JPH0414067B2 - - Google Patents

Info

Publication number
JPH0414067B2
JPH0414067B2 JP57185063A JP18506382A JPH0414067B2 JP H0414067 B2 JPH0414067 B2 JP H0414067B2 JP 57185063 A JP57185063 A JP 57185063A JP 18506382 A JP18506382 A JP 18506382A JP H0414067 B2 JPH0414067 B2 JP H0414067B2
Authority
JP
Japan
Prior art keywords
pattern
sample
pixel
tolerance value
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57185063A
Other languages
Japanese (ja)
Other versions
JPS5973758A (en
Inventor
Hirotsugu Harima
Hiroshi Nishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP57185063A priority Critical patent/JPS5973758A/en
Priority to US06/527,947 priority patent/US4677680A/en
Priority to EP83108547A priority patent/EP0104477B1/en
Priority to DE8383108547T priority patent/DE3380997D1/en
Publication of JPS5973758A publication Critical patent/JPS5973758A/en
Publication of JPH0414067B2 publication Critical patent/JPH0414067B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95607Inspecting patterns on the surface of objects using a comparative method
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30144Printing quality

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Quality & Reliability (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Pathology (AREA)
  • Inking, Control Or Cleaning Of Printing Machines (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

【発明の詳細な説明】 本発明は印刷物の絵柄を検査する方法および装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for inspecting patterns on printed matter.

従来の印刷物絵柄検査装置は、第1図に示すよ
うに印刷物1をラインセンサカメラ2により幅方
向に走査しつつ反射装置に基く画像濃度情報を取
出し、一方搬送系のシリンダ3に取付けたロータ
リーエンコーダ4の出力によつてカメラ2の走査
を同期化することにより試料絵柄5(第2図)を
マトリクス状の多数の小画素に分割する。これら
各画素は、同様に分割してメモリに記録した標本
絵柄6(第2図)の対応する小画素と順次濃度比
較されて欠陥有無が検出される。
As shown in FIG. 1, a conventional print pattern inspection device scans a print 1 in the width direction with a line sensor camera 2 and extracts image density information based on a reflection device, while a rotary encoder attached to a cylinder 3 of a conveyance system scans the print 1 in the width direction. By synchronizing the scanning of the camera 2 with the output of 4, the sample pattern 5 (FIG. 2) is divided into a large number of small pixels in a matrix. The density of each of these pixels is sequentially compared with the corresponding small pixels of the sample pattern 6 (FIG. 2), which has been similarly divided and recorded in the memory, to detect the presence or absence of a defect.

ここにおいて、印刷物の絵柄検査をする上では
正紙を損紙と誤判定しないためにある程度の許容
値を設定する必要がある。これは正紙であつても
濃度等のある程度のばらつきがあること、印刷位
置が厳密な意味で常に同一位置でないこと、ノイ
ズの存在は避け得ないこと等により必要となるも
ので、標本画素と試料画素との反射光量階調差に
対して適当な許容値を与えることになる。
Here, when inspecting the pattern of printed matter, it is necessary to set a certain tolerance value in order to avoid erroneously determining genuine paper as waste paper. This is necessary because there is some variation in density etc. even on regular paper, the printing position is not always at the same position in a strict sense, and the presence of noise is unavoidable. An appropriate tolerance value is given to the difference in reflected light quantity gradation with the sample pixel.

この許容値は絵柄に応じ各画素において異な
り、その一例として次のようなものがある。すな
わち絵柄のエツジ近傍にある画素は印刷物搬送系
の位置ずれによつて上記階調差が大きくなるた
め、大きめの許容値を与える(特願昭56−179599
号)というものである。また、絵柄の平坦な部分
においては位置ずれによる階調差が小さいため、
このような部分の画素に対しては正紙におけるば
らつきとかノイズによつて正紙を損紙と誤判定し
ない程度の許容値を与えればよい。そこで、この
ように定められた許容値を越えた欠陥画素の総個
数に対して欠陥許容個数を設定し、欠陥画素数が
許容個数を越えたか否かによつて損紙、正紙判定
を行つている。つまり、この方法は欠陥許容個数
と各画素毎に与えられた階調差許容値との組合わ
せによつて絵柄検査するものである。
This tolerance value differs for each pixel depending on the picture, and an example is as follows. In other words, for pixels near the edges of a picture, the above-mentioned gradation difference becomes large due to positional deviation in the print conveyance system, so a larger tolerance value is given (Japanese Patent Application No. 179,599/1986).
No.). In addition, since the gradation difference due to positional deviation is small in flat parts of the pattern,
It is sufficient to give the pixels in such a portion a tolerance value that does not cause the correct paper to be erroneously determined to be waste paper due to variations in the original paper or noise. Therefore, a permissible number of defective pixels is set for the total number of defective pixels exceeding the predetermined permissible value, and paper is judged as waste or good paper based on whether the number of defective pixels exceeds the permissible number. It's on. In other words, this method inspects the pattern based on the combination of the allowable number of defects and the allowable tone difference value given to each pixel.

この欠陥許容個数と各画素毎に与えられる階調
差判定レベル許容値(%)との関係は第3図に示
す特性によつて表わすことができ、この特性は次
のようなことを示している。すなわち多様な欠陥
の中で例えばインキはねによるスポツト的かつ高
コントラストの汚れを検出するには、判定レベル
許容値を大とし且つ欠陥許容個数を小としなけれ
ばならない。また色合わせ不良により生じる絵柄
全面に亘る微妙な色調不良を検出するには階調差
許容値を小さく設定し欠陥許容数を大きく設定し
なければならない。第3図の特性曲線上方の斜線
部が検査可能な設定範囲であり同曲線下方の非斜
線部は正紙を損紙と誤判定する設定範囲であつて
インキはねの例はこの特性曲線の右下寄り領域の
設定を要し、色合わせ不良の例は左上寄り領域の
設定を要する。
The relationship between this allowable number of defects and the allowable gradation difference judgment level (%) given to each pixel can be expressed by the characteristic shown in Figure 3, and this characteristic shows the following. There is. That is, in order to detect spotty and high-contrast stains caused by ink splatter among various defects, for example, it is necessary to increase the permissible judgment level value and reduce the permissible number of defects. Furthermore, in order to detect subtle color tone defects over the entire image caused by poor color matching, it is necessary to set the gradation difference tolerance value small and the defect tolerance number large. The shaded area above the characteristic curve in Figure 3 is the setting range that can be inspected, and the non-shaded area below the curve is the setting range that incorrectly judges normal paper as waste paper. It is necessary to set an area closer to the lower right, and in cases of poor color matching, it is necessary to set an area closer to the upper left.

しかしながら、従来の印刷物絵柄検査装置では
階調差許容値と欠陥許容数との只1つの組合わせ
によつて検査していたため、検出できる絵柄欠陥
の性格が固定化されてしまい多様な絵柄欠陥に対
応することができない。この対策としては別個の
欠陥抽出装置を設ける必要があり装置の大型化、
複雑化を招くことになる。
However, since conventional printed matter pattern inspection equipment inspects using only one combination of gradation difference tolerance and defect tolerance, the characteristics of the pattern defects that can be detected are fixed, resulting in a wide variety of pattern defects. unable to respond. As a countermeasure for this, it is necessary to install a separate defect extraction device, which increases the size of the device and
This will lead to complications.

本発明は上述の点を考慮してなされたもので、
標本画素と試料画素との階調差に対する許容値
と、この許容値を越えた欠陥画素数に対する許容
値との組合わせを複数設定し、種々の絵柄欠陥に
対応し得る印刷物の絵柄欠陥検査方法および装置
を提供するものである。
The present invention has been made in consideration of the above points, and
A pattern defect inspection method for printed matter that can deal with various pattern defects by setting a plurality of combinations of a tolerance value for the gradation difference between a sample pixel and a sample pixel and a tolerance value for the number of defective pixels exceeding this tolerance value. and equipment.

以下第4図乃至第8図を参照して本発明の一実
施例を説明する。
An embodiment of the present invention will be described below with reference to FIGS. 4 to 8.

第4図は本発明に係る印刷物絵柄検査装置の全
体構成を示したものである。この装置において
は、印刷物1上の絵柄がカメラ2によつて走査さ
れて画像情報が取出される。この際、搬送系シリ
ンダ3の回転量がロータリーエンコーダ4により
取出され同期回路7に与えられる。同期回路7
は、カメラ2、A/D変換器8およびアドレス回
路9にその出力を与え、カメラ2の走査同期化、
カメラ2により取出した画像情報のA/D変換同
期化、ならびにメモリ11のアドレス割当てを行
う。A/D変換器8の出力側に挿入されたスイツ
チSWは、A/D変換器8の出力をメモリ11に
与えるか判定回路10に与えるかの切換えを行う
ものであり、カメラ2が標本印刷物から画像情報
を取出しているときはスイツチSWを図示破線側
に倒して画像情報(以下標本データという)をメ
モリ11に与え、またカメラ2が試料印刷物から
画像情報を取出しているときはスイツチSWを図
示実線側に倒して画像情報(以下試料データとい
う)を判定回路10に与え同時にメモリ11から
読出した標本データと比較させ、絵柄欠陥の検出
を行う。図において判定回路10の入力2信号
中、Sは標本データを、Tは試料データをそれぞ
れ示している。
FIG. 4 shows the overall configuration of a printed matter pattern inspection apparatus according to the present invention. In this device, a pattern on a printed matter 1 is scanned by a camera 2 to extract image information. At this time, the rotation amount of the conveyance system cylinder 3 is taken out by the rotary encoder 4 and given to the synchronization circuit 7. Synchronous circuit 7
provides its output to the camera 2, the A/D converter 8 and the address circuit 9, and performs scan synchronization of the camera 2;
Synchronization of A/D conversion of image information taken out by the camera 2 and address assignment of the memory 11 are performed. A switch SW inserted on the output side of the A/D converter 8 is used to switch between giving the output of the A/D converter 8 to the memory 11 or to the judgment circuit 10. When the camera 2 is extracting image information from the sample print, turn the switch SW toward the dashed line side to provide the image information (hereinafter referred to as specimen data) to the memory 11, and when the camera 2 is extracting image information from the sample print, turn the switch SW The image information (hereinafter referred to as sample data) is provided to the judgment circuit 10 by moving it toward the solid line side shown in the drawing, and is compared with the sample data read out from the memory 11 at the same time to detect pattern defects. In the figure, among the two input signals of the determination circuit 10, S indicates sample data and T indicates sample data, respectively.

第5図は第4図の装置における判定回路10の
内部構成を示したもので、この場合n個の判定エ
レメントJE1,JE2…JEoとオアゲートORとによ
り構成されている。各判定エレメントJE1,JE2
…JEoには標本データSと試料データTとが与え
られその出力J1,J2…JoがオアゲートORに与え
られ、オアゲートORの出力TJは総合判定信号と
なる。
FIG. 5 shows the internal structure of the determination circuit 10 in the apparatus shown in FIG. 4, which in this case is composed of n determination elements JE 1 , JE 2 . . . JE o and an OR gate. Each judgment element JE 1 , JE 2
... JE o is given sample data S and sample data T, and its outputs J 1 , J 2 ...J o are given to OR gate OR, and output TJ of OR gate OR becomes a comprehensive judgment signal.

各判定エレメントはそれぞれ階調差許容値と欠
陥許容個数とが設定されており、その値は各エレ
メント毎に異なる。例えばJE1は階調差許容値が
大きく欠陥許容個数が小さく設定されていてスポ
ツト的汚れを検出するようになつており、また
JEoはその逆に階調差許容値を小さく欠陥許容数
を大きく設定してあり、絵柄全面に亘る微妙な色
調差を検出するようになつている。そしてJE2
JEo-1はJE1とJEoの中間的な設定とされる。これ
によりJE1,JEoは絵柄欠陥の両極端の性質の欠
陥を、JE2〜JEo-1はその中間的性質の欠陥を検出
する。
Each determination element has a gradation difference tolerance and a tolerance number of defects set, and the values differ for each element. For example, JE 1 has a large gradation difference tolerance and a small defect tolerance, and is designed to detect spot stains.
JE o , on the other hand, has a small tone difference tolerance and a large defect tolerance, allowing it to detect subtle tonal differences over the entire image. And JE 2 ~
JE o-1 is considered to be an intermediate setting between JE 1 and JE o . As a result, JE 1 and JE o detect defects with extreme properties of picture defects, and JE 2 to JE o-1 detect defects with properties intermediate between them.

これら判定エレメントJE1〜JEoのうち何れか
1つでも損紙である旨の出力を生じたときオアゲ
ートORから損紙信号が出力される。
When any one of these determination elements JE 1 to JE o produces an output indicating that the paper is waste paper, a waste paper signal is output from the OR gate OR.

第6図は第5図の回路における判定エレメント
JEの内部構成を示したものである。この回路に
おいて標本データSおよび試料データTは差の絶
対値回路22に与えられ|S−T|が取出されコ
ンパレータ23のB入力に与えられる。一方コン
パレータのA入力には標本データSに基き許容値
発生回路21から許容値Eが与えられる。
Figure 6 shows the decision element in the circuit of Figure 5.
This shows the internal structure of JE. In this circuit, sample data S and sample data T are applied to an absolute difference circuit 22, and |S-T| is taken out and applied to the B input of a comparator 23. On the other hand, the allowable value E is given to the A input of the comparator from the allowable value generating circuit 21 based on the sample data S.

この許容値Eの与え方は種々ある。例えば各画
素毎に異なる許容値を固定的に与えてもよい。こ
こでは標本画素の階調に一定比率(0〜1)を乗
じた値をその標本画素に対応した試料画素に与え
るべき許容値とする。これにより許容値発生回路
11は順次入力される標本データSに一定比率
(0〜1)を乗じ階調差許容値Eを発生する。
There are various ways to give this allowable value E. For example, a different tolerance value may be fixedly given to each pixel. Here, a value obtained by multiplying the gradation of a sample pixel by a fixed ratio (0 to 1) is set as an allowable value to be given to the sample pixel corresponding to that sample pixel. As a result, the allowable value generating circuit 11 multiplies the sequentially inputted sample data S by a fixed ratio (0 to 1) to generate a gradation difference allowable value E.

コンパレータ23は差の絶対値|S−T|が階
調差許容値Eより大であるか否か(|S−T|>
E)を判別し大なるときに欠陥信号をカウンタ2
4に与える。カウンタ24は欠陥信号を計数し、
この計数値は欠陥画素数を表わす。この計数値は
コンパレータ25によりラツチ26からの欠陥許
容個数と比較され、欠陥画素数が欠陥許容個数を
越えたか否かが判断され、越えたときに損紙信号
Jが出力される。
The comparator 23 determines whether the absolute value of the difference |S-T| is larger than the gradation difference tolerance E (|S-T|>
E) is determined and when it is large, the defect signal is sent to counter 2.
Give to 4. The counter 24 counts defective signals,
This count value represents the number of defective pixels. This count value is compared with the allowable number of defects from the latch 26 by the comparator 25, and it is determined whether the number of defective pixels exceeds the allowable number of defects, and when the number exceeds the allowable number of defects, a waste paper signal J is output.

第7図は第6図の回路における階調差許容値発
生回路11の内部構成を示したもので、この回路
は入力信号のビツト数と同数のバツフアBにより
構成されている。この場合標本データSは8ビツ
トであるからバツフアは8個であり、そのうち2
つはアースを入力としてその出力をMSBとし、
次の6ビツトは試料データSのMSBを含む上位
6ビツトをバツフアBを介して取出したものとす
る。そして試料データSのLSB2ビツトは接続し
ない。これにより8ビツトの標本データSは
LSB方向の2ビツトシフトされ、標本データS
の12.5%の値の階調差許容値Eを得ている。同様
の方法でシフトするビツト数を変えることにより
50%、25%、6.25%、3.125%等の値が得られる。
これ以外の値を得るにはTTL等の乗算器を用い
ればよい。
FIG. 7 shows the internal structure of the gradation difference tolerance generating circuit 11 in the circuit of FIG. 6, and this circuit is composed of the same number of buffers B as the number of bits of the input signal. In this case, since the sample data S is 8 bits, there are 8 buffers, of which 2
One uses ground as input and its output as MSB,
Assume that the next 6 bits are the upper 6 bits of sample data S, including the MSB, taken out via buffer B. The LSB2 bits of the sample data S are not connected. As a result, the 8-bit sample data S is
The sample data S is shifted by 2 bits in the LSB direction.
A gradation difference tolerance value E of 12.5% is obtained. By changing the number of bits shifted in the same way
Values such as 50%, 25%, 6.25%, 3.125%, etc. are obtained.
To obtain values other than this, a multiplier such as TTL can be used.

第8図は第6図の回路における差の絶対値回路
22の内部構成を示したもので、加算器31、エ
クスクルーシブオア回路32、加算器33および
インバータ34を主たる構成要素とする。この回
路は周知のものであるから詳細説明は省略する
が、標本データSと試料データTとを得てその
差の絶対値|S−T|を出力する。
FIG. 8 shows the internal configuration of the absolute difference circuit 22 in the circuit shown in FIG. 6, which includes an adder 31, an exclusive OR circuit 32, an adder 33, and an inverter 34 as main components. Since this circuit is well known, a detailed explanation will be omitted, but it obtains sample data S and sample data T and outputs the absolute value of the difference |S-T|.

本発明は上述のように、標本画素と試料画素と
の階調差許容値とこの許容値を越えた欠陥画素数
許容値との組合わせを複数設定し、これら組合わ
せの何れかにより欠陥検出されたときは絵柄欠陥
ありと判定するようにしたため、従来のように検
出できる欠陥の性質が固定されていたものと異な
り、多種多様な欠陥を確実に検出することがで
き、この結果検査精度を大幅に向上することがで
きる。しかもその装置構成は簡単である。
As described above, the present invention sets a plurality of combinations of a tolerance value for gradation difference between a sample pixel and a sample pixel and a tolerance value for the number of defective pixels exceeding this tolerance value, and detects defects by any of these combinations. Since it is determined that there is a pattern defect when a pattern is detected, it is possible to reliably detect a wide variety of defects, unlike conventional methods in which the nature of the defects that can be detected is fixed. can be significantly improved. Furthermore, the device configuration is simple.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の対象である絵柄検査装置の画
像情報検出部の構成を示す図、第2図は絵柄検査
のための試料データと標本データの記録方式の模
型的説明図、第3図は欠陥検出のための判定レベ
ル許容値と許容欠陥個数との関係を示す特性図、
第4図は本発明に係る絵柄検査装置の構成を示す
ブロツク線図、第5図は第4図の回路における判
定回路の内部構成を示す回路図、第6図は第5図
の回路における判定エレメントの内部構成を示す
回路図、第7図は第6図の回路における階調差許
容値設定回路の内部構成を示す回路図、第8図は
第6図の回路における差の絶対値回路の内部構成
を示す回路図である。 1……印刷物、2……カメラ、3……シリン
ダ、4……ロータリーエンコーダ、5,6……メ
モリ、JE……判定エレメント、OR……オアゲー
ト、B……バツフア、S……標本データ、T……
試料データ。
Fig. 1 is a diagram showing the configuration of the image information detection section of the pattern inspection device that is the object of the present invention, Fig. 2 is a schematic explanatory diagram of sample data for pattern inspection and the recording method of the specimen data, and Fig. 3 is a characteristic diagram showing the relationship between the allowable judgment level for defect detection and the allowable number of defects,
FIG. 4 is a block diagram showing the configuration of the pattern inspection device according to the present invention, FIG. 5 is a circuit diagram showing the internal configuration of the determination circuit in the circuit of FIG. 4, and FIG. 6 is the determination in the circuit of FIG. 7 is a circuit diagram showing the internal configuration of the element, FIG. 7 is a circuit diagram showing the internal configuration of the gradation difference tolerance setting circuit in the circuit of FIG. 6, and FIG. 8 is a circuit diagram of the absolute difference value circuit in the circuit of FIG. 6. FIG. 3 is a circuit diagram showing the internal configuration. 1... Printed matter, 2... Camera, 3... Cylinder, 4... Rotary encoder, 5, 6... Memory, JE... Judgment element, OR... Or gate, B... Buffer, S... Sample data, T...
Sample data.

Claims (1)

【特許請求の範囲】 1 試料印刷物の絵柄を画素マトリクスに分解し
各画素毎に対応する標本印刷物の絵柄における画
素と順次濃度階調を比較し絵柄の欠陥検出を行う
方法において、 標本画素と試料画素との階調差に対する許容値
と該許容値を越えた欠陥画素数に対する許容値と
の組み合わせを複数設定し、 これらの組み合わせのいづれかに該当する欠陥
があることにより絵柄欠陥ありと判定するように
したことを特徴とする印刷物の絵柄検査方法。 2 印刷物の搬送動作に応じて同期信号を形成す
る装置と、 前記同期信号に基き前記印刷物の絵柄を走査し
て画像情報を取出すカメラと、 このカメラにより標本印刷物から取出した画像
情報が読み込まれるメモリーと、 標本画素と試料画素との階調差に対する許容値
と該許容値との複数の組み合わせがそれぞれ設定
された複数の判定エレメントを有し、前記、カメ
ラからの試料印刷物の画像情報につき前記判定エ
レメントのいづれかが欠陥判定したとき欠陥信号
を出力する判定回路と をそなえた印刷物の欠陥検査装置。
[Scope of Claims] 1. A method for detecting defects in a pattern by decomposing a pattern of a sample print into a pixel matrix and sequentially comparing the density gradation of each pixel with a corresponding pixel in the pattern of the sample print, comprising: Multiple combinations of a tolerance value for the gradation difference between pixels and a tolerance value for the number of defective pixels exceeding the tolerance value are set, and if there is a defect that corresponds to any of these combinations, it is determined that there is a pattern defect. A method for inspecting patterns of printed matter, characterized by: 2. A device that generates a synchronization signal according to the conveyance operation of the printed material; a camera that scans the pattern of the printed material based on the synchronized signal to extract image information; and a memory into which the image information extracted from the sample printed material is read by the camera. and a plurality of determination elements each having a tolerance value for a gradation difference between the sample pixel and the sample pixel and a plurality of combinations of the tolerance value, and the determination element is configured to perform the determination on the image information of the sample print from the camera. A printed matter defect inspection device includes a determination circuit that outputs a defect signal when any of the elements is determined to be defective.
JP57185063A 1982-08-31 1982-10-21 Method and apparatus for inspecting picture pattern of printed matter Granted JPS5973758A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57185063A JPS5973758A (en) 1982-10-21 1982-10-21 Method and apparatus for inspecting picture pattern of printed matter
US06/527,947 US4677680A (en) 1982-08-31 1983-08-30 Method and device for inspecting image
EP83108547A EP0104477B1 (en) 1982-08-31 1983-08-30 Method for inspecting image
DE8383108547T DE3380997D1 (en) 1982-08-31 1983-08-30 IMAGE EXAMINATION METHOD.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57185063A JPS5973758A (en) 1982-10-21 1982-10-21 Method and apparatus for inspecting picture pattern of printed matter

Publications (2)

Publication Number Publication Date
JPS5973758A JPS5973758A (en) 1984-04-26
JPH0414067B2 true JPH0414067B2 (en) 1992-03-11

Family

ID=16164153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57185063A Granted JPS5973758A (en) 1982-08-31 1982-10-21 Method and apparatus for inspecting picture pattern of printed matter

Country Status (1)

Country Link
JP (1) JPS5973758A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248857U (en) * 1988-09-30 1990-04-04
JP2628951B2 (en) * 1991-10-14 1997-07-09 日本電信電話株式会社 Image defect determination processing device
JP4450776B2 (en) 2005-07-22 2010-04-14 株式会社日立ハイテクノロジーズ Defect inspection method and appearance inspection apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530668A (en) * 1978-08-26 1980-03-04 Kita Denshi:Kk Recognizing apparatus of printed matter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530668A (en) * 1978-08-26 1980-03-04 Kita Denshi:Kk Recognizing apparatus of printed matter

Also Published As

Publication number Publication date
JPS5973758A (en) 1984-04-26

Similar Documents

Publication Publication Date Title
US4561103A (en) Print inspecting method and apparatus
US4677680A (en) Method and device for inspecting image
JP3825070B2 (en) Counterfeit banknote pattern detector and detection method
US5652804A (en) Automatic inspection of printing plates or cylinders
JPH0722330B2 (en) Image region identification method for image processing apparatus
IE61590B1 (en) Method and apparatus for detecting significant difference of sheet material
JPH0646255A (en) Picture processing unit
EP1445100B1 (en) Printed paper inspecting method
JP3262326B2 (en) Image processing apparatus and image processing method
US20020051157A1 (en) Image processing method and apparatus for detecting characteristic points
JPH0415661B2 (en)
JPH0414067B2 (en)
JP3204876B2 (en) Print inspection equipment
GB2159623A (en) Print inspecting method
JPH03230683A (en) Copying machine
JPH0147823B2 (en)
JPS60145852A (en) Inspection apparatus of printed matter
JP3251119B2 (en) Image processing device
JP2841373B2 (en) Pattern inspection equipment
JP3077204B2 (en) Image reading device
JP4218179B2 (en) Pattern detection apparatus and method
JP4449480B2 (en) Print image inspection method and inspection apparatus
GB2159622A (en) Print inspecting method
JP2507948B2 (en) Image area identification device
JPH01182049A (en) Printed matter checkup method