JPH04139719A - Vapor growth device - Google Patents

Vapor growth device

Info

Publication number
JPH04139719A
JPH04139719A JP26177790A JP26177790A JPH04139719A JP H04139719 A JPH04139719 A JP H04139719A JP 26177790 A JP26177790 A JP 26177790A JP 26177790 A JP26177790 A JP 26177790A JP H04139719 A JPH04139719 A JP H04139719A
Authority
JP
Japan
Prior art keywords
light source
reaction chamber
substrate
phase growth
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26177790A
Other languages
Japanese (ja)
Inventor
Hitoshi Shimizu
均 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP26177790A priority Critical patent/JPH04139719A/en
Publication of JPH04139719A publication Critical patent/JPH04139719A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a decline in the film growth rate of a vapor growth device by efficiently resolving or activating a gaseous starting material in a limited area between discharge electrodes in a reaction chamber by light energy and electric energy arriving at the area. CONSTITUTION:RF electrodes 24a and 24b across which a high-frequency voltage is applied from an RF power source 10 which gives electric energy to a gaseous starting material are formed to ring-like plate electrodes having an inside diameter nearly equal to the outside diameter of a reaction chamber 1 and held at positions on both sides of a substrate 8 in the reaction chamber 1 at an interval wider than the width of the substrate. Then thermal energy from a light source 5A arrives at the gaseous starting material without being interrupted by the electrodes 24a and 24b and efficiently heats the starting material and, at the same time, plasma 15 is formed in a limited area around the substrate 8 by the electric energy supplied from the power source 10. Therefore, the gaseous starting material is efficiently resolved and forms a thin film on the surface of the substrate 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光エネルギーによる熱化学反応もしくは光
化学反応と、電気エネルギーによる放電分解反応とを併
用して基板表面に両反応が複合された′rI41IKを
形成する気相成長装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention combines a thermochemical reaction or photochemical reaction using light energy and a discharge decomposition reaction using electrical energy to combine both reactions on the surface of a substrate. The present invention relates to a vapor phase growth apparatus for forming rI41IK.

〔従来の技術〕[Conventional technology]

近年、膜質(膜の緻密さ、内部応力等)、成膜特性(膜
厚分布、成膜速度等)の向上を図るため、従来の薄膜形
成方法を複合した薄膜形成技術が研究され、これに伴い
、この複合薄膜形成技術推進のための装置の研究も合わ
せて進められている。
In recent years, in order to improve film quality (film density, internal stress, etc.) and film formation characteristics (film thickness distribution, film formation speed, etc.), thin film formation technology that combines conventional thin film formation methods has been researched. Along with this, research on equipment to promote this composite thin film formation technology is also progressing.

第4図および第5図に従来の光エネルギーによる熱化学
反応と電気エネルギーによる放電分解反応とを複合した
気相成長装置の構造例を示す。
FIGS. 4 and 5 show examples of the structure of a conventional vapor phase growth apparatus that combines a thermochemical reaction using light energy and a discharge decomposition reaction using electrical energy.

第4図の装置は、石英ガラス等の耐熱誘電体からなり紙
面の左右方向の軸線をもつ、細長な円筒状に形成された
透明な反応室1と、複数のリング状赤外線ランプ5aを
リングの軸線方向に同軸に配置した円筒光源として形成
され反応室1を囲んで反応室1に同心に配された光源5
Aと、光源5Aと反応室1との間に反応室1と同心に配
されRF電源10にRF電源10の出力側コンデンサ1
0aを介して接続される網目状の円筒電極(以下放電電
極またはRF電極と記す)4Aとを備え、以下のような
手順で反応室1内に置かれた基板8の表面に薄膜を形成
する。
The apparatus shown in FIG. 4 includes a transparent reaction chamber 1 made of a heat-resistant dielectric material such as quartz glass, and formed into an elongated cylindrical shape with an axis in the left-right direction of the page, and a plurality of ring-shaped infrared lamps 5a arranged in a ring. A light source 5 formed as a cylindrical light source arranged coaxially in the axial direction and arranged concentrically around the reaction chamber 1 and surrounding the reaction chamber 1.
A, an output side capacitor 1 of the RF power supply 10 is arranged concentrically with the reaction chamber 1 between the light source 5A and the reaction chamber 1, and is connected to the RF power supply 10.
A thin film is formed on the surface of the substrate 8 placed in the reaction chamber 1 by the following procedure. .

まず、図示されない真空ポンプにより排気管2を介して
反応室1内を真空排気しておき、原料ガス3を反応室1
内にプラズマが発生する圧力になるように導入する。つ
いで光源5Aを点灯するとともにコンデンサ10aを出
力側に備えたRF電源10からRF電極4Aと、このR
F電極4Aと対をなすRF電極を兼ねる基板ホールダ6
と同電位の大地との間に100kHzないし数十MHz
オーダの高周波電圧を印加する。光源5Aのみによる熱
化学反応では単結晶膜が生成されやすく、RF電源10
のみによる放電分解反応では非結晶膜が生成されやすい
ため、光源5Aに供給する加熱電力と、RF電極4^と
基板ホールダ6との間に供給するプラズマ化電力とを目
的に応じ適宜に設定して原料ガスを分解し、基板ホール
ダ6に載置された基板8の表面に薄膜を形成させる。
First, the inside of the reaction chamber 1 is evacuated via the exhaust pipe 2 by a vacuum pump (not shown), and the raw material gas 3 is pumped into the reaction chamber 1.
The pressure is such that plasma is generated inside the chamber. Next, the light source 5A is turned on and the RF electrode 4A and this R
A substrate holder 6 that also serves as an RF electrode paired with the F electrode 4A
100kHz to several tens of MHz between
A high frequency voltage of the order of magnitude is applied. A single crystal film is likely to be produced in a thermochemical reaction using only a light source of 5A, and an RF power source of 10
Since a non-crystalline film is likely to be generated in the discharge decomposition reaction caused by a single discharge, the heating power supplied to the light source 5A and the plasma generation power supplied between the RF electrode 4^ and the substrate holder 6 should be set appropriately depending on the purpose. The source gas is decomposed to form a thin film on the surface of the substrate 8 placed on the substrate holder 6.

第5図の装置は、紙面の上下方向の軸線をもつ。The apparatus shown in FIG. 5 has an axis extending above and below the plane of the paper.

高さの低い円筒状に形成された反応室11内に、原料ガ
スに熱エネルギーを与える光源として、棒状ランプ5b
を一平面内に配した平面光源として形成された光源5B
を基板8の被成膜面側に基板と平行に配置するとともに
、この光源5Bと基板8との間に網目状の平面電極4B
をRF’til!10側のRF電極として配した構造の
ものであり、基板8の背面側からの基板の加熱は、基板
8の径よりもやや大きい径の熱伝達面を有する基板加熱
源9から基板ホールダ6を介して行われる。従って大地
側RFilt極は基板ホールダ6および基板加熱源9が
兼ねることになる。
A rod-shaped lamp 5b is used as a light source to provide thermal energy to the raw material gas in the reaction chamber 11 formed in a cylindrical shape with a low height.
A light source 5B formed as a flat light source with
is arranged on the film-forming surface side of the substrate 8 in parallel with the substrate, and a mesh-shaped plane electrode 4B is arranged between the light source 5B and the substrate 8.
RF'til! The substrate is heated from the back side of the substrate 8 by heating the substrate holder 6 from a substrate heating source 9 having a heat transfer surface with a diameter slightly larger than the diameter of the substrate 8. It is done through. Therefore, the substrate holder 6 and the substrate heating source 9 serve as the ground side RFilt pole.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように、従来の装置では、基板から見てRF電極と
光源とが重なった状態に配置されるため、光源から原料
ガスに到達する光エネルギーがRF電極により減殺され
、反応効率が低下し、膜の成長速度が低下するという問
題があった。また、網目状のRFii極は、光源の照射
面をほぼカバーする広がりを有し、プラズマが反応室内
全体に広がり、反応室の内側全体に薄膜が形成されてし
まい、クリーニングに時間がかかるという問題があった
In this way, in conventional devices, the RF electrode and the light source are arranged in an overlapping state when viewed from the substrate, so the light energy reaching the source gas from the light source is attenuated by the RF electrode, reducing reaction efficiency. There was a problem that the growth rate of the film decreased. In addition, the mesh-like RFii pole has a spread that almost covers the irradiation surface of the light source, and the plasma spreads throughout the reaction chamber, forming a thin film all over the inside of the reaction chamber, which takes time to clean. was there.

さらに、反応室内部に光源とRF電極とを収納したもの
では、光源とRF電極とにも薄膜が形成さ臂 れ、これらのクリーニングを頻女に行わなければならな
いという問題があった。
Furthermore, in the case where the light source and the RF electrode are housed inside the reaction chamber, there is a problem in that a thin film is also formed on the light source and the RF electrode, and these must be cleaned frequently.

本発明の目的は、光源からの光エネルギーを、RF電極
により減殺されることなく原料ガスに与えることができ
、かつ、原料ガスの分解もしくは活性化が基板まわりの
局限された領域のみに生じてクリーニング作業量が少な
くなる気相成長装置の構造を提供することである。
An object of the present invention is to be able to apply light energy from a light source to a source gas without being attenuated by an RF electrode, and to prevent decomposition or activation of the source gas from occurring only in a localized area around the substrate. It is an object of the present invention to provide a structure of a vapor phase growth apparatus that reduces the amount of cleaning work.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、この発明においては、誘電
体からなる透明な反応室と、該反応室内に導入された原
料ガスを照射する光源と、該原料ガスをプラズマ化する
電源に接続される1対の放電電極とを備え、原料ガスを
光エネルギーと電気エネルギーとにより分解もしくは活
性化して、反応室内に置かれた基板の表面に薄膜を形成
する気相成長装置を、前記光源が反応室の外部に配され
るとともに、前記対をなす放電電極がそれぞれ反応室を
ほぼ密に取り囲むリング状に形成され基板を挟む位置に
かつ基板幅より広めの間隔で基板の面に平行方向に対向
して配置された構造とするものとする。そして、この構
造の気相成長装置において、形成される膜の成分に応じ
、光源として、原料ガスを加熱する赤外線光源または原
料ガスを励起する紫外線光源のいずれかを任意に選択し
て装備しろる装置とすれば好適である。また、光源は、
反応室をぐるりと取り囲むリング状もしくは筒状の光源
として形成すればさらに好適である。
In order to solve the above problems, the present invention includes a transparent reaction chamber made of a dielectric material, a light source that irradiates the raw material gas introduced into the reaction chamber, and a power supply that converts the raw material gas into plasma. The light source is located in the reaction chamber, and the vapor phase growth apparatus is equipped with a pair of discharge electrodes, and forms a thin film on the surface of a substrate placed in the reaction chamber by decomposing or activating a source gas with light energy and electrical energy. The pair of discharge electrodes are each formed in a ring shape almost densely surrounding the reaction chamber, and are opposed in a direction parallel to the surface of the substrate at positions sandwiching the substrate and at intervals wider than the width of the substrate. The structure shall be arranged as follows. In the vapor phase growth apparatus having this structure, either an infrared light source that heats the raw material gas or an ultraviolet light source that excites the raw material gas can be arbitrarily selected and equipped as a light source depending on the components of the film to be formed. It is suitable to use it as a device. In addition, the light source is
More preferably, the light source is formed as a ring-shaped or cylindrical light source that surrounds the reaction chamber.

そして、このリング状もしくは筒状の光源を備えた装置
の具体構造としては、反応室が、基板が軸線と平行に置
かれる円筒状容器として形成されるとともに、光源が、
複数のリング状ランプをリングの軸線方向に同軸に配置
してなる円筒光源として形成され、該円筒光源が反応室
を囲んで反応室と同心に配された構造とするのがよい、
また、反応室が、基板と平行な壁面を基板の両面側に有
する。断面方形の容器として形成される場合には、光源
が、複数の棒状もしくはリング状ランプを一平面内に配
置してなる平面光源として形成され、該平面光源が基板
の被成膜面側に容器壁面と平行に配された装置構造とす
るのがよい。
As for the specific structure of the apparatus equipped with this ring-shaped or cylindrical light source, the reaction chamber is formed as a cylindrical container in which the substrate is placed parallel to the axis, and the light source is
It is preferable that the cylindrical light source is formed by a plurality of ring-shaped lamps arranged coaxially in the axial direction of the ring, and the cylindrical light source surrounds the reaction chamber and is arranged concentrically with the reaction chamber.
Further, the reaction chamber has walls parallel to the substrate on both sides of the substrate. When formed as a container with a rectangular cross section, the light source is formed as a planar light source with a plurality of rod-shaped or ring-shaped lamps arranged in one plane, and the planar light source is placed on the side of the substrate on which the film is to be formed. It is preferable to have a device structure arranged parallel to the wall surface.

〔作用〕[Effect]

複合エネルギーを用いる気相成長装置をこのような構造
に形成すると、光源からの光エネルギーが放電電極に妨
げられることなく原料ガスに到達するので、放電電極に
挟まれた反応室内の局限された領域内の原料ガスが、到
達した光エネルギーと電気エネルギーとにより効率よく
分解もしくは活性化され、成膜速度の低下を防止するこ
とができる。また、反応室内の汚損領域も局限され、反
応室をクリーニングする際のクリーニング作業量が少な
くなるとともに、光源および放電電極も反応室の外部に
設置されているので反応生成物により汚損されることは
なく、クリーニングの必要を生じないため、クリーニン
グのための装置の停止時間が短縮され、装置の運用効率
を上げることができる。
When a vapor phase growth apparatus using composite energy is formed into such a structure, the light energy from the light source reaches the raw material gas without being blocked by the discharge electrodes, so it can be used in a limited area in the reaction chamber between the discharge electrodes. The raw material gas inside is efficiently decomposed or activated by the light energy and electrical energy that have arrived, making it possible to prevent a decrease in the film formation rate. In addition, the contaminated area within the reaction chamber is localized, reducing the amount of cleaning work required when cleaning the reaction chamber, and since the light source and discharge electrode are also installed outside the reaction chamber, they are not contaminated by reaction products. Since there is no need for cleaning, the downtime of the device for cleaning can be shortened, and the operating efficiency of the device can be increased.

また、この構造の気相成長装置を、膜の成分に応じ、光
源として、例えば、Si膜形成時には赤外線光源を、s
tozM!形成時には紫外線光源を、というごとく、赤
外線光源と紫外線光源とのいずれか一方を任意に選択し
て装備しうる装置とすれば、装置を効率的に運用するこ
とができ、複合薄膜形成技術を効率的に推進することが
できる。紫外線光源を構成する紫外線ランプは、通常希
ガスを石英管に封入したものが用いられ、紫外線の放射
は石英管内のアーク放電により行われるため、石英管の
長さは光源の電源電圧に合わせて決められるが、赤外線
光源を構成する赤外線ランプは、通常発熱フィラメント
を石英管内に封止したものが用いられ、このフィラメン
トを、光源の電源電圧とランプ単体の所望発熱量 (ワ
ンド数)とに対し適宜に設計することにより、石英管の
長さを広い範囲で自由に設定することができ、紫外線ラ
ンプとランプ単体の管の長さを合わせることにより、い
ずれかの光源を任意に選択して成膜を行うことができる
In addition, the vapor phase growth apparatus having this structure can be used as a light source depending on the components of the film, for example, when forming a Si film, an infrared light source may be used.
tozM! If the device is equipped with an ultraviolet light source during formation, or can be equipped with either an infrared light source or an ultraviolet light source, the device can be operated efficiently and the composite thin film forming technology can be made more efficient. can be promoted in a The ultraviolet lamp that constitutes the ultraviolet light source is usually a quartz tube filled with rare gas, and the ultraviolet light is emitted by arc discharge within the quartz tube, so the length of the quartz tube should be adjusted according to the power supply voltage of the light source. However, the infrared lamp that constitutes the infrared light source usually has a heat-generating filament sealed in a quartz tube, and this filament is set according to the power supply voltage of the light source and the desired heat output (number of wands) of the lamp itself. By appropriately designing the length of the quartz tube, it is possible to freely set the length of the quartz tube within a wide range, and by matching the length of the tube of the ultraviolet lamp and the tube of the lamp alone, it is possible to freely select either light source. membrane can be done.

そして、これらの光源を、反応室をぐるりと取り囲むリ
ング状もしくは筒状の光源として形成すれば、反応室が
光源の内側に包まれて原料ガスが効率よく加熱もしくは
励起される。
If these light sources are formed as a ring-shaped or cylindrical light source that surrounds the reaction chamber, the reaction chamber is wrapped inside the light source and the raw material gas is efficiently heated or excited.

従って反応室を円筒状容器として形成するとともに、光
源を、複数のリング状ランプをリングの軸線方向に同軸
に配置してなる円筒光源として形成し、この円筒光源を
反応室を囲んで反応室と同心に配することにより、反応
室内の原料ガスは反応室の半径方向にかつ周方向均一に
光エネルギーを受け、原料ガスが効率よくかつ一様に加
熱もしくは励起される。また、この場合には、反応室が
、軸方向に直径の変化のない円筒として形成されている
から、これをほぼ密に囲む1対のリング状電極も当然、
同一形状、同一寸法に形成され、両電極の間に平行平板
電極に近位した電界分布を得ることができ、電気エネル
ギーを原料ガスに一様に分布して供給することができる
。また、目的とする膜質や成膜特性を得るだめの最適電
極間隔の調整、設定が容易に可能になる。
Therefore, the reaction chamber is formed as a cylindrical container, and the light source is formed as a cylindrical light source consisting of a plurality of ring-shaped lamps arranged coaxially in the axial direction of the ring. By arranging them concentrically, the raw material gas in the reaction chamber receives light energy uniformly in the radial direction and circumferential direction of the reaction chamber, and the raw material gas is efficiently and uniformly heated or excited. In addition, in this case, since the reaction chamber is formed as a cylinder whose diameter does not change in the axial direction, a pair of ring-shaped electrodes surrounding the reaction chamber almost densely also naturally
They are formed to have the same shape and the same dimensions, and an electric field distribution close to that of a parallel plate electrode can be obtained between the two electrodes, and electric energy can be supplied to the raw material gas in a uniformly distributed manner. Further, it becomes possible to easily adjust and set the optimum electrode spacing to obtain the desired film quality and film formation characteristics.

また、反応室を、基板と平行な壁面を基板の両面側に有
する。断面方形の容器として形成し、光源を、例えば、
複数の棒状ランプを一平面内に平行に配列するか、ある
いは径の異なるリング状ランプを一平面内に同心に配置
してなる平面光源とすることにより、単純な形状のラン
プを用いて断面方形の1例えば角筒状あるいは扁平円筒
状の反応室内の原料ガスを一様に加熱もしくは励起する
ことができる。
Further, the reaction chamber has walls parallel to the substrate on both sides of the substrate. It is formed as a container with a square cross section, and the light source is e.g.
By arranging multiple rod-shaped lamps in parallel in one plane, or by arranging ring-shaped lamps with different diameters concentrically in one plane to create a flat light source, a lamp with a simple shape can be used to create a light source with a square cross section. For example, it is possible to uniformly heat or excite the raw material gas within a reaction chamber shaped like a rectangular cylinder or a flat cylinder.

〔実施例〕〔Example〕

第1図に本発明の第1の実施例を示す0図において、第
4図および第5図と同一の部材には同一符号が付されて
いる8反応室1は軸方向に長い円筒状容器として形成さ
れ、光源5Aは、この実施例では、例えばSi膜形成を
目的として赤外線光源とし、複数のリング状赤外線ラン
プ5aをリングの軸線方向に同軸に配した円筒光源とし
て形成して反応室1を同心に包囲している。原料ガスに
電気エネルギーを与えるためのRFtl[10から高周
波。
In FIG. 1, which shows a first embodiment of the present invention, the same members as in FIGS. 4 and 5 are given the same reference numerals. In this embodiment, the light source 5A is an infrared light source for the purpose of forming a Si film, for example, and is formed as a cylindrical light source with a plurality of ring-shaped infrared lamps 5a arranged coaxially in the axial direction of the ring. concentrically surrounds. RFtl [10 to high frequency to give electrical energy to the raw material gas.

例えば13.56MHzの電圧が印加されるRF電極2
4a。
For example, the RF electrode 2 to which a voltage of 13.56 MHz is applied
4a.

24bは、反応室1の外径とほぼ等しい内径を有するリ
ング状の板電極として形成されて反応室1に嵌められ、
基板8を基板幅より広めの間隔で挟む位置に保持される
。この保持は、金属板を口字状に折り曲げて形成され両
側壁16a、 16bに反応室1の外径と同径の孔が形
成された支持部材16により、接続棒12a、12bを
介して行われる。なお、接続棒12aは先端部をRFi
i極24aに形成されたねじ孔にねじ込まれ、これに金
属管14で包まれた細径の碍管をかぶせた状態で側壁1
6BによりRFt源側端部を支持されている。
24b is formed as a ring-shaped plate electrode having an inner diameter approximately equal to the outer diameter of the reaction chamber 1, and is fitted into the reaction chamber 1;
The substrate 8 is held at a position sandwiching the substrate 8 at an interval wider than the substrate width. This holding is carried out via the connecting rods 12a and 12b by a support member 16 formed by bending a metal plate into a mouth shape and having holes with the same diameter as the outer diameter of the reaction chamber 1 in both side walls 16a and 16b. be exposed. Note that the tip of the connecting rod 12a is connected to RFi.
The side wall 1 is screwed into the screw hole formed in the i-pole 24a and covered with a small diameter insulator tube wrapped in the metal tube 14.
6B supports the RFt source side end.

気相成長装置をこのように形成すると、光源5Aからの
熱エネルギーはRF[極24a、 24bに妨げられる
ことなく原料ガスに到達して原料ガスを効率よく加熱す
るとともに、RFt源10から供給された電気エネルギ
ーによるプラズマ15が基板8まわりの局限された領域
内に形成され、この頬域内の原料ガスが熱エネルギーと
電気エネルギーとの複合エネルギーにより効率よく分解
されて基板表面に薄膜を形成する。そして、この領域外
では原料ガスの分解が起こらないように光源5Aに供給
する電力を設定することができるから、反応室内壁面の
汚損を生じない、従って反応室のクリーニングにも多く
の時間を必要としない。
When the vapor phase growth apparatus is formed in this way, the thermal energy from the light source 5A reaches the source gas without being hindered by the RF [poles 24a and 24b, efficiently heating the source gas, and is supplied from the RFt source 10. Plasma 15 is formed in a limited area around the substrate 8, and the raw material gas in this cheek area is efficiently decomposed by the combined energy of thermal energy and electric energy to form a thin film on the substrate surface. Since the power supplied to the light source 5A can be set so that decomposition of the raw material gas does not occur outside this area, the wall surface of the reaction chamber is not contaminated, and therefore a lot of time is required for cleaning the reaction chamber. I don't.

第2図に本発明の第2の実施例を示す、この実施例は、
例えば5iO1膜の形成を目的として、第1の実施例に
おける光源5Aを紫外線光源5Dで置き換え、原料ガス
の分解を紫外線の励起エネルギーと電気エネルギーとの
複合エネルギーにより行う低温気相成長装置の構成例を
示す、装置の構成は、基板8の加熱が基板加熱源9によ
り行われ、RF電極24aが同軸ケーブル17を介して
RFlii源1oに接続されているほかは第1の実施例
と同じである。
FIG. 2 shows a second embodiment of the invention, which includes:
For example, for the purpose of forming a 5iO1 film, the light source 5A in the first embodiment is replaced with an ultraviolet light source 5D, and a configuration example of a low-temperature vapor phase growth apparatus in which the source gas is decomposed using the combined energy of ultraviolet excitation energy and electric energy. The configuration of the device is the same as in the first embodiment except that the substrate 8 is heated by a substrate heating source 9 and the RF electrode 24a is connected to the RFlii source 1o via a coaxial cable 17. .

同軸ケーブルを用いてRF電極24aとRFl源10と
の接続を部品化できる理由は、光源5Dガ紫外線光源で
あり、接続部が加熱照射を受けないことによる。
The reason why the connection between the RF electrode 24a and the RFl source 10 can be made into components using a coaxial cable is that the light source 5D is an ultraviolet light source and the connection portion is not exposed to heating irradiation.

第3図に本発明の第3の実施例を示す、この実施例では
、反応室21が基板8と平行な壁面を基板8の両面側に
有する。断面方形の、例えば軸方向に長い角筒状あるい
は上記壁面を軸方向の両端面とする扁平な円筒状容器と
して形成され、一方、光源5Eは、反応室21が角筒状
に形成されている場合には、複数の棒状の赤外線ランプ
5eを一平面内に配置した平面光源として形成され、反
応室2]が扁平な円筒状に形成されている場合には、こ
こには図示していないが、径の異なるリング状の赤外線
ランプを一平面内に同心に配置した平面光源として形成
される。この平面光源5Eは、基板8の被成膜面側壁面
21aの上方に壁面21aと平行に配され、反応室21
内の原料ガスを均等に照射する。また、電極25a、2
5bはいずれも反応室21をほぼ密に囲む方形リング状
の板電極として構成されている。
FIG. 3 shows a third embodiment of the present invention. In this embodiment, a reaction chamber 21 has wall surfaces parallel to the substrate 8 on both sides of the substrate 8. The reaction chamber 21 of the light source 5E is formed as a rectangular cylinder with a rectangular cross section, for example, a rectangular cylinder that is long in the axial direction, or a flat cylindrical container with the above-mentioned wall surfaces serving as both axial end faces. In some cases, a plurality of rod-shaped infrared lamps 5e are arranged as a flat light source in one plane, and in a case where the reaction chamber 2 is formed in a flat cylindrical shape, a light source (not shown here) may be used. It is formed as a flat light source in which ring-shaped infrared lamps with different diameters are arranged concentrically within one plane. This plane light source 5E is arranged above the side wall surface 21a of the film-forming surface of the substrate 8 in parallel with the wall surface 21a, and
Evenly irradiates the raw material gas inside. Moreover, the electrodes 25a, 2
Each of electrodes 5b is configured as a rectangular ring-shaped plate electrode that almost tightly surrounds the reaction chamber 21.

〔発明の効果〕〔Effect of the invention〕

本発明においては、気相成長装置を上述のように構成し
たので、以下に述べるような効果が奏せられる。
In the present invention, since the vapor phase growth apparatus is configured as described above, the following effects can be achieved.

請求項1の装置では、光源からの光エネルギーが放電電
極に妨げられることなく原料ガスに到達するので、放電
電極に挟まれた反応室内の局限された領域内の原料ガス
が、到達した光エネルギーと電気エネルギーとにより効
率よく分解もしくは活性化され、成膜速度の低下を防止
することができる。また、反応室内の汚損8i域も局限
され、反応室をクリーニングする際のクリーニング作業
量が少なくなるとともに、光源および放電電極も反応室
の外部に設置されているので反応生成物により汚損され
ることはなく、クリーニングの必要を生じないため、ク
リーニングのための装置の停止時間が短縮され、装置の
運用効率を上げることができる。
In the apparatus of claim 1, the light energy from the light source reaches the source gas without being hindered by the discharge electrodes, so that the source gas within a localized area in the reaction chamber sandwiched between the discharge electrodes absorbs the reached light energy. It is efficiently decomposed or activated by the and electric energy, and a decrease in the film formation rate can be prevented. In addition, the contaminated area 8i inside the reaction chamber is localized, reducing the amount of cleaning work required when cleaning the reaction chamber, and since the light source and discharge electrode are also installed outside the reaction chamber, they are prevented from being contaminated by reaction products. Since there is no need for cleaning, the downtime of the device for cleaning can be shortened and the operational efficiency of the device can be increased.

請求項2および3に従い、気相成長装置を、赤外線光源
または紫外線光源を装備しうる装置としたものでは、両
光源を互いに置換可能に装置本体もしくは光源を形成す
ることにより、装置を効率的に運用することができ、原
料ガスの分解もしくは活性化に光エネルギーと電気エネ
ルギーとの複合されたエネルギーを用いる複合薄膜形成
技術を効率的に推進することができる。
According to claims 2 and 3, in the vapor phase growth apparatus which can be equipped with an infrared light source or an ultraviolet light source, the apparatus can be efficiently operated by forming the apparatus main body or the light source so that both light sources can be replaced with each other. It is possible to efficiently promote composite thin film formation technology that uses combined energy of light energy and electrical energy to decompose or activate raw material gas.

請求項4の装置では、反応室がリング状もしくは筒状の
光源に囲まれるため、原料ガスが効率よく加熱もしくは
励起される。従って所要複合エネルギーを得るための電
力量が少なくてすむ。
In the apparatus of the fourth aspect, since the reaction chamber is surrounded by the ring-shaped or cylindrical light source, the raw material gas is efficiently heated or excited. Therefore, less electric power is required to obtain the required combined energy.

請求項5の装置では、反応室内の原料ガスが反応室の半
径方向に、かつ周方向均一に光エネルギーを受け、原料
ガスが効率よくかつ一様に加熱もしくは励起される。ま
た、反応室をほぼ密に囲んで反応室の軸方向に対向する
リング状電極に挾まれた反応室内領域の原料ガスには、
両電極間に平行平板電極に近似した電界分布が得られる
ことから、電気エネルギーが一様に分布して供給される
In the apparatus of the fifth aspect, the raw material gas in the reaction chamber receives light energy uniformly in the radial direction and circumferential direction of the reaction chamber, so that the raw material gas is efficiently and uniformly heated or excited. In addition, the raw material gas in the region of the reaction chamber, which is sandwiched between ring-shaped electrodes that almost densely surround the reaction chamber and face each other in the axial direction of the reaction chamber,
Since an electric field distribution similar to that of parallel plate electrodes is obtained between the two electrodes, electric energy is supplied in a uniform distribution.

これにより、膜厚分布がより均一化されたWNWAを形
成することができる。また、目的とする膜質や成膜特性
を得るための最適電極間隔の調整、設定が容易に可能に
なる。
This makes it possible to form a WNWA with a more uniform film thickness distribution. Further, it becomes possible to easily adjust and set the optimum electrode spacing in order to obtain the desired film quality and film formation characteristics.

請求項6の装置では、単純な形状のランプを用いて断面
方形の1例えば角筒状あるいは扁平円筒状の反応室内の
原料ガスを一様に加熱もしくは励起することができる。
In the apparatus of the present invention, it is possible to uniformly heat or excite the raw material gas within a reaction chamber having a rectangular cross section, for example, a rectangular tube shape or a flat cylindrical shape, using a lamp having a simple shape.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図および第3図はそれぞれ本発明による気
相成長装置構造の第1.第2および第3の実施例を示す
部分断面券側面図、第4図および第5図はそれぞれ従来
の気相成長装置の構造例を示す側面断面図である。 1.11.21 :反応室、3:原料ガス、4A、4B
、24a24b、25a、25b : RF ii極 
(放電電極)  、5A、5B、5E:光源(赤外線光
源) 、5a、5b、5e :ランプ、5D:光源(紫
外線光源)、5d:ランプ、8:基板、10:RFt源
(を源)、15;プラズマ。 代j!人弁理士 山 口  巖
FIGS. 1, 2 and 3 respectively show a first structure of a vapor phase growth apparatus according to the present invention. Partial cross-sectional side views showing the second and third embodiments, and FIGS. 4 and 5 are side cross-sectional views showing structural examples of conventional vapor phase growth apparatuses, respectively. 1.11.21: Reaction chamber, 3: Raw material gas, 4A, 4B
, 24a24b, 25a, 25b: RF ii pole
(discharge electrode), 5A, 5B, 5E: light source (infrared light source), 5a, 5b, 5e: lamp, 5D: light source (ultraviolet light source), 5d: lamp, 8: substrate, 10: RFt source (source), 15; plasma. Daij! Personal patent attorney Iwao Yamaguchi

Claims (1)

【特許請求の範囲】 1)誘電体からなる透明な反応室と、該反応室内に導入
された原料ガスを照射する光源と、該原料ガスをプラズ
マ化する電源に接続される1対の放電電極とを備え、原
料ガスを光エネルギーと電気エネルギーとにより分解も
しくは活性化して、反応室内に置かれた基板の表面に薄
膜を形成する気相成長装置において、前記光源が反応室
の外部に配されるとともに、前記対をなす放電電極がそ
れぞれ反応室をほぼ密に取り囲むリング状に形成され基
板を挟む位置にかつ基板幅より広めの間隔で基板の面に
平行方向に対向して配置されていることを特徴とする気
相成長装置。 2)請求項第1項に記載の気相成長装置において、光源
を、原料ガスを加熱する赤外線光源としたことを特徴と
する気相成長装置。 3)請求項第1項に記載の気相成長装置において、光源
を原料ガスを励起する紫外線光源としたことを特徴とす
る気相成長装置。 4)請求項第1項、第2項または第3項に記載の気相成
長装置において、光源が反応室をぐるりと取り囲むリン
グ状もしくは筒状の光源として形成されていることを特
徴とする気相成長装置。 5)請求項第4項に記載の気相成長装置において、反応
室が、基板が軸線と平行に置かれる円筒状容器として形
成されるとともに、光源が、複数のリング状ランプをリ
ングの軸線方向に同軸に配置してなる円筒光源として形
成され、該円筒光源が反応室を囲んで反応室と同心に配
されていることを特徴とする気相成長装置。 6)請求項第1項、第2項または第3項に記載の気相成
長装置において、反応室が、基板と平行な壁面を基板の
両面側に有する、断面方形の容器として形成されるとと
もに、光源が、複数の棒状もしくはリング状ランプを一
平面内に配置してなる平面光源として形成され、該平面
光源が基板の被成膜面側に容器壁面と平行に配されてい
ることを特徴とする気相成長装置。
[Claims] 1) A transparent reaction chamber made of a dielectric, a light source that irradiates a source gas introduced into the reaction chamber, and a pair of discharge electrodes connected to a power source that turns the source gas into plasma. In a vapor phase growth apparatus that decomposes or activates a source gas with light energy and electrical energy to form a thin film on the surface of a substrate placed in a reaction chamber, the light source is arranged outside the reaction chamber. In addition, the pair of discharge electrodes are each formed in a ring shape that almost densely surrounds the reaction chamber, and are arranged opposite to each other in a direction parallel to the surface of the substrate at positions sandwiching the substrate and at intervals wider than the width of the substrate. A vapor phase growth apparatus characterized by: 2) The vapor phase growth apparatus according to claim 1, wherein the light source is an infrared light source that heats the raw material gas. 3) The vapor phase growth apparatus according to claim 1, wherein the light source is an ultraviolet light source that excites the raw material gas. 4) The vapor phase growth apparatus according to claim 1, 2 or 3, wherein the light source is formed as a ring-shaped or cylindrical light source surrounding the reaction chamber. Phase growth device. 5) In the vapor phase growth apparatus according to claim 4, the reaction chamber is formed as a cylindrical container in which the substrate is placed parallel to the axis, and the light source is provided with a plurality of ring-shaped lamps arranged in the direction of the axis of the ring. 1. A vapor phase growth apparatus characterized in that the cylindrical light source is formed as a cylindrical light source arranged coaxially with a reaction chamber, and the cylindrical light source surrounds a reaction chamber and is arranged concentrically with the reaction chamber. 6) In the vapor phase growth apparatus according to claim 1, 2, or 3, the reaction chamber is formed as a container having a rectangular cross section and having wall surfaces parallel to the substrate on both sides of the substrate. , the light source is formed as a planar light source formed by arranging a plurality of rod-shaped or ring-shaped lamps in one plane, and the planar light source is arranged parallel to the container wall surface on the film-forming surface side of the substrate. Vapor phase growth equipment.
JP26177790A 1990-09-29 1990-09-29 Vapor growth device Pending JPH04139719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26177790A JPH04139719A (en) 1990-09-29 1990-09-29 Vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26177790A JPH04139719A (en) 1990-09-29 1990-09-29 Vapor growth device

Publications (1)

Publication Number Publication Date
JPH04139719A true JPH04139719A (en) 1992-05-13

Family

ID=17366556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26177790A Pending JPH04139719A (en) 1990-09-29 1990-09-29 Vapor growth device

Country Status (1)

Country Link
JP (1) JPH04139719A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8622735B2 (en) * 2005-06-17 2014-01-07 Perkinelmer Health Sciences, Inc. Boost devices and methods of using them

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8622735B2 (en) * 2005-06-17 2014-01-07 Perkinelmer Health Sciences, Inc. Boost devices and methods of using them

Similar Documents

Publication Publication Date Title
US7683342B2 (en) Plasma source
US5614151A (en) Electrodeless sterilizer using ultraviolet and/or ozone
TWI465157B (en) Wide area radio frequency plasma apparatus for processing multiple substrates
EP2779803B1 (en) Plasma generation device for suppressing localised discharges
US5874014A (en) Durable plasma treatment apparatus and method
JP2009535825A (en) Substrate processing chamber using dielectric barrier discharge lamp assembly
CA2207655A1 (en) Plasma treatment apparatus and methods
JP2017054824A (en) Plasma ignition and sustaining methods and apparatuses
JP4608511B2 (en) Surface treatment equipment
JPH04139719A (en) Vapor growth device
US20020067130A1 (en) Flat-panel, large-area, dielectric barrier discharge-driven V(UV) light source
JP2010212226A (en) Plasma electrode, plasma generation nozzle using the same, plasma generator, and work treatment device
JP3230315B2 (en) Processing method using dielectric barrier discharge lamp
KR20050000449A (en) Apparatus for generating plasma at atmospheric pressure and plasma process system using the same
JPH11295500A (en) Ultraviolet ray irradiator
JP2008098474A (en) Plasma processing equipment, its operation method, plasma processing method and manufacturing method of electronic device
JP2003024773A5 (en)
TWI768546B (en) A plasma treatment device
WO2024029388A1 (en) Substrate treatment device, fluid activation device, substrate treatment method, and fluid activation method
JP3912139B2 (en) Discharge lamp device
JP4586488B2 (en) Excimer lamp lighting device and excimer lamp lighting method
JP6896911B2 (en) Batch type substrate processing equipment
KR102522689B1 (en) Underwater Plasma Generating Apparatus
JP4271724B1 (en) Excimer lamp
JP2009194018A (en) Atomic layer growth apparatus and method of growing atomic layer