JPH0414181B2 - - Google Patents

Info

Publication number
JPH0414181B2
JPH0414181B2 JP61315810A JP31581086A JPH0414181B2 JP H0414181 B2 JPH0414181 B2 JP H0414181B2 JP 61315810 A JP61315810 A JP 61315810A JP 31581086 A JP31581086 A JP 31581086A JP H0414181 B2 JPH0414181 B2 JP H0414181B2
Authority
JP
Japan
Prior art keywords
less
carbide
stainless steel
cutlery
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61315810A
Other languages
Japanese (ja)
Other versions
JPS63166948A (en
Inventor
Akio Yamamoto
Tetsuya Shimada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP31581086A priority Critical patent/JPS63166948A/en
Publication of JPS63166948A publication Critical patent/JPS63166948A/en
Publication of JPH0414181B2 publication Critical patent/JPH0414181B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/04Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、刃物用のCr炭化物分散型ステンレ
ス鋼板とその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a Cr carbide-dispersed stainless steel sheet for cutlery and a method for manufacturing the same.

剃刀や包丁は、切れ味の点から硬度の高いこと
が必要なために、一般にCを0.3%以上含有する
鋼が使用されている。また、衛生上の目的からは
短時間で錆びたり腐食することは好ましくないた
めに、ステンレス鋼も広く使用されている。しか
し、ステンレス鋼の場合、硬度を上げるためにC
の多量添加を行なつても、粗大なCr炭化物とし
て析出してしまい、焼入れ効果に寄与するC量は
増加しない。このため、一般にステンレス鋼の切
れ味が劣るとの風評からも明らかなとおり、炭素
鋼に比べると硬度が上がらないのである。従つ
て、硬度を重視すると耐食性を断念して炭素鋼を
使用せざるを得ず、耐食性を重視すると硬度に不
満を残しながらステンレス鋼を使用せざるを得な
いのが実情である。このように、刃物の使用性能
の内硬度を耐食性を同時に満足する材料は現状で
は見当たらない。
Razors and knives require high hardness for sharpness, so steel containing 0.3% or more of C is generally used. Furthermore, stainless steel is also widely used because it is undesirable for it to rust or corrode in a short period of time for sanitary purposes. However, in the case of stainless steel, C
Even if a large amount of Cr is added, coarse Cr carbides will precipitate, and the amount of C that contributes to the hardening effect will not increase. For this reason, as is clear from the rumor that stainless steel is generally inferior in sharpness, its hardness is not as high as that of carbon steel. Therefore, if hardness is emphasized, corrosion resistance must be abandoned and carbon steel is used, and if corrosion resistance is emphasized, stainless steel must be used, although the hardness remains unsatisfactory. As described above, there is currently no material that satisfies both internal hardness and corrosion resistance for use in cutlery.

本発明は、このように硬度と耐食性を同時に満
足させる必要のある刃物用のCr炭化物分散型ス
テンレス鋼板に関するものである。
The present invention relates to a Cr carbide-dispersed stainless steel plate for cutlery which needs to satisfy both hardness and corrosion resistance.

(ロ) 従来の技術 硬度と耐食性を同時に満足させる材料として、
母材に高炭素鋼を、合せ材にステンレス鋼を用い
たクラツド鋼が使用されている。クラツド鋼の使
用により、錆びたり腐食する部分の面積が減少し
たので、この点では効果がないとは言えない。し
かし、刃物として使用される場合、わずかとはい
え最低限刃先の部分はステンレス鋼で覆われずに
炭素鋼が表面に露出せざるを得ない。しかも、刃
先の状態はいわゆる切れ味には敏感に影響を及ぼ
すため、わずかな錆びや腐食でも品質低下に繋が
るのである。このようなことから、母材に高炭素
鋼を、合せ材にステンレス鋼を用いたクラツド鋼
を使用しても、硬度と耐食性を同時に満足したと
は言えないのである。
(b) Conventional technology As a material that satisfies hardness and corrosion resistance at the same time,
Clad steel is used, which uses high carbon steel as the base material and stainless steel as the cladding material. The use of clad steel has reduced the area of rust and corrosion, so it cannot be said that there is no effect in this respect. However, when used as a knife, at least a small portion of the cutting edge is not covered with stainless steel and the carbon steel has to be exposed on the surface. Furthermore, the condition of the cutting edge has a sensitive effect on so-called sharpness, so even slight rust or corrosion can lead to a decline in quality. For this reason, even if clad steel is used, which uses high carbon steel as the base material and stainless steel as the cladding material, it cannot be said that both hardness and corrosion resistance are satisfied at the same time.

前述したとおり、ステンレス鋼の硬度を上げる
のはCの増量では限界がある。そこで、刃先のみ
浸炭焼入れや窒化処理を行なつたり、刃先のみイ
オン注入などを行なつた硬化させることも提案さ
れている。これらの方法は、硬化の点では満足の
いく結果が得られるが、クラツド鋼の場合と同様
に刃先の硬化部分では基本的な耐食性を維持する
に足る金属状の固溶Cr量が著しく減少して耐食
性が劣化したり、コストが大幅に上昇せざるを得
ないのが実情である。従つて、やはり耐食性の問
題は解決しているとは言えない。
As mentioned above, there is a limit to increasing the hardness of stainless steel by increasing the amount of C. Therefore, it has been proposed that only the cutting edge be carburized and quenched or nitrided, or that only the cutting edge be hardened by ion implantation. These methods yield satisfactory results in terms of hardening, but as in the case of clad steel, the amount of solid solute Cr in the hardened part of the cutting edge, which is sufficient to maintain basic corrosion resistance, is significantly reduced. The reality is that the corrosion resistance deteriorates and the cost increases significantly. Therefore, it cannot be said that the problem of corrosion resistance has been solved.

一方、鋼中に粒子を分散させて強化させる技術
があり、析出強化型ステンレス鋼として利用され
ているが、この場合は鋼中で熱処理により析出さ
せるものである。しかし、通常強化のベースとな
る鋼は、加工性を重視して低C鋼が用いられる
が、本発明で使用する高硬度材ではこのような析
出強化の原理は活用されたことがなかつた。
On the other hand, there is a technology for strengthening steel by dispersing particles therein, which is used as precipitation-strengthened stainless steel, but in this case, the particles are precipitated in the steel through heat treatment. However, as the base steel for strengthening, low C steel is usually used with emphasis on workability, but the principle of precipitation strengthening has never been utilized in the high hardness material used in the present invention.

また、鋼中に強化用の繊維や炭化物粒子などを
混入させて強化する方法は既に公知技術(FRM、
PRM)として知られており、構造用材料や超硬
工具などに既に広く使用されている(A.Kelly
著、村上陽太郎訳:複合材料(1971).など)。し
かし、これらの金属基複合材料(MMC)は、板
あるいは帯状への圧延加工が著しく困難なため、
刃物のように板状であることが必要な用途には適
用することができなかつた。
In addition, there are already known methods (FRM,
PRM) and is already widely used in structural materials and carbide tools (A.Kelly
Author, translated by Yotaro Murakami: Composite Materials (1971). Such). However, these metal matrix composite materials (MMC) are extremely difficult to roll into plates or strips.
It could not be applied to applications that require a plate-like shape, such as a cutlery.

このように、硬度と耐食性を同時に満足した刃
物用の材料は存在しなかつたものである。
Thus, there is no material for cutlery that satisfies both hardness and corrosion resistance at the same time.

(ハ) 発明が解決しようとする問題点 本発明は、ステンレス鋼をベースとして耐食性
を確保し、従来刃物用鋼では利用されていない粒
子の微細分散による硬化方法を利用して高い硬度
を確保することを指向した。利用する粒子として
はステンレス鋼中に通常含まれているCr炭化物
を利用することで、結果的に高いC含有量のステ
ンレス鋼を利用したものと同様の効果が得られる
ことを狙つた。しかし、通常の製造方法で生成す
るような粗大炭化物では、刃物としての特性が得
られないことは明らかである。本発明のポイント
は、ステンレス鋼中の分散粒子の量やサイズを刃
物用として適したレベルに限定することともに、
板状への圧延加工方法を発明し、刃物用として
Cr炭化物多量分散による硬化ステンレス鋼を適
用させた点にある。
(c) Problems to be solved by the invention The present invention uses stainless steel as a base to ensure corrosion resistance, and uses a hardening method using fine particle dispersion, which has not been used in conventional cutlery steels, to ensure high hardness. I was oriented toward that. By using Cr carbide, which is normally contained in stainless steel, as the particles, we aimed to achieve the same effect as using stainless steel with a high C content. However, it is clear that coarse carbides such as those produced by conventional manufacturing methods do not have the characteristics of a cutlery. The key points of the present invention are to limit the amount and size of dispersed particles in stainless steel to a level suitable for use in cutlery,
Invented a method of rolling into plate shapes and used them for cutlery.
The point is that hardened stainless steel is applied by dispersing a large amount of Cr carbide.

(ニ) 問題点を解決するための手段 本発明者らは、中心偏析などの低融点部分の変
形特性などから推量して、粒子を分散させた鋼を
圧延するためには、完全に凝固した状態では著し
く困難であるが、局所的に溶融していれば可能で
あることを見出し本発明を成し遂げた。
(d) Means for solving the problem The inventors deduced from the deformation characteristics of the low melting point portion such as center segregation that in order to roll steel with dispersed particles, it is necessary to completely solidify the steel. Although it is extremely difficult in this state, the present invention was achieved by discovering that it is possible if it is locally melted.

すなわち、ステンレス鋼の場合、C含有量が高
くなるに従い溶融開始温度が低くなり、17Cr鋼
ではC:0.5%以上では溶融開始温度が約1250℃
となり、半溶融状態になることが認められてい
る。この半溶融状態で圧延すれば酸化物などの粒
子を分散させることが可能と考えたのである。
In other words, in the case of stainless steel, the melting start temperature decreases as the C content increases, and in 17Cr steel, the melting start temperature is approximately 1250°C when the C content is 0.5% or more.
It is recognized that it becomes a semi-molten state. They thought that by rolling the material in this semi-molten state, it would be possible to disperse particles such as oxides.

従来、半溶融状態での圧延などの加工は表面疵
や種々の割れが発生するので不可能と考えられて
いたが、本発明者らは前に、半溶融材料を溶融状
態を呈さない材料で覆うことで問題なく圧延が可
能となり、むしろ圧延負荷が著しく低下するなど
の利点を見出している。本発明においてもこの技
術を利用したものである。
Conventionally, it was thought that processing such as rolling in a semi-molten state was impossible because surface flaws and various cracks would occur, but the present inventors previously developed a method to convert semi-molten materials into materials that do not exhibit a molten state. By covering the material, rolling can be carried out without any problems, and they have found advantages such as significantly reducing the rolling load. The present invention also utilizes this technique.

以下に、本発明によるCr炭化物粒子分散型ス
テンレス鋼の製造工程の挙動を第1図のイ,ロを
用いて説明する。
Below, the behavior of the manufacturing process of the Cr carbide particle dispersed stainless steel according to the present invention will be explained using A and B of FIG.

半溶融状態を呈する高炭素ステンレス鋼板1を
2枚以上重ね合わせその重ね面に強化材料である
Cr炭化物などの粒子2を挟みこむ。さらに、こ
れらを溶融状態を呈さない材料、例えば炭素鋼や
低Cのステンレス鋼などの梱包材3で覆う。この
ように組み立てた鋼片を、高炭素ステンレス鋼板
1が半溶融状態を呈する温度まで加熱し、半溶融
状態下で圧延を行なう。これにより混入したCr
炭化物は、溶融部分に入り込み(同図イ)なおか
つ粒子分散強化鋼材の圧延加工が可能となるので
ある。また、Cr炭化物粒子は重ね面に混入した
ので層状となる可能性があるが、半溶融状態での
圧延によつて厚さ方法への移動が生ずるために、
半溶融状態下での圧延に伴つて厚さ方向へも均一
化することが認められた(同図ロ)。
Two or more high carbon stainless steel plates 1 exhibiting a semi-molten state are stacked together and a reinforcing material is applied to the stacked surfaces.
Sandwich particles 2 such as Cr carbide. Furthermore, these are covered with a packing material 3 made of a material that does not exhibit a molten state, such as carbon steel or low C stainless steel. The steel pieces assembled in this manner are heated to a temperature at which the high carbon stainless steel plate 1 is in a semi-molten state, and rolled in the semi-molten state. Cr mixed in as a result of this
The carbide enters the molten part (see figure 1) and makes it possible to roll the particle dispersion strengthened steel. Furthermore, since the Cr carbide particles are mixed into the lapped surfaces, there is a possibility that they become layered, but since rolling in a semi-molten state causes movement in the thickness direction,
It was observed that rolling in a semi-molten state resulted in uniformity in the thickness direction (FIG. 2B).

このようにして製造したCr炭化物分散強化型
高炭素ステンレス鋼は、板状を呈しているため
に、容易に刃物に加工することができるのであ
る。
Since the Cr carbide dispersion-strengthened high carbon stainless steel produced in this way has a plate shape, it can be easily processed into cutlery.

次に、刃物に利用した場合の特性に及ぼす粒子
サイズの影響について説明する。Cr炭化物粒子
のサイズが10μm以上になると、刃先の形状が不
安定になりかつ刃こぼれの原因となることが認め
られ、用途からは不適切なサイズであることが判
明した。本発明による鋼は、通常のステンレス鋼
製造工程でCを多量に添加することで容易に可能
であると考えられる。しかるに、通常の方法では
単に構造が困難であるのではなく、Cr炭化物が
著しく粗大化して(最大サイズは50μm以上に達
することがある。)刃物用にはなんら適さないも
のとなるのである。
Next, the influence of particle size on the characteristics when used in cutlery will be explained. It was found that when the size of the Cr carbide particles exceeded 10 μm, the shape of the cutting edge became unstable and caused the blade to chip, and the size was found to be inappropriate for the intended use. It is believed that the steel according to the present invention can be easily produced by adding a large amount of C in the normal stainless steel manufacturing process. However, the conventional method not only makes the structure difficult, but also causes the Cr carbide to become extremely coarse (the maximum size can reach 50 μm or more), making it unsuitable for use in cutlery.

次に、本発明の限定条件を説明する。 Next, the limiting conditions of the present invention will be explained.

本発明にかかる刃物用ステンレス鋼のC量は、
母材中のCと分散させたCr炭化物中のCの平均
値となる。このC量は、硬度の点からは高い方が
望ましいが、鋼板への加工や刃付け加工が不可能
となるので上限を1.5%とした。また、下限は半
溶融状態を呈する必要があるので0.6%以上とし
た。
The amount of C in the stainless steel for cutlery according to the present invention is:
This is the average value of C in the base material and C in the dispersed Cr carbide. A higher C content is desirable from the viewpoint of hardness, but since processing into a steel plate or cutting a blade becomes impossible, the upper limit was set at 1.5%. In addition, the lower limit was set at 0.6% or more since it is necessary to exhibit a semi-molten state.

Si量は、0.01%未満では脱酸が不完全となり、
粗大な酸化物系介在物が生成して刃こぼれの原因
となるため0.01%を下限とし、1.0%を超えると
熱間加工性が劣化して製造が著しく困難となるた
め1.0%を上限とした。
If the amount of Si is less than 0.01%, deoxidation will be incomplete,
The lower limit was set at 0.01% because coarse oxide inclusions are generated and cause the blade to chip, and the upper limit was set at 1.0% because if it exceeds 1.0%, hot workability deteriorates and manufacturing becomes extremely difficult. .

Mn量は、0.01%未満では不可避不純物のSを
固定することが不可能となり、熱間加工時に表面
割れを生ずるなど生産性を低下せしめるため0.01
%を下限とし、1.0%を超えると焼入れ硬化後も
γ相が残留してミクロ的に低硬度部分が生ずるた
め1.0%を上限とした。
If the amount of Mn is less than 0.01%, it will be impossible to fix the inevitable impurity S, which will cause surface cracks during hot working and reduce productivity.
% was set as the lower limit, and if it exceeded 1.0%, the γ phase remained even after quench hardening, resulting in microscopically low hardness areas, so 1.0% was set as the upper limit.

Crも母材中のCrと分散させたCr炭化物中のCr
の平均値となる。Cr量は、10%未満ではステン
レス鋼として基本的な耐食性に欠けるので下限と
し、耐食性の点からは高い方が優れているが、靭
性が劣化して加工性が著しく低下するので25%を
上限とした。
Cr also consists of Cr in the base metal and Cr in the dispersed Cr carbide.
is the average value. If the Cr content is less than 10%, stainless steel lacks the basic corrosion resistance, so the lower limit is set. A higher Cr content is better in terms of corrosion resistance, but the toughness deteriorates and workability is significantly reduced, so the upper limit is 25%. And so.

Al量は、酸可溶Al量で0.02%未満では脱酸が
不完全となり粗大な酸化物系介在物が生成して刃
こぼれの原因となるため0.002%を下限とし、0.2
%を超えると熱間加工性が劣化して製造が著しく
困難となるだけでなく脱スケール性が劣化して製
造が困難となるため0.2%を上限とした。
If the amount of Al is less than 0.02% in terms of acid-soluble Al content, deoxidation will be incomplete and coarse oxide inclusions will be generated, causing the blade to chip, so the lower limit is set at 0.002%,
If it exceeds 0.2%, not only will hot workability deteriorate and production becomes extremely difficult, but also descaling properties will deteriorate and production becomes difficult, so 0.2% was set as the upper limit.

また、第2発明におけるCr炭化物混入前のス
テンレンス鋼のCおよびCr量の下限は、半溶融
状態を呈する必要があるのでCで0.6%以上、Cr
で10%以上とする必要がある。また上限は、Cr
炭化物を混入させた後の製品でのCr量より低い
必要があるが、製品の上限でのみ規制されるとこ
ろであるのでCで1.5%以下、Crで25%以下とし
た。
In addition, in the second invention, the lower limit of the amount of C and Cr in the stainless steel before mixing with Cr carbide is 0.6% or more for C and 0.6% or more for Cr since it is necessary to exhibit a semi-molten state.
must be 10% or more. Also, the upper limit is Cr
The amount of Cr needs to be lower than the amount of Cr in the product after the carbide is mixed in, but since this is only regulated by the upper limit of the product, it is set to be 1.5% or less for C and 25% or less for Cr.

強化の為に鋼中に分散させるCr炭化物粒子は、
分散の効果の認められ始める10%を下限、半溶融
状態下での圧延でも加工が困難となる30%を上限
とした。
Cr carbide particles dispersed in steel for strengthening are
The lower limit was set at 10%, at which the effect of dispersion begins to be recognized, and the upper limit was set at 30%, at which rolling becomes difficult even in a semi-molten state.

また、分散させる粒子のサイズは、10μm以上
になると刃こぼれの原因となるので最大サイズの
上限とした。下限は形式的にはCr炭化物の分子
サイズということになるが、このような限定は実
用上意味がないので最小サイズは限定しない。し
かし、サイズが小さい場合、混入後の品質には特
別な悪影響はないが、混入させるまでの取扱いが
著しく困難となるので、第2発明においては平均
サイズの下限を0.1μmとした。
In addition, the size of the particles to be dispersed was set at the upper limit of the maximum size because if it exceeded 10 μm, it would cause the blade to spill. Formally, the lower limit is the molecular size of the Cr carbide, but such a limit is practically meaningless, so the minimum size is not limited. However, if the size is small, although there is no particular adverse effect on the quality after mixing, it becomes extremely difficult to handle before mixing, so in the second invention, the lower limit of the average size is set to 0.1 μm.

第2発明における圧延温度は、半溶融状態下で
少なくとも1パス以圧下する必要があることか
ら、1250℃以上1450℃以下とする。
The rolling temperature in the second invention is set at 1250° C. or higher and 1450° C. or lower since it is necessary to perform rolling at least one pass in a semi-molten state.

また、半溶融状態での圧延と組合せる1250℃未
満の完全凝固状態での圧延は、通常工程の圧延と
何等変りはないが、750℃未満では材料強度が急
激に上昇して圧延に要求される圧下力が激増する
ため750℃を下限温度とした。
In addition, rolling in a fully solidified state below 1250°C combined with rolling in a semi-molten state is no different from rolling in the normal process, but below 750°C the strength of the material increases rapidly and is required for rolling. The lower temperature limit was set at 750°C because the rolling force increases dramatically.

同じく第2発明における半溶融状態下での圧延
圧下率は、10%未満では圧下の効果が得られない
ために、10%を下限とした。
Similarly, the lower limit of the rolling reduction ratio in the semi-molten state in the second invention was set to 10% because the rolling reduction effect cannot be obtained if it is less than 10%.

半溶融状態下での圧下によつて粉末粒子をマト
リツクス中に混入させるためには圧下率は大きけ
れば大きいほど有効と考えられるが、1パス当り
の圧下率が70%を超えると溶融部分の絞り出しの
危険が生ずるため70%を上限とした。
In order to mix powder particles into the matrix by rolling in a semi-molten state, it is thought that the higher the rolling reduction rate, the more effective it is, but if the rolling reduction rate per pass exceeds 70%, the molten part will be squeezed out. The upper limit was set at 70% because of the risk of

また、全圧下率の上限は技術的には限定されな
いが、次工程も含めた製造性から圧延板の厚さで
限定した。圧延後の板厚を1.5mm未満とするには
著しく高い圧下力の圧延機が必要となるため1.5
mmを圧下の下限とし、8mmを超える板厚では次工
程の刃物製造が困難となるため8mmを上限とし
た。
Further, although the upper limit of the total rolling reduction ratio is not technically limited, it is limited by the thickness of the rolled plate from the viewpoint of manufacturability including the next process. 1.5 because a rolling mill with extremely high rolling force is required to reduce the thickness of the plate after rolling to less than 1.5 mm.
The lower limit for rolling was set to mm, and the upper limit was set to 8 mm because it would be difficult to manufacture cutlery in the next process if the plate thickness exceeded 8 mm.

(ホ) 作 用 以上示したように、刃先も含めて母材がステン
レス鋼であるので耐食性が優れており、刃先には
酸化物粒子などの硬化物質が分散されているの
で、刃物としての硬度は十分にあり切れ味の優れ
た刃物用ステンレス項の供給が可能となつた。こ
の材料では、刃先の切れ味が鋼そのものの硬さに
のみ依存しているのではなく、むしろ分散された
微細粒子に基づくものであるので、刃先の摩耗が
少なくメンテナンスもまたステンレス鋼は勿論炭
素鋼に比べても著しく良好である。
(E) Function As shown above, since the base material including the cutting edge is stainless steel, it has excellent corrosion resistance, and the cutting edge has hardening substances such as oxide particles dispersed, so it has a high hardness as a cutting tool. It has become possible to supply stainless steel for cutlery with sufficient sharpness and excellent sharpness. With this material, the sharpness of the cutting edge does not depend solely on the hardness of the steel itself, but rather is based on dispersed fine particles, so there is less wear on the cutting edge and maintenance is easier than with carbon steel as well as stainless steel. This is significantly better than the previous model.

(ヘ) 実施例 C:1.1%、Si:0.46%、Mn:0.60%、Cr:
16.7%、酸可溶Al:0.012%を含有しその他不可
避的不純物をのぞいて実質的にFeからなる1mm
厚のステンレス鋼板25枚を、間に平均粒径5μm
最大粒径8μmのCr23C6粉を50〜100g/m2の密度
で挟み込んで重ねた。さらに、その全体をC:
0.06%、Si:0.52%、Mn:0.53%、Cr:16.3%を
含有しその他不可避的不純物をのぞいて実質的に
Feからなる1.2mm厚のSUS430ステンレス鋼板で梱
包し、内部を10Torr以下に減圧した。それを、
1400℃に加熱し1250℃までの温度域で3パスで全
体で15mmまで圧下した。続いて1250〜850℃の温
度範囲で5mmまで圧下を行なつた後、両面とも
0.5mm研削して刃物製造を行なつた。この材料の
平均化学組成は、C:1.3%、Si:0.47%、Mn:
0.58%、Cr:21.4%その他不可避的不純物をのぞ
いて実質的にFeであり、分散されているCr炭化
物の量は21.8%、サイズは最大で粒径8μmであつ
た。この材料を用いて製造された刃物は、硬度が
HVで約745であり従来のステンレス鋼、炭素鋼
の刃物の硬度より高い値を示した。また、水道水
に浸したのち湿度約90%の環境中に24時間放置し
ておいたが全く錆の発生は認められなかつた。比
較のために試験した炭素鋼の刃物の場合約10分で
赤錆が発生し始め、24時間ではほとんど全面に発
銹が起き本発明による刃物の著しく優れた耐銹性
を確認することができた。
(F) Example C: 1.1%, Si: 0.46%, Mn: 0.60%, Cr:
1mm containing 16.7%, acid-soluble Al: 0.012%, and consisting essentially of Fe excluding other unavoidable impurities.
25 thick stainless steel plates with an average grain size of 5 μm between them.
Cr 23 C 6 powder with a maximum particle size of 8 μm was sandwiched and stacked at a density of 50 to 100 g/m 2 . Furthermore, the whole is C:
Contains 0.06%, Si: 0.52%, Mn: 0.53%, Cr: 16.3%, excluding other inevitable impurities.
It was packed with a 1.2 mm thick SUS430 stainless steel plate made of Fe, and the internal pressure was reduced to 10 Torr or less. That,
It was heated to 1400℃ and rolled down to a total of 15mm in 3 passes in the temperature range up to 1250℃. Subsequently, after rolling down to 5 mm at a temperature range of 1250 to 850℃, both sides were
The blade was manufactured by grinding it to 0.5mm. The average chemical composition of this material is C: 1.3%, Si: 0.47%, Mn:
0.58%, Cr: 21.4%, which was substantially Fe except for other unavoidable impurities, the amount of dispersed Cr carbide was 21.8%, and the maximum particle size was 8 μm. Cutlery manufactured using this material has a hardness
It has a hardness of approximately 745 in HV, which is higher than that of conventional stainless steel and carbon steel cutlery. Furthermore, after soaking in tap water, it was left in an environment with a humidity of about 90% for 24 hours, but no rust was observed. In the case of the carbon steel cutlery tested for comparison, red rust began to form in about 10 minutes, and rusting occurred on almost the entire surface within 24 hours, confirming the extremely excellent rust resistance of the cutlery of the present invention. .

C:0.68%、Si:0.43%、Mn:0.55%、Cr:
13.5%、酸可溶Al:0.033%を含有し、その他不
可避不純物を除いて実質的にFeからなる1mm厚
のステンレス鋼板25枚を、間に平均粒径5μm、
最大粒径8μmのCr23C6粉を50〜100g/m2の密度
で挟み込んで重ねた。さらに、その全体をC:
0.06%、Si:0.52%、Mn:0.53%:Cr:16.3%を
含有し、その他不可避不純物を除いて実質的に
Feからなる1.2mm厚のSUS430ステンレス鋼板で梱
包し、内部を10Torr以下に減圧した。それを、
1420℃に加熱し1250℃までの温度域で4パスで全
体で20mmまで圧下した。続いて1250〜850℃の温
度範囲で3mmまで圧下を行なつた後、両面とも
0.5mm研削して刃物製造を行なつた。この材料の
平均化学組成は、C:1.0%、Si:0.44%、Mn:
0.50%:Cr:19.7%、その他不可避不純物を除い
て実質的にFeであり、分散されているCr炭化物
の量は18.4%、サイズは最大で粒径8μmであつ
た。この材料を用いて製造された刃物は、硬度が
HVで約718であり、従来のステンレス鋼、炭素
鋼の刃物の硬度より高い値を示した。また、水道
水に浸したのち湿度約90%の環境中に24h放置し
ておいたが全く錆の発生は認められなかつた。比
較に試験した炭素鋼の刃物の場合約10分で赤錆が
発生し始め、24hではほとんど全面に発銹が起
き、本発明による刃物の著しく優れた耐銹性を確
認することができた。
C: 0.68%, Si: 0.43%, Mn: 0.55%, Cr:
13.5%, acid-soluble Al: 0.033%, and excluding other unavoidable impurities, 25 1 mm thick stainless steel plates consisting essentially of Fe, with an average grain size of 5 μm between them.
Cr 23 C 6 powder with a maximum particle size of 8 μm was sandwiched and stacked at a density of 50 to 100 g/m 2 . Furthermore, the whole is C:
Contains 0.06%, Si: 0.52%, Mn: 0.53%: Cr: 16.3%, and excluding other unavoidable impurities, substantially
It was packed with a 1.2 mm thick SUS430 stainless steel plate made of Fe, and the internal pressure was reduced to 10 Torr or less. That,
It was heated to 1420°C and rolled down to a total of 20mm in 4 passes in the temperature range up to 1250°C. Subsequently, after reducing the temperature to 3mm in the temperature range of 1250 to 850℃, both sides were
The blade was manufactured by grinding it to 0.5mm. The average chemical composition of this material is C: 1.0%, Si: 0.44%, Mn:
0.50%: Cr: 19.7%, substantially Fe except for other unavoidable impurities, the amount of dispersed Cr carbide was 18.4%, and the maximum particle size was 8 μm. Cutlery manufactured using this material has a hardness
The HV was approximately 718, which is higher than the hardness of conventional stainless steel and carbon steel knives. Furthermore, after soaking in tap water, it was left in an environment with about 90% humidity for 24 hours, but no rust was observed. In the case of the carbon steel cutlery tested for comparison, red rust began to occur in about 10 minutes, and rusting occurred on almost the entire surface after 24 hours, confirming the extremely excellent rust resistance of the cutlery of the present invention.

(イ) 発明の効果 本発明により、耐食性と高い硬度を有する刃物
用材料が得られた。この結果、メンテナンスが少
なくてすむ性能の優れた刃物を安価に供給するこ
とが可能となつた。
(a) Effects of the Invention According to the present invention, a material for cutlery having corrosion resistance and high hardness was obtained. As a result, it has become possible to supply blades with excellent performance that require less maintenance at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法による刃物用Cr炭化物
粒子分散型ステンレス鋼の製造工程の挙動を説明
した図である。
FIG. 1 is a diagram illustrating the behavior of the manufacturing process of a Cr carbide particle dispersed stainless steel for cutlery according to the method of the present invention.

Claims (1)

【特許請求の範囲】 1 C:0.6%以上1.5%以下、Si:0.01%以上1.0
%以下、Mn:0.01%以上1.0%以下、Cr:10%以
上25%以下および酸可溶Al:0.002%以上0.2%以
下を含み、残部はFeおよび不可避不純物からな
り、この内Cr炭化物が重量で10%以上30%以下
を占めかつCr炭化物の最大径を10μm未満として
粒子分散強化したことを特徴とする刃物用Cr炭
化物分散型ステンレス鋼板。 2 C:0.6%以上1.5%以下、Si:0.01%以上1.0
%以下、Mn:0.01%以上1.0%以下、Cr:10%以
上25%以下および酸可溶Al:0.002%以上0.2%以
下を含み、残部はFeおよび不可避不純物からな
るステンレス鋼板を2枚以上重ね、それぞれの重
ね面に最大径が10μm未満、平均サイズが0.1μm
以上であるCr炭化物を挟み込み、1250℃以上
1450℃以下の温度で少なくとも1パス当り10%以
上70%以下の圧下率で1パス以上の圧下を行な
い、750℃以上1250℃未満の温度での圧下と組合
せて1.5mm以上8mm以下の厚さまで圧下を施し、
平均値の成分組成においてCを0.6%以上1.5%以
下、Crを10%以上25%以下含有し、この内Cr炭
化物が重量で10%以上30%以下を占めかつCr炭
化物の最大径を10μm未満とすることを特徴とす
る刃物用Cr炭化物分散型ステンレス鋼板の製造
方法。
[Claims] 1 C: 0.6% or more and 1.5% or less, Si: 0.01% or more and 1.0
% or less, Mn: 0.01% or more and 1.0% or less, Cr: 10% or more and 25% or less, and acid-soluble Al: 0.002% or more and 0.2% or less, the remainder consists of Fe and inevitable impurities, of which Cr carbide is the weight A Cr carbide-dispersed stainless steel sheet for cutlery, characterized in that the Cr carbide has a maximum diameter of 10% or more and 30% or less, and is strengthened by particle dispersion so that the maximum diameter of the Cr carbide is less than 10 μm. 2 C: 0.6% or more and 1.5% or less, Si: 0.01% or more and 1.0
% or less, Mn: 0.01% or more and 1.0% or less, Cr: 10% or more and 25% or less, and acid-soluble Al: 0.002% or more and 0.2% or less, with the balance consisting of Fe and unavoidable impurities. , the maximum diameter on each overlapped surface is less than 10 μm, and the average size is 0.1 μm
Sandwiching Cr carbide that is above 1250℃
Perform one pass or more of rolling at a temperature of 1450°C or lower with a reduction rate of at least 10% or more and 70% or less per pass, and in combination with rolling at a temperature of 750°C or more and less than 1250°C to a thickness of 1.5 mm or more and 8 mm or less. Apply pressure,
Contains 0.6% to 1.5% of C and 10% to 25% of Cr in the average composition, of which Cr carbide accounts for 10% to 30% by weight, and the maximum diameter of the Cr carbide is less than 10 μm. A method for manufacturing a Cr carbide-dispersed stainless steel sheet for cutlery, characterized by:
JP31581086A 1986-12-27 1986-12-27 Cr carbide dispersion type stainless steel plate for cutting tool and its production Granted JPS63166948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31581086A JPS63166948A (en) 1986-12-27 1986-12-27 Cr carbide dispersion type stainless steel plate for cutting tool and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31581086A JPS63166948A (en) 1986-12-27 1986-12-27 Cr carbide dispersion type stainless steel plate for cutting tool and its production

Publications (2)

Publication Number Publication Date
JPS63166948A JPS63166948A (en) 1988-07-11
JPH0414181B2 true JPH0414181B2 (en) 1992-03-12

Family

ID=18069825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31581086A Granted JPS63166948A (en) 1986-12-27 1986-12-27 Cr carbide dispersion type stainless steel plate for cutting tool and its production

Country Status (1)

Country Link
JP (1) JPS63166948A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02166228A (en) * 1988-12-20 1990-06-26 Nippon Steel Corp Manufacture of high carbon containing stainless steel having uniformly fine carbide structure
JP3476052B2 (en) * 1997-09-01 2003-12-10 信越ポリマー株式会社 Transport container
JP3838786B2 (en) * 1997-09-30 2006-10-25 信越ポリマー株式会社 Precision substrate storage container, positioning structure thereof, and positioning method of precision substrate storage container
CN111530927B (en) * 2020-05-09 2022-02-01 柳州钢铁股份有限公司 Rolling method of stainless steel composite plate

Also Published As

Publication number Publication date
JPS63166948A (en) 1988-07-11

Similar Documents

Publication Publication Date Title
US4394168A (en) Austenitic wear resistant steel
US6805757B1 (en) Casting material for indefinite rollers with sleeve part and method for producing the same
CH657379A5 (en) AT INCREASED TEMPERATURES, HEAT-RESISTANT, WEAR-RESISTANT AND TOE ALLOY.
JPH0524980B2 (en)
US4780139A (en) Tool steel
US3575737A (en) Razor blades and other thin cutting edge tools and method of manufacture of such tools
JPH0414181B2 (en)
JPH042742A (en) Composite titanium alloy, multilayered titanium material, titanium cutter and their manufacture
JP2689513B2 (en) Low oxygen powder high speed tool steel
JPH07109542A (en) Roll material for hot rolling
JPH02182867A (en) Powdered tool steel
JPS63166945A (en) Cutlery-type stainless steel plate and its production
JPH0121846B2 (en)
JPH06145887A (en) Composite high-speed steel sleeve roll and its production
JP3188625B2 (en) B-containing austenitic stainless steel excellent in hot workability and method for producing the same
JPS59153869A (en) Material for roll for rolling amorphous metal
CN114752841B (en) Novel noble metal-free high-chromium white wear-resistant cast iron and preparation method thereof
EP0587603B1 (en) Metal-based material, moulded body and process for its manufacture, and use thereof
JPS60204868A (en) Sintered alloy steel for hot working tool having superior hot wear resistance
JPS6099408A (en) Rolling roll made of high chrome cast iron
US3144326A (en) Casting steel alloy having great tenacity and wear resistance
JPH05195002A (en) Heat resistant alloy reinforced by oxide dispersion and its production
JPH01230714A (en) Manufacture of high carbon martensitic stainless steel containing fine carbide
JPH0539552A (en) Powdery steel for high speed tool and its production
Zumelzu et al. High-chromium (22-34 per cent) cast iron alloys and their simulated behaviour at the sugar industry