JPH0414202A - V2o3 base ceramic resistor element - Google Patents

V2o3 base ceramic resistor element

Info

Publication number
JPH0414202A
JPH0414202A JP11818190A JP11818190A JPH0414202A JP H0414202 A JPH0414202 A JP H0414202A JP 11818190 A JP11818190 A JP 11818190A JP 11818190 A JP11818190 A JP 11818190A JP H0414202 A JPH0414202 A JP H0414202A
Authority
JP
Japan
Prior art keywords
ceramic
resin
hysteresis
resistor element
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11818190A
Other languages
Japanese (ja)
Inventor
Yasunobu Yoneda
康信 米田
Hideaki Niimi
秀明 新見
Yutaka Shimabara
豊 島原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP11818190A priority Critical patent/JPH0414202A/en
Publication of JPH0414202A publication Critical patent/JPH0414202A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To enable the hysteresis and the cracking due to thermal shock to be restrained by mixing a ceramic with a resin. CONSTITUTION:The title V2O3 base ceramic resistor element comprising a ceramic displaying the PTC characteristics mixed with a resin can relieve the thermal stress during Mott's scattering process of the resin contained in the porous part of the ceramic so that the cracking may be avoided to enhance the thermal shock resistance. Furthermore, since the thermal stress can be relieved easily and evenly by the existence of the resin, the metal transition phenomenon can be made even thereby enabling the hysteresis to be reduced notably. Consequently, the title element can be used as a control element of high current and power.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、■、0.系セラミクスを主成分とするPTC
抵抗体素子に関し、特にヒステリシスクランクの発生を
抑制することにより、大電流。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is based on ■, 0. PTC whose main component is ceramics
Regarding resistor elements, especially by suppressing the occurrence of hysteresis crank, large currents can be achieved.

大電圧用の制限素子として採用できるようにしたV2O
,系抵抗体素子の構造に関する。
V2O that can be used as a limiting element for large voltages
, concerning the structure of a system resistor element.

(従来の技術〕 一般に、正の抵抗温度特性(PTC)を有する抵抗体素
子に採用されるV2O,系半導体セラミクスは、ある特
定温度で導体から絶縁体に移行する、いわゆるモットー
転移を利用したものである。
(Prior art) V2O-based semiconductor ceramics, which are generally used in resistor elements with positive resistance temperature characteristics (PTC), utilize the so-called Motto transition, which transitions from a conductor to an insulator at a certain temperature. It is.

このV’tOz系抵抗体素子は、BaTi0z系に比べ
てPTC特性の変化率が2桁程度低いものの、比抵抗が
約10弓Ω1と小さいことから電流密度が大きく、大i
流、大電力用の過電流保護素子としての利用が期待され
ている。
Although this V'tOz-based resistor element has a rate of change in PTC characteristics that is about two orders of magnitude lower than that of the BaTi0z-based one, it has a small specific resistance of about 10 Ω1, so it has a large current density and a large i
It is expected to be used as an overcurrent protection device for high current and high power applications.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記従来のV2O3系セラミクス抵抗体
素子のPTC特性を測定すると温度上昇時の往路と温度
下降時の復路では別の抵抗特性曲線を描くという履歴現
象、いわゆるヒステリシスが大きいという問題点がある
However, when measuring the PTC characteristics of the conventional V2O3 ceramic resistor element described above, there is a problem in that the hysteresis phenomenon, so-called hysteresis, is large, in which different resistance characteristic curves are drawn for the outward path when the temperature rises and the return path when the temperature falls.

このヒステリシスとは過電流状態の温度上昇における基
準抵抗値を示す温度と、解除冷却されて上記基準抵抗値
に戻ったときの温度との差とである。例えば、図に示す
ヒステリシス特性のように、温度上昇中のPTCカーブ
aの抵抗の対数値の172を半抵抗値C(基準抵抗値)
として、温度上昇時の半抵抗値Cを示す温度に対して、
冷却時のPTCカーブbで同値抵抗Cとなる温度は約3
0℃も低くなり、このように従来のV、○コ系抵抗体素
子のヒステリシスは最大で20〜30℃にも達する。
This hysteresis is the difference between the temperature indicating the reference resistance value when the temperature rises in an overcurrent state and the temperature when the temperature returns to the reference resistance value after being released and cooled. For example, as shown in the hysteresis characteristic shown in the figure, 172 of the logarithm of the resistance of the PTC curve a during temperature rise is set as the half resistance value C (reference resistance value).
As, for the temperature that shows the half resistance value C when the temperature rises,
The temperature at which the equivalent resistance C occurs on PTC curve b during cooling is approximately 3
The temperature decreases by as much as 0°C, and as described above, the hysteresis of conventional V, ○ type resistor elements reaches a maximum of 20 to 30°C.

また、上記従来のV2O,系セラミクス抵抗体素子は、
自己発熱によって急激に温度上昇した場合、素子内の温
度分布が不均一となり、その温度差からクラックが発生
し易く、耐熱衝撃性が低いという問題点がある。このこ
とから、上記従来のV2O,系抵抗体素子を大電流、大
電圧用の制限素子として採用するには実用上の制約が大
きく、これの改善が要請されている。
In addition, the conventional V2O ceramic resistor element described above has the following characteristics:
When the temperature rises rapidly due to self-heating, the temperature distribution within the element becomes non-uniform, and the temperature difference tends to cause cracks, leading to problems such as low thermal shock resistance. For this reason, there are significant practical restrictions in employing the conventional V2O type resistor element as a limiting element for large currents and large voltages, and improvements in this are required.

本発明の目的は、上記ヒステリシス及び熱衝撃によるク
ラックの発生を抑制することにより、過電流保護素子と
して採用できるVtOs系セラミクス抵抗体素子を提供
することにある。
An object of the present invention is to provide a VtOs-based ceramic resistor element that can be used as an overcurrent protection element by suppressing the occurrence of cracks due to the above-mentioned hysteresis and thermal shock.

〔問題点を解決するための手段〕[Means for solving problems]

本件発明者らは、上記ヒステリシス、クラックを抑制す
るために検討を重ねたところ、VtOsセラミクスの構
造はポーラス状となっていることから、温度上昇時、下
降時における金属転移現象が不均一となり、しかも転移
時の熱応力が大きくなり、その結果ヒステリシスを増大
させ、クラックを発生し易くしていることを見出した。
The inventors of the present invention conducted repeated studies to suppress the above-mentioned hysteresis and cracking, and found that since the structure of VtOs ceramics is porous, the metal transition phenomenon becomes uneven when the temperature rises or falls. Moreover, it has been found that thermal stress during the transition increases, resulting in increased hysteresis, making cracks more likely to occur.

この結果から、上記VtOsセラミクスに樹脂を混合し
て硬化させることにより金属絶縁体転移現象を均一化で
、かつクランクを低減できることに想到し、本発明を成
したものである。
From this result, we came up with the idea that by mixing a resin with the VtOs ceramics and curing it, it is possible to make the metal-insulator transition phenomenon uniform and reduce cranking, and we have completed the present invention.

そこで本発明は、V2O,系セラミクスからなる抵抗体
素子において、PTC特性を発現するセラミクスに樹脂
を混合したことを特徴としている。
Therefore, the present invention is characterized in that, in a resistor element made of V2O-based ceramics, a resin is mixed with ceramics that exhibit PTC characteristics.

ここで、上記樹脂として熱硬化性樹脂を採用することが
好ましく、これの添加量は抵抗温度特性に影響を与えな
い程度に適宜設定すればよい。
Here, it is preferable to employ a thermosetting resin as the resin, and the amount added thereof may be appropriately set to such an extent that it does not affect the resistance temperature characteristics.

また、本発明は、セラミクス層と内部電極とを交互に積
層してなる積層型、及び単板型のいずれにも適用できる
Further, the present invention can be applied to both a laminated type in which ceramic layers and internal electrodes are alternately laminated, and a single plate type.

〔作用〕[Effect]

本発明に係るV8O,系セラミクス抵抗体素子によれば
、PTC特性を発現するセラミクスに樹脂を混合したの
で、該セラミクスのポーラス部分に存在する樹脂により
モット転移時の熱応力が緩和されることとなり、クラッ
クの発生を防止して耐熱衝撃性を向上できる。しかも樹
脂の存在により熱応力緩和が一様に進み易くなることか
ら、金属転移現象の均一化が図られ、ヒステリシスを大
幅に小さくできる。その結果、大電流、大電力用の制限
素子として利用でき、上述の要請に応えられる。
According to the V8O ceramic resistor element of the present invention, since a resin is mixed with the ceramic exhibiting PTC characteristics, the thermal stress at the time of Mott transition is alleviated by the resin present in the porous portion of the ceramic. , it is possible to prevent the occurrence of cracks and improve thermal shock resistance. Moreover, since the presence of the resin facilitates thermal stress relaxation to proceed uniformly, the metal transition phenomenon can be made uniform, and hysteresis can be significantly reduced. As a result, it can be used as a limiting element for large currents and large powers, meeting the above requirements.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

まず本発明の一実施例によるVtOs系セラミクス抵抗
体素子を得るための一製造方法について説明する。
First, a manufacturing method for obtaining a VtOs ceramic resistor element according to an embodiment of the present invention will be described.

■ まず、V20299.Omo1%、Cr、0.1゜
0go1%に、Sbg 03 、B It Os 、P
bs Osの一種以上を配合し、これにトルエンを溶媒
として添加し、ボールミルで約24時間粉砕してセラミ
クス原料粉を得る。
■ First, V20299. Omo1%, Cr, 0.1゜0go1%, Sbg 03 , B It Os , P
One or more types of bsOs are blended, toluene is added as a solvent, and the mixture is ground in a ball mill for about 24 hours to obtain ceramic raw material powder.

■ 次に、上記セラミクス原料粉を脱溶媒、乾燥した後
、ArHt雰囲気中にて1000℃×4時間焼成し、続
いてH2雰囲気中にて1500℃×5時間焼成する。
(2) Next, after removing the solvent and drying the ceramic raw material powder, it is fired in an ArHt atmosphere at 1000°C for 4 hours, and then in an H2 atmosphere at 1500°C for 5 hours.

■ 上記焼成後、再びトルエンを溶媒として添加し、ボ
ールミルで約24時間粉砕し、この後脱溶媒、乾燥して
セラミクス粉末を得る。
(2) After the above firing, toluene is added as a solvent again, and the mixture is pulverized in a ball mill for about 24 hours, followed by removal of the solvent and drying to obtain a ceramic powder.

■ 次に、上記セラミクス粉末90gに対してメタアク
リレート樹脂10gを添加して混合し、この後プレスで
加圧、加熱成形し、円板状の焼結体を得る。
(2) Next, 10 g of methacrylate resin is added to 90 g of the above ceramic powder and mixed, followed by pressurization and heat molding in a press to obtain a disc-shaped sintered body.

■ しかる後、上記焼結体の両生面にAg又はAg−P
dからなる導電ペーストを印刷した後、焼き付けて電極
膜を形成する。これにより本実施例の単板型抵抗体素子
が製造される。
■ After that, Ag or Ag-P is applied to both sides of the sintered body.
After printing the conductive paste consisting of d, it is baked to form an electrode film. In this way, the single-plate resistor element of this example is manufactured.

次に本実施例の作用効果について説明する。Next, the effects of this embodiment will be explained.

本実施例の■20.系セラミクス抵抗体素子によれば、
セラミクス粉末に樹脂を添加混合し、こを加圧、加熱形
成したので、この樹脂により金属転移時の熱応力が緩和
されるから、クランクの発生を防止でき、それだけ耐熱
衝撃性を向上できる。
■20 of this example. According to the series ceramic resistor element,
Since a resin is added to and mixed with the ceramic powder, and the mixture is pressurized and heated, the resin relieves the thermal stress during metal transition, thereby preventing the occurrence of cranks and improving the thermal shock resistance accordingly.

しかも、樹脂の存在により熱応力緩和が均一に進み易く
なることから、温度上昇時、下降時のヒステリシスを小
さくでき、その結果大電流、大電圧用の制限素子として
採用できる。
Moreover, since the presence of the resin facilitates thermal stress relaxation to proceed uniformly, hysteresis when the temperature rises and falls can be reduced, and as a result, it can be used as a limiting element for large currents and large voltages.

表は、本実施例の効果を確認するために行った特性試験
の結果を示す。
The table shows the results of characteristic tests conducted to confirm the effects of this example.

この試験では、本実施例の製造方法により作成されたV
オ0.セラミクス抵抗体素子を採用し、この抵抗体素子
の比抵抗(Ωai) 、PTC倍率(%)、ヒステリシ
ス(’C)を測定した。なお、比較するために樹脂を混
合していない従来試料についても同様の測定を行った。
In this test, V
O0. A ceramic resistor element was employed, and the resistivity (Ωai), PTC magnification (%), and hysteresis ('C) of this resistor element were measured. For comparison, similar measurements were also performed on a conventional sample in which no resin was mixed.

表中、Nal、  3. 5は本実施例試料、FkL2
. 4゜6は従来試料を示す。
In the table, Nal, 3. 5 is the sample of this example, FkL2
.. 4°6 shows a conventional sample.

表からも明らかなように、樹脂を混合してない従来試料
は、いずれもヒステリシスは温度差が10〜15℃とな
っており、過電流制限素子としては不充分である。これ
に対して本実施例試料は、いずれもヒステリシスは8〜
5℃となっており、大幅に温度差が小さくなっているこ
とがわかる。
As is clear from the table, all of the conventional samples in which no resin was mixed had a hysteresis temperature difference of 10 to 15°C, which was insufficient as an overcurrent limiting element. On the other hand, all of the samples of this example had a hysteresis of 8 to 8.
The temperature difference is 5°C, which shows that the temperature difference has become significantly smaller.

また、比抵抗では、従来試料の2〜4Ω口に対して、本
実施例試料は2〜3Ω国とほとんど変わらない特性が得
られている。さらに、PTC倍率では、従来試料の70
〜100%に対して、本実施例試料は90〜120%と
大きくなっている。
In addition, in terms of resistivity, compared to the 2-4 ohm mouth of the conventional sample, the sample of this example has almost the same characteristics as the 2-3 ohm country. Furthermore, the PTC magnification is 70
-100%, the sample of this example has a larger value of 90-120%.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明に係るV2O3系セラミクス抵抗体
素子によれば、セラミクスに樹脂を混合したので、モフ
ト転移時の熱応力を緩和でき、クラックの発生を防止し
て耐熱衝撃性を向上できるとともに、ヒステリシスを大
幅に小さくでき、大電流、大電力用の制限素子として利
用できる効果がある。
As described above, according to the V2O3 ceramic resistor element according to the present invention, since resin is mixed into the ceramic, thermal stress at the time of moft transition can be alleviated, cracking can be prevented, and thermal shock resistance can be improved. This has the effect of significantly reducing hysteresis and allowing it to be used as a limiting element for large currents and large powers.

4、4,

【図面の簡単な説明】[Brief explanation of the drawing]

図は従来のV2 系抵抗体素子のヒステリシ ス特性を示す図である。 The figure shows the conventional V2 Hysteresis of system resistor elements FIG.

Claims (1)

【特許請求の範囲】[Claims] (1)所定の温度で導体から絶縁体に転移する抵抗温度
特性を有するV_2O_3系セラミクスからなる抵抗体
素子において、上記セラミクスに樹脂を混合したことを
特徴とするV_2O_3系セラミクス抵抗体素子。
(1) A V_2O_3-based ceramic resistor element comprising a V_2O_3-based ceramic having resistance-temperature characteristics that transforms from a conductor to an insulator at a predetermined temperature, the V_2O_3-based ceramic resistor element being characterized in that a resin is mixed with the ceramic.
JP11818190A 1990-05-07 1990-05-07 V2o3 base ceramic resistor element Pending JPH0414202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11818190A JPH0414202A (en) 1990-05-07 1990-05-07 V2o3 base ceramic resistor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11818190A JPH0414202A (en) 1990-05-07 1990-05-07 V2o3 base ceramic resistor element

Publications (1)

Publication Number Publication Date
JPH0414202A true JPH0414202A (en) 1992-01-20

Family

ID=14730148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11818190A Pending JPH0414202A (en) 1990-05-07 1990-05-07 V2o3 base ceramic resistor element

Country Status (1)

Country Link
JP (1) JPH0414202A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224979A (en) * 2005-02-16 2006-08-31 Chuo Kagaku Co Ltd Packaging container
US8728354B2 (en) 2006-11-20 2014-05-20 Sabic Innovative Plastics Ip B.V. Electrically conducting compositions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224979A (en) * 2005-02-16 2006-08-31 Chuo Kagaku Co Ltd Packaging container
US8728354B2 (en) 2006-11-20 2014-05-20 Sabic Innovative Plastics Ip B.V. Electrically conducting compositions

Similar Documents

Publication Publication Date Title
US4675644A (en) Voltage-dependent resistor
CN108409306B (en) Zinc oxide pressure-sensitive ceramic material and preparation method thereof
JPS60226102A (en) Voltage nonlinear resistor
US5504371A (en) Semiconductor ceramic device having a ceramic element with negative temperature coefficient of resistance
US5997998A (en) Resistance element
US4647900A (en) High power thick film resistor
US4111852A (en) Pre-glassing method of producing homogeneous sintered zno non-linear resistors
JPH0414202A (en) V2o3 base ceramic resistor element
JP6850608B2 (en) Electronic structural element and its manufacturing method
US3938069A (en) Metal oxide varistor with passivating coating
CN116031033A (en) Direct-current low-residual voltage type piezoresistor and preparation method thereof
JPS604561B2 (en) Ceramic electrical resistor with non-linear voltage dependent characteristics and its manufacturing method
US4452729A (en) Voltage stable nonlinear resistor containing minor amounts of aluminum and boron
CN113674938B (en) Thermistor, chip material and preparation method thereof
CN109534821B (en) Resistor disc and preparation method thereof
JP2018505569A (en) Varistor and manufacturing method thereof
JPH04127071A (en) Inspection of zinc oxide arrester
US3555671A (en) Layer thermistors and method for their manufacture
JPH04320301A (en) Critical temperature resistor and its manufacture
JPS5918669A (en) Formation of thick film circuit
JPH0828287B2 (en) Voltage-dependent nonlinear resistor
JPH03269908A (en) Thick film composition and thick film hybrid integrated circuit (ic) using the same
JPS6312363B2 (en)
JP3631786B2 (en) Method for manufacturing voltage nonlinear resistor
SU1038320A1 (en) Electrically conducting ceramic material