JPH04140115A - Manufacture of polymer molded body - Google Patents

Manufacture of polymer molded body

Info

Publication number
JPH04140115A
JPH04140115A JP26362890A JP26362890A JPH04140115A JP H04140115 A JPH04140115 A JP H04140115A JP 26362890 A JP26362890 A JP 26362890A JP 26362890 A JP26362890 A JP 26362890A JP H04140115 A JPH04140115 A JP H04140115A
Authority
JP
Japan
Prior art keywords
magnetic field
polymer
liquid crystal
rod
thermoliquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26362890A
Other languages
Japanese (ja)
Inventor
Fumihiko Oda
織田 文彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP26362890A priority Critical patent/JPH04140115A/en
Publication of JPH04140115A publication Critical patent/JPH04140115A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

PURPOSE:To improve orientation effect under magnetic field and obtain polymer molded body excellent in mechanical properties such as elastic modulus and the like by a method wherein heat treatment is carried out to thermal liquid crystal polymer at the temperature higher or lower than its melting point before the application of magnetic field on the liquid crystal melt of the thermal liquid crystal polymer. CONSTITUTION:As the thermal liquid crystal polymer, polyester-based one, polyazo methine-based one or copolymer-based one such as polyester amide- based one or the like can be used. For example, yellow polyazo methine (having the melting point of 275 deg.C) is obtained by melting methyphenylenediamine and terephthalaldehyde with pyridinecontaining N-pyrrolidone so as to be react with each other. Out of the resultant polymer, rod with the diameter of 2mm is manufactured at 280 deg.C by melt compression forming. Then, the rod is heat- treated at 280 deg.C (molten state) for 40min in a heat resistant polymer vessel and, after that, cooled down to room temperature. In succession, the rod is heated again up to 290 deg.C and subjected to the magnetic field of 18kG for 5min and finally cooled down in magnetic field to room temperature so as to form the rod with the diameter of 2mm.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高分子成形体の製造方法に関する。詳しくは、
磁場を用いて高分子成形体を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a polymer molded article. For more information,
The present invention relates to a method of manufacturing a polymer molded body using a magnetic field.

〔従来の技術とその課題〕[Conventional technology and its issues]

高分子成形体の特性は、その分子鎖の配向状態に強く影
響される。したがって、延伸、液晶紡糸などの方法が開
発され、高性能の成形体製造に利用されている。熱液晶
性ポリマーに磁場を印加する方法もその一つで比較的新
らしく開発された方法である。しかし、この方法におい
ては、そのエネルギーが小さいため成形に長い時間を必
要とする点に問題があった。
The properties of a polymer molded body are strongly influenced by the orientation state of its molecular chains. Therefore, methods such as stretching and liquid crystal spinning have been developed and used to produce high-performance molded bodies. One such method is the application of a magnetic field to thermoliquid crystalline polymers, which is a relatively newly developed method. However, this method has a problem in that it requires a long time for molding because the energy is small.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、熱液晶性ポリマーの液晶溶融物に磁場を印加
するのに先立ち、該熱液晶性ポリマーに融点以上または
融点以下数十度°Cの温度における熱処理を行うことに
より、磁場での配向効果を向上させる方法を提供するも
のである。
In the present invention, prior to applying a magnetic field to a liquid crystal melt of a thermoliquid crystalline polymer, the thermoliquid crystalline polymer is subjected to heat treatment at a temperature of several tens of degrees Celsius above or below the melting point, thereby achieving orientation in a magnetic field. It provides a way to improve effectiveness.

即ち、本発明は熱液晶性高分子に液晶状態で磁場を印加
して高分子成形体を製造する方法において、咳高分子成
形体とほぼ同形に成形した固体状熱液晶性高分子に固相
状態で熱処理するか、又は該高分子成形体とほぼ同形状
に保持した熔融状態にある熱液晶性高分子に熱処理した
のち融点以下に冷却して得られる予備成形体を溶融し、
液晶状態で磁場を印加し成形することを特徴とする高分
子成形体の製造方法である。
That is, the present invention provides a method for producing a polymer molded article by applying a magnetic field to a thermoliquid crystalline polymer in a liquid crystal state, in which a solid thermoliquid crystalline polymer molded into a solid thermoliquid crystalline polymer molded in substantially the same shape as a cough polymer molded article is injected into a solid phase. melting a preform obtained by heat-treating the polymer in a molten state, or by heat-treating a thermoliquid crystalline polymer in a molten state held in approximately the same shape as the polymer mold, and then cooling it below its melting point;
This is a method for producing a polymer molded article, which is characterized by applying a magnetic field and molding it in a liquid crystal state.

以下、本発明を詳述する。The present invention will be explained in detail below.

本発明で使用される熱液晶ポリマーには特に限定はない
が、ポリエステル系、ポリアゾメチン系、あるいはポリ
エステルアミド系などのコポリマー系など広い範囲のも
のが利用出来る。以下に本発明で好適に使用される熱液
晶ポリマーを具体的に例示する。
The thermal liquid crystal polymer used in the present invention is not particularly limited, but a wide range of polymers can be used, including polyester, polyazomethine, and copolymers such as polyesteramide. Specific examples of thermoliquid crystal polymers suitably used in the present invention are shown below.

■ ポリエステルおよびそのコポリマー下記のジオール
、ジカルボン酸、オキシカルボン酸、ジアミン、アミノ
カルボン酸、アミノフェノール類の組合せから合成され
るポリマーが好ましく挙げられる。
(2) Polyesters and copolymers thereof Preferred examples include polymers synthesized from combinations of diols, dicarboxylic acids, oxycarboxylic acids, diamines, aminocarboxylic acids, and aminophenols listed below.

A′ A、A’  ニーOH,−COOH又は−NH2および
その誘導体 (A、A’が同一の場合も含む) Rニー0− −0−1−CHl−+TO−−C=Cまた
これらの化合物からハロゲン、アルキル、フェニレンな
どによる核置換により合成される化合物も含む。
A' A, A' OH, -COOH or -NH2 and derivatives thereof (including cases where A and A' are the same) R 0- -0-1-CHl-+TO--C=C and these compounds It also includes compounds synthesized from nuclear substitution by halogen, alkyl, phenylene, etc.

ジカルボン酸の好ましい具体例はテレフタル酸、イソフ
タル酸、ビス−4−カルボキシルフェニル1.4−<ン
ゼン、44′−カルボキシルジフェニル、ナフタリン−
2,6−ジカルボン酸、ナフタリン−1,5−ジカルボ
ン酸、ジフェニルケトン−4,4’−ジカルボン酸、メ
チルテレフタル酸、クロロテレフタル酸、フェニルテレ
フタル酸、2,5−ジメチルテレフタル酸、ジフェニル
−3,3′〜ジメチル−4,4′−ジカルボン酸、1,
2−ビス(フェノキシ)エタン−4,4′ジカルボン酸
、1.2−ビス(2−クロロフェノキシ)エタン−4,
4’−ジカルボン酸である。
Preferred specific examples of the dicarboxylic acid are terephthalic acid, isophthalic acid, bis-4-carboxylphenyl 1,4-<nzene, 44'-carboxyldiphenyl, naphthalene-
2,6-dicarboxylic acid, naphthalene-1,5-dicarboxylic acid, diphenylketone-4,4'-dicarboxylic acid, methylterephthalic acid, chloroterephthalic acid, phenylterephthalic acid, 2,5-dimethylterephthalic acid, diphenyl-3 ,3'-dimethyl-4,4'-dicarboxylic acid, 1,
2-bis(phenoxy)ethane-4,4'dicarboxylic acid, 1,2-bis(2-chlorophenoxy)ethane-4,
4'-dicarboxylic acid.

ジオールの好ましい具体例は、クロルハイドロキノン、
メチルハイドロキノン、26−ジヒドロキシナフタレン
、1,4−ジヒドロキシナフタレン、4.4′〜ジヒド
ロキシビフエニル、33′〜ジメチル−4,4’ −ジ
ヒドロキシジフェニル、アセトキシハイドロキノン、ニ
トロハイドロキノン、ジメチルアミノハイドロキノン、
15−ジヒドロキシナフトール、16−ジヒドロキシナ
フトール、ビス(4−ヒドロキシフェニル)1.4−ヘ
ンゼン、1,2−ビス(フェノキシ)エタン−4,4’
−ジオール、1,2−ビス(フェノキシ)エタン−4−
アミン−4′−ジオールである。
Preferred specific examples of diols include chlorohydroquinone,
Methylhydroquinone, 26-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 4,4'-dihydroxybiphenyl, 33'-dimethyl-4,4'-dihydroxydiphenyl, acetoxyhydroquinone, nitrohydroquinone, dimethylaminohydroquinone,
15-dihydroxynaphthol, 16-dihydroxynaphthol, bis(4-hydroxyphenyl) 1,4-henzene, 1,2-bis(phenoxy)ethane-4,4'
-diol, 1,2-bis(phenoxy)ethane-4-
Amine-4'-diol.

オキシカルボン酸の好ましい具体例は、p−ヒドロキシ
安息香酸、2−ヒドロキシ、6−カルボキシナフタレン
−4〜ヒドロキシビフエニルカルボン酸およびこれらの
誘導体である。
Preferred specific examples of oxycarboxylic acids are p-hydroxybenzoic acid, 2-hydroxy, 6-carboxynaphthalene-4-hydroxybiphenylcarboxylic acid and derivatives thereof.

熱液晶性ポリエステルは熔融重合等の公知の方法により
合成することができ、また上記のモノマーの組合せにお
いて各千ツマ−の比率は、必要物性、成形条件等によっ
て定められる。
The thermoliquid crystalline polyester can be synthesized by a known method such as melt polymerization, and the ratio of each monomer in the above monomer combination is determined depending on the required physical properties, molding conditions, etc.

■ ポリアゾメチンおよびそのコポリマー下記のジアル
デヒド、およびジアミンの組合せから合成される。
(2) Polyazomethine and its copolymer Synthesized from the following combinations of dialdehydes and diamines.

B+CH2−)−=−・B′ B、B’  ニーCOH又は −NH。B+CH2-)-=-・B' B, B' knee COH or -NH.

(B、B’が同一の場合も含む〕 R: −0−−=o−CH2CH2−ONHCCI−−
COO CH=CH−COO またこれらの化合物の、ハロゲン、アルキル、フェニレ
ンなどで核置換することにより得られる誘導体も用いら
れる。
(Including cases where B and B' are the same) R: -0--=o-CH2CH2-ONHCCI--
COO CH=CH-COO Also used are derivatives obtained by nuclear substitution of these compounds with halogen, alkyl, phenylene, etc.

ジアルデヒドの具体例としては、テレフタルアルデヒド
、クロロテレフタルアルデヒド、メチルテレフタルアル
デヒド、2−ヒドロキシテレフタルアルデヒド、2.6
−ナフタレンジアルデヒド、1.4−ナフタレンジアル
デヒド、イソフタルアルテヒド、ビス(4−ホルミルフ
ェニル)−1゜4−ベンゼン、ビス(3−ホルミルフェ
ニル)−1,4−ベンゼン、4−ホルミルフェニル−3
ホルミルフェニル−1,4−ベンゼン、1.5−ナフタ
リンジアルデヒド、4,4′−ジホルミルジフェニル、
4.3′−ホルミルジフェニル、2メトキシテレフタル
アルデヒド、2−フェニルテレフタルアルデヒド、2.
3−ビス(フェノキシ)ブタン−4,4′−ジアルデヒ
ド、2.3ビス(フェノキシ)プロパン−4,4′−ジ
アルデヒド、1,3−ビス(フェノキシ)プロピリデン
−44′−ジアルデヒドが挙げられ、このうち好ましい
ものはテレフタルアルデヒド、2,6ナフタリンジアル
デヒド、4.4′−ジホルミルジフェニル、2−メチル
テレフタルアルデヒドである。
Specific examples of dialdehyde include terephthalaldehyde, chloroterephthalaldehyde, methylterephthalaldehyde, 2-hydroxyterephthalaldehyde, 2.6
-Naphthalenedialdehyde, 1,4-naphthalenedialdehyde, isophthalaltehyde, bis(4-formylphenyl)-1°4-benzene, bis(3-formylphenyl)-1,4-benzene, 4-formylphenyl- 3
Formylphenyl-1,4-benzene, 1,5-naphthalene dialdehyde, 4,4'-diformyldiphenyl,
4.3'-formyldiphenyl, 2methoxyterephthalaldehyde, 2-phenylterephthalaldehyde, 2.
Examples include 3-bis(phenoxy)butane-4,4'-dialdehyde, 2.3-bis(phenoxy)propane-4,4'-dialdehyde, and 1,3-bis(phenoxy)propylidene-44'-dialdehyde. Among these, preferred are terephthalaldehyde, 2,6 naphthalene dialdehyde, 4,4'-diformyldiphenyl, and 2-methylterephthalaldehyde.

ジアミンの具体例としては、1,4−フェニレンジアミ
ン、メチル−1,4−フェニレンジアミン、クロル−1
,4−フェニレンアミン、3.3′ジメチル−4,4′
−ジアミノビフェニル、3゜3′−ジクロル−4,4′
−ジアミノビフェニル、2.2′−ジクロル−4,4′
−ジアミノビフェニル、2.2′−ジメチル−4,4′
−ジアミノビニニル、2.6−ナックレンジアミン、4
.4’ジアミノジフエニルスルフオン、4.4′−ジア
ミノジフェニルエーテル、ビス(4−アミノフェニル)
エタン、1.4−ビス(4−アミノフェニル)ブタン、
1.2−ビス(4−アミノフェノキシ)エチレン、3.
3’ −ジアミノヘンシフエノン、1,2−ビス(フェ
ノキシ)エタン−44′−ジアミン、1.2−ビス(3
−メチルチオフェノキシ)エタン−4,4′−ジアミン
、13−ビス(フェノキシ)プロパン−4,4′−ジア
ミンが挙げられ、このうち好ましいものはメチル−1,
4−フェニレンジアミン、2,2′−ジメチル−4,4
′−ジアミノビフェニル、2,6ナフタレンジアミン、
l、2−ビス(4−アミノフェノキシ)エチレンである
Specific examples of diamine include 1,4-phenylenediamine, methyl-1,4-phenylenediamine, chloro-1
, 4-phenyleneamine, 3,3'dimethyl-4,4'
-diaminobiphenyl, 3゜3'-dichloro-4,4'
-diaminobiphenyl, 2,2'-dichloro-4,4'
-diaminobiphenyl, 2,2'-dimethyl-4,4'
-Diaminovininyl, 2,6-nuclenediamine, 4
.. 4'-diaminodiphenyl sulfone, 4.4'-diaminodiphenyl ether, bis(4-aminophenyl)
Ethane, 1,4-bis(4-aminophenyl)butane,
1.2-bis(4-aminophenoxy)ethylene, 3.
3'-diaminohensiphenone, 1,2-bis(phenoxy)ethane-44'-diamine, 1,2-bis(3
-methylthiophenoxy)ethane-4,4'-diamine, 13-bis(phenoxy)propane-4,4'-diamine, and among these, preferred are methyl-1,
4-phenylenediamine, 2,2'-dimethyl-4,4
'-diaminobiphenyl, 2,6 naphthalenediamine,
1, 2-bis(4-aminophenoxy)ethylene.

前記のジアルデヒド、ジアミンおよびアミド結合含有ジ
アミンから共重合ポリアゾメチンを得るには、好ましく
は極性溶媒を用いて重合することにより製造することが
できる。すなわち、ジアミンおよびアミド結合含有ジア
ミンをN、N−ジメチルアセトアミド、N−メチルピロ
リドン−2、ヘキサメチルフォスフオルアミドまたはそ
の混合物等から選ばれた極性溶媒中に塩化リチウムを含
ませて溶解する。これにジアミンおよびアミド結合ジア
ミンの合計量とほぼ当量のジアルデヒドを加え、室温で
数時間ないし数日間反応させて製造される。
Copolymerized polyazomethine can be obtained from the dialdehyde, diamine, and amide bond-containing diamine by polymerization preferably using a polar solvent. That is, a diamine and an amide bond-containing diamine are dissolved in a polar solvent selected from N,N-dimethylacetamide, N-methylpyrrolidone-2, hexamethylphosphoramide, or a mixture thereof, with lithium chloride included therein. It is produced by adding dialdehyde in an amount approximately equivalent to the total amount of diamine and amide-bonded diamine, and reacting at room temperature for several hours to several days.

これらの熱液晶性高分子の好ましい重合度は、磁場配向
性と成形体の性能の面から決定される。
The preferred degree of polymerization of these thermoliquid crystalline polymers is determined from the viewpoints of magnetic field orientation and performance of the molded product.

動的粘性率でこれを示すと、磁場を印加する温度での値
が10〜100000ポイズ好ましくは100〜100
00ボイズを示す程度の熱液晶性高分子が好ましく使用
される。
Expressing this in terms of dynamic viscosity, the value at the temperature at which a magnetic field is applied is 10 to 100,000 poise, preferably 100 to 100 poise.
A thermoliquid crystalline polymer exhibiting 0.00 voids is preferably used.

熱液晶性高分子は、単独あるいは液晶性を失なわない範
囲で他の高分子、有機、無機の材料、例えば、染料、顔
料、フィラーおよび繊維状添加剤との組合せで使用され
ることも出来る。
Thermo-liquid crystalline polymers can be used alone or in combination with other polymers, organic and inorganic materials, such as dyes, pigments, fillers and fibrous additives, as long as the liquid crystallinity is not lost. .

本発明は、前述の熱液晶性高分子に液晶状態で磁場を印
加して成形する際、予め熱処理をすることを特徴とする
。熱処理をされる熱液晶性高分子は、磁場を印加して成
形する工程での形状と同一またはこれに近い形状に予め
予備成形される必要がある。これは磁場を作用させる過
程における熱液晶性高分子の流動変形を最小にするため
である。
The present invention is characterized in that, when forming the above-mentioned thermoliquid crystalline polymer by applying a magnetic field in the liquid crystal state, heat treatment is performed in advance. The thermoliquid crystalline polymer to be heat-treated needs to be preformed in advance into a shape that is the same as or close to the shape in the process of molding by applying a magnetic field. This is to minimize the flow deformation of the thermoliquid crystal polymer during the process of applying a magnetic field.

熱処理は固体状態あるいは熔融状態で行われる。Heat treatment is performed in the solid state or in the molten state.

固体状態で行う場合は、最終の所望の高分子成形体とほ
ぼ同形に成形した予備成形物に熱処理する。
In the case of performing the heat treatment in a solid state, a preform molded into approximately the same shape as the final desired polymer molded product is heat treated.

この場合、熱処理は予備成形物を溶融しない温度および
処理時間が通用される。融点以上の温度でも処理時間を
短くしてもよい。熱処理温度および処理時間は、好まし
くは融点から(融点−100”c )程度、数時間から
数1時間である。また溶融状態で行う場合には、最終の
所望の高分子成形体とほぼ同形状に、例えば金型中で、
保持された溶融状態にある熱液晶性高分子に熱処理を施
したのち、融点以下に冷却し、て予備成形体とする。こ
の場合の熱処理温度および処理時間は通常液晶状態の温
度で60分間以内で十分である。これらの熱処理により
磁場の印加効果が著しく向上する。
In this case, the heat treatment is performed at a temperature and for a treatment time that does not melt the preform. Even at temperatures above the melting point, the treatment time may be shortened. The heat treatment temperature and treatment time are preferably about from the melting point (melting point -100"c) for several hours to several hours. When the heat treatment is carried out in a molten state, the shape is approximately the same as the final desired polymer molded product. For example, in a mold,
After heat-treating the thermoliquid crystalline polymer in the maintained molten state, it is cooled to below its melting point to form a preform. In this case, the heat treatment temperature and treatment time are usually at a temperature of a liquid crystal state, and a time of 60 minutes or less is sufficient. These heat treatments significantly improve the effect of applying a magnetic field.

磁場を印加して成形するにあたっては、上記予備成形体
をその形状を維持したまま溶融し、熱液晶性高分子が熱
液晶状態にある温度で磁場を作用させればよい。
When forming by applying a magnetic field, the preform may be melted while maintaining its shape, and the magnetic field may be applied at a temperature at which the thermoliquid crystalline polymer is in a thermoliquid crystal state.

磁場を作用させる方法としては、前述の熱処理した熱液
晶性高分子の予備成形体を加熱し、熱液晶状態の溶融物
を磁場中に必要な時間保持すればよい。このとき、該ポ
リマーの流動変形は出来るだけ避ける方が良い。さらに
は、流動変形直後のポリマー乙、二硼場を作用させるこ
とも好ましくない。
As a method for applying a magnetic field, it is sufficient to heat the above-mentioned heat-treated thermoliquid crystalline polymer preform and hold the melt in a thermoliquid crystal state in the magnetic field for a necessary period of time. At this time, it is better to avoid flow deformation of the polymer as much as possible. Furthermore, it is also not preferable to apply a field to the polymer immediately after it has been fluidly deformed.

配向が進んだ後、冷却固化し配向構造を固定化する過程
は磁場中で行なう方法あるいは磁場外に取り出して行な
う方法のどちらも採ることが可能である。印加される磁
場は電磁石等で作ることが出来る。高度の配向を得るた
めには数千ガウス以上の磁場が必要で、20000ガウ
ス以上の磁場が好ましい。この場合には、超伝導磁石の
利用が好適である。また、印加する時間は5〜90分程
度である。
After the orientation has progressed, the process of cooling and solidifying to fix the orientation structure can be carried out either in a magnetic field or by taking it out of the magnetic field. The applied magnetic field can be created using an electromagnet or the like. To obtain a high degree of orientation, a magnetic field of several thousand Gauss or more is required, and a magnetic field of 20,000 Gauss or more is preferred. In this case, it is preferable to use superconducting magnets. Further, the application time is about 5 to 90 minutes.

本発明で製造する成形体としては例えば繊維、フィルム
、板および射出成形品等が代表的に挙げられる。
Typical examples of molded articles produced in the present invention include fibers, films, plates, and injection molded articles.

〔実施例〕〔Example〕

以下、本願発明を実施例により更に詳述するが、本願発
明はその要旨を超えない限り、実施例に限定されるもの
ではない。
Hereinafter, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the examples unless it exceeds the gist thereof.

尚、実施例中の配向度は、X線回折強度の方位角方向分
布より、その半(+!!幅Wを求め、次式により求めた
The degree of orientation in the examples was determined by determining the half (+!! width W) from the azimuthal distribution of X-ray diffraction intensity, and using the following formula.

目3U 実施例1および比較例1 メチル゛ノエニレンジアミン(0,05モル)とテレン
タルアルデヒド(0,05モル)を2請mf2のピリジ
ンを含む150w+1!のN−メチルピロリドンζこ溶
解17、室温にて8時間撹拌した。この反応により黄色
のポリアゾメチン(融点275°C)が得られた。該ポ
リマーを用い直径2請のロッドを280°Cにて溶融圧
縮成形法で製造した。このロッドを該ボリアヅメチンの
流動変形が生じないように同しユ内形状を持つ耐熱ポリ
マー容器中で280”c (熔融状B)で40分熱処理
し、室温まで冷却した。つづいて、再度290″Cまで
加熱し、5分間18 k にの磁場を作用させたあと、
磁場中で室温まで冷却して泊径2amのロッドを成形し
7た。このロッド内の分子配向を広角X線により評価し
た。
Item 3U Example 1 and Comparative Example 1 150w+1 containing 2 mf2 of pyridine containing methyl enylene diamine (0.05 mol) and terentaldehyde (0.05 mol)! The solution of N-methylpyrrolidone ζ was stirred at room temperature for 8 hours. This reaction yielded yellow polyazomethine (melting point 275°C). Using this polymer, a rod with a diameter of 2 was manufactured by melt compression molding at 280°C. This rod was heat-treated at 280"C (molten state B) for 40 minutes in a heat-resistant polymer container with the same inner shape to prevent flow deformation of the boriadumetine, and then cooled to room temperature again at 290"C. After heating to ℃ and applying a magnetic field of 18 k for 5 minutes,
It was cooled to room temperature in a magnetic field and molded into a rod with a diameter of 2 am. The molecular orientation within this rod was evaluated using wide-angle X-rays.

算出された配向度2ば80%であった。一方、熱処理を
行なわずに、直接同一条件で磁場を作用させた場合の配
向度は70%であった。この方法で前記80%の配向度
を得るためには、40分間磁場を作用さ・せる必要があ
った。
The calculated degree of orientation was 2:80%. On the other hand, when a magnetic field was directly applied under the same conditions without heat treatment, the degree of orientation was 70%. In order to obtain the 80% degree of orientation using this method, it was necessary to apply a magnetic field for 40 minutes.

実施例2および比較例2 2−ヒドロキシ−6−カルボキシルナフタレン(0,4
モル)、テレフタル酸(0,1モル)およびバラアミノ
フェノール(0,1モル)から合成された熱液晶性ポリ
エステルアミド(融点約300°C)を用い、310’
C7′熔融圧縮成形法により直径2脳のロッドを予備成
形した。
Example 2 and Comparative Example 2 2-hydroxy-6-carboxylnaphthalene (0,4
310'
Rods with a diameter of 2 mm were preformed using the C7' melt compression molding process.

このロッドを窒素気流中230°Cにで12時間熱処理
を行った。その後、内径2m+の耐熱性ポリマー容器中
に充填し、320 ’Cの温度で100キロガウスの磁
場を20分作用させたあと室温まで冷却し高度に配向し
た直径2賦のロッドを得た。
This rod was heat treated at 230°C in a nitrogen stream for 12 hours. Thereafter, it was filled into a heat-resistant polymer container with an inner diameter of 2 m+, and a magnetic field of 100 kilogauss was applied at a temperature of 320'C for 20 minutes, and then cooled to room temperature to obtain two highly oriented diameter rods.

比較のため、熱処理を行なわず、予備成形直後のロッド
を用いて、上記と同じ条件で磁場を印加し7たロッドを
成、形した。
For comparison, a rod was formed by applying a magnetic field under the same conditions as above, using a rod immediately after preforming without heat treatment.

この2つのロッドの曲げ弾性率を測定し比較したところ
、本発明のロッドは56GPaを示し、比較例の45 
G P aに対して大きく改良されたものであった。
When the bending elastic modulus of these two rods was measured and compared, the rod of the present invention showed 56 GPa, and the comparative example showed 45 GPa.
This was a great improvement over G P a.

〔発明の効果〕〔Effect of the invention〕

本発明方法によれば高配向した弾性率等の機械的物性に
優れた高分子成形体を得ることができる。
According to the method of the present invention, a highly oriented polymer molded article having excellent mechanical properties such as elastic modulus can be obtained.

また熱処理した予備成形体を用いて磁場成形するので、
熱処理装置と磁場成形装置は別個にすることができるも
ので工業上有利である。
In addition, since magnetic field forming is performed using a heat-treated preform,
The heat treatment device and the magnetic field forming device can be separated, which is industrially advantageous.

Claims (1)

【特許請求の範囲】[Claims] (1)熱液晶性高分子に液晶状態で磁場を印加して高分
子成形体を製造する方法において、該高分子成形体とほ
ぼ同形に成形した固体状熱液晶性高分子に固相状態で熱
処理するか、又は該高分子成形体とほぼ同形状に保持し
た溶融状態にある熱液晶性高分子に熱処理したのち融点
以下に冷却して得られる予備成形体を溶融し、液晶状態
で磁場を印加し成形することを特徴とする高分子成形体
の製造方法。
(1) In a method for producing a polymer molded body by applying a magnetic field to a thermoliquid crystalline polymer in a liquid crystal state, a solid thermoliquid crystalline polymer molded into almost the same shape as the polymer molded body is in a solid state. The preform obtained by heat treatment or heat treatment on a thermoliquid crystalline polymer in a molten state held in approximately the same shape as the polymer molded product and then cooling to below the melting point is melted and a magnetic field is applied in the liquid crystal state. A method for producing a polymer molded article, characterized by applying pressure and molding.
JP26362890A 1990-10-01 1990-10-01 Manufacture of polymer molded body Pending JPH04140115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26362890A JPH04140115A (en) 1990-10-01 1990-10-01 Manufacture of polymer molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26362890A JPH04140115A (en) 1990-10-01 1990-10-01 Manufacture of polymer molded body

Publications (1)

Publication Number Publication Date
JPH04140115A true JPH04140115A (en) 1992-05-14

Family

ID=17392157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26362890A Pending JPH04140115A (en) 1990-10-01 1990-10-01 Manufacture of polymer molded body

Country Status (1)

Country Link
JP (1) JPH04140115A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7079405B2 (en) 2002-07-11 2006-07-18 Polymatech Co., Ltd. Thermal conductive polymer molded article and method for producing the same
US7347955B2 (en) 2002-10-31 2008-03-25 Polymatech Co., Ltd. Heat conducting polymer mold products
JP2009179747A (en) * 2008-01-31 2009-08-13 Sekisui Chem Co Ltd New azomethine composition, its molded article, and electronic device containing it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7079405B2 (en) 2002-07-11 2006-07-18 Polymatech Co., Ltd. Thermal conductive polymer molded article and method for producing the same
EP1382437A3 (en) * 2002-07-11 2007-09-26 Polymatech Co., Ltd. Thermal conductive polymer molded article and method for producing the same
US7347955B2 (en) 2002-10-31 2008-03-25 Polymatech Co., Ltd. Heat conducting polymer mold products
JP2009179747A (en) * 2008-01-31 2009-08-13 Sekisui Chem Co Ltd New azomethine composition, its molded article, and electronic device containing it

Similar Documents

Publication Publication Date Title
JPS5943021A (en) Production of aromatic (co)polyester
TW200914487A (en) Aromatic liquid-crystalline polyester amide copolymer, prepreg including the same, prepreg laminate including the prepreg, metal film laminate including the prepreg, and printed wiring board including the prepreg
Hasegawa et al. Poly (ester imide) s possessing low CTE and low water absorption (II). Effect of substituents
CN101613604A (en) The liquid-crystalline polymer composition and the moulded product thereof that contain the hollow carbon material of nanostructure
JP4644933B2 (en) Method for producing molten liquid crystalline resin
EP0323160A2 (en) Films of wholly aromatic polyester and processes for preparation thereof
TW201141998A (en) Liquid-crystalline polymer composition and molded article thereof
JP2506352B2 (en) Method for producing wholly aromatic polyester and injection molded article using the same
TWI307348B (en) Nucleating agent and injection molding method of polyethylene terephthalate
JPH04140115A (en) Manufacture of polymer molded body
US3829406A (en) Fabricable infusible para-oxybenzoyl polyester production
EP0289802B1 (en) Optically anisotropic melt forming aromatic copolyesters based on t-butyl-4-hydroxybenzoic acid
JPH01299838A (en) Production of molded product, polyamide molded product and completed molded product
JPH0296101A (en) Production of polarizable film
JP2841557B2 (en) Manufacturing method of polymer molded body
JP2961857B2 (en) Method for producing polymer molded article
US4429104A (en) Prepration of shaped articles of intractable polymers
CN113736066A (en) Shape memory epoxy resin with adjustable recovery stress and recovery stress regulation and control method of shape memory epoxy resin
JPS61148237A (en) Molded polyester article and production thereof
KR101840065B1 (en) Method of preparing aromatic liquid crystalline polyester resin and method of aromatic liquid crystalline polyester resin compound using the aromatic liquid crystalline polyester resin prepared by the method
Kim et al. Synthesis and characterization of thermotropic liquid crystalline poly (ester‐imide) s
CN113717360A (en) High-heat-resistance LCP material easy to mold and process and preparation method thereof
JPH01195029A (en) Treatment of polyester molded product
JPH03122129A (en) Production of molded article of polymer
JPS63168430A (en) Wholly aromatic polyester