きく向上する。そして、このような棚の形成あ
るいは棚効果の付与は特に同軸二重内m構造とすること
により容易に可能となる。
The reason why the internal space of the cylindrical body 25 is partitioned into two spaces by the shelf 25e is that without the shelf 25e, the vacuum exhaust ports 25d would be formed at symmetrical positions across the straight line connecting the center of the pump 23. If the exhaust flow is
This is because the fIWj4 processing speed on the substrate differs in the circumferential direction of the substrate surface because the flow is concentrated at the vacuum exhaust port closer to No. 3 and stagnation occurs in the direction perpendicular to the straight line. but,
When the shelf 25e is provided, the gas exhausted from the vacuum exhaust port 25d cannot go directly to the vacuum pump 23, but must take a detour along the shelf surface, so the exhausted gas flows uniformly around the substrate. , the uniformity of thin film processing speed on the substrate surface is greatly improved. The formation of such a shelf or the provision of a shelf effect can be easily achieved especially by using a coaxial double inner m structure.

第3図は上記実施例の変形例による乾式薄膜加工装夏の
構成を示すものであり、第5図に第3図のB−B断面を
、第7図に第3図のD−D断面を示す。第2図のものと
異なる点は、真空排気ポンプ23を1台使用して真空排
気ポンプ23の中心を通る筒体直径を挟んで真空排気口
25bを左右対称に2個配置し、この真空排気口25b
を結ぶ直線を挟んで真空排気口25dを左右対称にそれ
ぞれ2個配置することによって、周方向回転対称の位置
に4個の真空排気口を配置したことと、ガスライン12
の延長線を挟んで左右対称に4個のガス導入口24aを
形成したこととである。実験の結果では総ガス流量は少
ないものの、第2図のものと同様に良好なガス流の均一
性が得られ、また、ガス流の均一性を得るためには真空
排気口25dは少なくとも4個必要であることが判明し
た。
FIG. 3 shows the structure of a dry thin film processing apparatus according to a modified example of the above embodiment, and FIG. 5 shows a cross section taken along the line B-B in FIG. 3, and FIG. shows. The difference from the one in Fig. 2 is that one vacuum pump 23 is used, and two vacuum exhaust ports 25b are arranged symmetrically across the diameter of the cylinder passing through the center of the vacuum pump 23. Mouth 25b
By arranging two vacuum exhaust ports 25d left and right symmetrically across the straight line connecting the
The four gas inlet ports 24a are formed symmetrically across the extension line of the gas inlet 24a. The experimental results show that although the total gas flow rate is small, good gas flow uniformity similar to that in Fig. 2 is obtained, and in order to obtain gas flow uniformity, at least four vacuum exhaust ports 25d are required. It turned out to be necessary.

以上の実施例では、基板11の被処理面を鉛直方向下向
きとしてFli膜加工を行う場合の装置の方向を示した
が、装置の方向を水平とし、基板11の被処理面を鉛直
方向としても、プラズマ流や、プラズマ流の経路に導入
されたガスの流れが鉛直下方へ曲がるようなことはなく
、上記実施例と同様に均一な薄膜加工が可能である。こ
れは、プラズマ流が、励磁ソレノイド6 (第1.2.
3図)の作る磁力線に沿って生し、また、プラズマ流の
経路に導入されたガスはプラズマによりイオン化もしく
は中性分子、原子の状態で活性化されつつプラズマ流の
方向に流れを強制されるからである。
In the above embodiment, the direction of the apparatus is shown when performing Fli film processing with the surface to be processed of the substrate 11 facing downward in the vertical direction. The plasma flow and the flow of gas introduced into the path of the plasma flow are not bent vertically downward, and uniform thin film processing is possible as in the above embodiment. This means that the plasma flow is caused by the excitation solenoid 6 (No. 1.2.
The gas that is introduced into the path of the plasma flow is ionized or activated in the state of neutral molecules or atoms by the plasma, and is forced to flow in the direction of the plasma flow. It is from.

なお、第1図、第2図、第3図および第8図における符
号14は、励磁ソレノイド6と協力して基板に到達する
プラズマの基板上密度分布を均一にするための磁場を形
成する補助ソレノイドである。
Note that the reference numeral 14 in FIGS. 1, 2, 3, and 8 is an auxiliary member that cooperates with the excitation solenoid 6 to form a magnetic field to uniformize the density distribution of plasma reaching the substrate on the substrate. It is a solenoid.

〔発明の効果〕〔Effect of the invention〕

以Mべたように、本発明においては、プラズマ生成室か
ら被成膜基板に至るプラズマ流の経路を軸対称の同軸二
重円筒状筒体で囲み、この同軸二重円筒状筒体の内壁面
を貫通するガス導入口を回転対称な位置に4個以上設け
てガス流の偏在化をさけ、さらにこの同軸二重円筒状筒
体の基板寄り会同軸に配した別の同軸二重円筒状筒体の
内壁面を貫通してガスを排出するための真空排気口を回
転対称な位置に4個以上の偶数個設けてガス流を均一化
したため、プラズマ輸送路におけるガス粒子密度の均一
化が図られ、これにより、プラズマ輸送路にガスを多量
に供給しかつ真空排気量を増して薄膜加工速度を上げな
がら基板上の加工速度分布の均一性を確保することがで
きる。さらに、ウェハ保持に機械的な摺動面のない静電
チャックを使用し、薄膜加工をする際に基板の被処理面
が鉛直方向下向き、あるいは鉛直方向となる方向に装置
を構成することにより、パーティクル汚損も防止された
高品質の薄膜加工が可能になる。
As described above, in the present invention, the path of the plasma flow from the plasma generation chamber to the substrate to be film-formed is surrounded by an axially symmetrical coaxial double cylindrical body, and the inner wall surface of this coaxial double cylindrical body is Four or more gas inlet ports are provided at rotationally symmetrical positions to avoid uneven distribution of the gas flow, and another coaxial double cylindrical tube is arranged coaxially with the substrate of this coaxial double cylindrical tube. An even number of 4 or more vacuum exhaust ports are provided at rotationally symmetrical positions to exhaust gas through the inner wall surface of the body, thereby making the gas flow uniform, resulting in a more uniform gas particle density in the plasma transport path. As a result, it is possible to supply a large amount of gas to the plasma transport path and increase the amount of vacuum evacuation, thereby increasing the thin film processing speed while ensuring uniformity of the processing speed distribution on the substrate. Furthermore, by using an electrostatic chuck without a mechanical sliding surface to hold the wafer and configuring the device so that the surface to be processed of the substrate faces vertically downward or vertically during thin film processing, This enables high-quality thin film processing that prevents particle contamination.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による乾式薄膜加工装置の構
成を薄膜加工の準備段階で示す縦断面図、第2図は第1
図に示す装置の動作中の状態を示す縦断面図、第3図は
第1図に示す実施例の変形例を示す縦断面図、第4図は
第2図のA−A断面を示した横断面図、第5図は第3図
のB−B断面を示した横断面図、第6図は第2図のC−
C断面を示した横断面図、第7図は第3図のD−D断面
を示した横断面図、第8図および第9図は従来の乾式薄
膜加工装置の構成を示す縦断面図である。
FIG. 1 is a vertical cross-sectional view showing the configuration of a dry thin film processing apparatus according to an embodiment of the present invention at the preparation stage for thin film processing, and FIG.
3 is a vertical sectional view showing a modification of the embodiment shown in FIG. 1, and FIG. 4 is a cross-sectional view taken along line A-A in FIG. 2. 5 is a cross-sectional view taken along the line B-B in FIG. 3, and FIG. 6 is a cross-sectional view taken along the line C--
FIG. 7 is a cross-sectional view taken along the line D-D in FIG. 3, and FIGS. 8 and 9 are vertical cross-sectional views showing the configuration of a conventional dry thin film processing apparatus. be.

Claims (1)

【特許請求の範囲】 1)マイクロ波発振器とマイクロ波導波管と通過形共振
器とからなるマイクロ波立体回路を有し、前記通過形共
振器の内部において磁場とマイクロ波の交番電界との相
互作用により該通過形共振器内に導入されたガスをプラ
ズマ化し、このプラズマを用いて前記通過形共振器の反
マイクロ波導波管側に配された処理室内へ導入されたガ
スを活性化して該処理室内の半導体ウェハ上に薄膜を形
成し、または生成膜のエッチングなどの薄膜加工を行う
乾式薄膜加工装置において、処理室内の半導体ウェハを
保持し通過形共振器の軸線方向に移動可能なウェハ保持
機構と;処理室内で通過形共振器と半導体ウェハとの間
に通過形共振器と同軸になるように配置され、前記プラ
ズマにより活性化されるガスを処理室内に導入するため
のガス導入口が少なくとも4個、内壁の回転対称の位置
に設けられた同軸二重円筒状筒体と;処理室内で前記同
軸二重円筒状筒体の反遭遇形共振器側に通過形共振器と
同軸に配置されて通過形共振器と半導体ウェハとの間お
よび前記ウェハ保持機構を囲い、処理室内にガスを導入
しつつ処理室内が一定圧力に保たれるようにガスを処理
室から排出するための真空排気口が2の整数倍個、少な
くとも4個が内壁の回転対称の位置に設けられた同軸二
重円筒状筒体と;を備えていることを特徴とする乾式薄
膜加工装置。 2)請求項第1項に記載の乾式薄膜加工装置であって、
ウェハ保持機構が、固体誘電体内に埋設された電極と該
固体誘電体の表面に接する導電性または半導電性の薄板
状被処理物との間に静電力を作用させて被処理物を吸着
、保持する静電チャックを用いて構成され、かつ、吸着
、保持された薄板状被処理物の被処理面が鉛直方向下向
き、または鉛直方向となる向きに通過形共振器を備えて
いることを特徴とする乾式薄膜加工装置。
[Scope of Claims] 1) A three-dimensional microwave circuit including a microwave oscillator, a microwave waveguide, and a pass-through resonator, in which a magnetic field and an alternating electric field of the microwave mutually interact within the pass-through resonator. The action converts the gas introduced into the pass-through resonator into plasma, and uses this plasma to activate the gas introduced into the processing chamber disposed on the side opposite to the microwave waveguide of the pass-through resonator. A wafer holder that holds the semiconductor wafer in the processing chamber and is movable in the axial direction of the pass-through resonator in dry thin film processing equipment that forms a thin film on the semiconductor wafer in the processing chamber or performs thin film processing such as etching the formed film. Mechanism: A gas inlet is arranged between the pass-through resonator and the semiconductor wafer in the processing chamber so as to be coaxial with the pass-through resonator, and for introducing gas activated by the plasma into the processing chamber. at least four coaxial double cylindrical tubes provided at rotationally symmetrical positions on the inner wall; disposed coaxially with the through-type resonator on the anti-encounter type resonator side of the coaxial double cylindrical tubes in the processing chamber; A vacuum pump is installed between the pass-through resonator and the semiconductor wafer and surrounding the wafer holding mechanism, and is used to introduce gas into the processing chamber and to exhaust the gas from the processing chamber so as to maintain a constant pressure inside the processing chamber. A dry thin film processing apparatus comprising: a coaxial double cylindrical body having an integer multiple of 2 openings, at least 4 of which are provided at rotationally symmetrical positions on an inner wall. 2) The dry thin film processing apparatus according to claim 1,
The wafer holding mechanism applies an electrostatic force between an electrode embedded in the solid dielectric and a conductive or semiconductive thin plate-shaped workpiece in contact with the surface of the solid dielectric to attract the workpiece, It is constructed using an electrostatic chuck for holding, and is characterized by having a pass-through resonator oriented such that the surface to be processed of the thin plate-shaped workpiece that is attracted and held is facing downward in the vertical direction or in the vertical direction. Dry thin film processing equipment.
JP11719590A 1990-05-07 1990-05-07 Dry thin film processing equipment Expired - Fee Related JP2650465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11719590A JP2650465B2 (en) 1990-05-07 1990-05-07 Dry thin film processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11719590A JP2650465B2 (en) 1990-05-07 1990-05-07 Dry thin film processing equipment

Publications (2)

Publication Number Publication Date
JPH0414217A true JPH0414217A (en) 1992-01-20
JP2650465B2 JP2650465B2 (en) 1997-09-03

Family

ID=14705752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11719590A Expired - Fee Related JP2650465B2 (en) 1990-05-07 1990-05-07 Dry thin film processing equipment

Country Status (1)

Country Link
JP (1) JP2650465B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275544A (en) * 1993-03-19 1994-09-30 Agency Of Ind Science & Technol Semiconductor working device
JP2006120974A (en) * 2004-10-25 2006-05-11 Toray Eng Co Ltd Plasma cvd device
JP2009177178A (en) * 1998-04-09 2009-08-06 Foundation For Advancement Of International Science Process system
JP2015122355A (en) * 2013-12-20 2015-07-02 東京エレクトロン株式会社 Substrate processing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275544A (en) * 1993-03-19 1994-09-30 Agency Of Ind Science & Technol Semiconductor working device
JP2009177178A (en) * 1998-04-09 2009-08-06 Foundation For Advancement Of International Science Process system
JP2006120974A (en) * 2004-10-25 2006-05-11 Toray Eng Co Ltd Plasma cvd device
JP2015122355A (en) * 2013-12-20 2015-07-02 東京エレクトロン株式会社 Substrate processing apparatus

Also Published As

Publication number Publication date
JP2650465B2 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
JP7464642B2 (en) Multi-zone gas distribution system and method
JP4454781B2 (en) Plasma processing equipment
US11004661B2 (en) Process chamber for cyclic and selective material removal and etching
JP3701390B2 (en) Plasma enhanced chemical treatment reactor
JP4025636B2 (en) Inductively coupled plasma device
JP2020205431A (en) Systems and methods for improved semiconductor etching and component protection
KR101104536B1 (en) Plasma processing apparatus
US8008596B2 (en) Plasma processing apparatus and electrode used therein
KR100841118B1 (en) Plasma processing apparatus and plasma processing method
EP1169490B1 (en) Vacuum processing apparatus
JP7069319B2 (en) Electrodes shaped for improved plasma exposure from vertical plasma sources
US5556474A (en) Plasma processing apparatus
JP2927211B2 (en) Wafer processing equipment
JP7477515B2 (en) Pumping apparatus and method for a substrate processing chamber - Patents.com
JP2000507746A (en) Shower head for uniform distribution of process gas
JP3150058B2 (en) Plasma processing apparatus and plasma processing method
CN101443474A (en) Method and apparatus for improving uniformity of large-area substrates
JP5055114B2 (en) Plasma doping method
JP2020520532A (en) Plasma source for rotating susceptors
JPH06244119A (en) Plasma process equipment
JPH10294307A (en) Plasma processing device
CN112534552B (en) Plasma processing apparatus
JP3682178B2 (en) Plasma processing method and plasma processing apparatus
TW202109603A (en) Plasma processing apparatus and plasma processing method
JPH0414217A (en) Dry thin film processing device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees