JPH04139219A - Crosslinked rubber composition - Google Patents

Crosslinked rubber composition

Info

Publication number
JPH04139219A
JPH04139219A JP26055490A JP26055490A JPH04139219A JP H04139219 A JPH04139219 A JP H04139219A JP 26055490 A JP26055490 A JP 26055490A JP 26055490 A JP26055490 A JP 26055490A JP H04139219 A JPH04139219 A JP H04139219A
Authority
JP
Japan
Prior art keywords
crosslinking
butadiene
styrene
polymer
hydrogenated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26055490A
Other languages
Japanese (ja)
Other versions
JP3199374B2 (en
Inventor
Akira Saito
章 斉藤
Seishiro Komura
小村 誠志郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP26055490A priority Critical patent/JP3199374B2/en
Publication of JPH04139219A publication Critical patent/JPH04139219A/en
Application granted granted Critical
Publication of JP3199374B2 publication Critical patent/JP3199374B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain the title composition excellent durability, heat resistance and ozone resistance and useful for industrial good, etc., by crosslinking a specific hydrogenated conjugated diene-based polymer consisting of styrene and butadiene. CONSTITUTION:The objective composition obtained by crosslinking a hydrogenated conjugated dine-based polymer obtained by crosslinking a polybutadiene whose contents of stylene and butadiene are 0-40wt.%, and 100-60wt.%, respectively, and having 25-70%, pref., 30-55% of vinyl binding amount or a hydrogenated conjugated diene-based polymer wherein 97-100% of the olefinic unsaturated double bonds of a styrene-butadiene copolymer are hydrogenated with a crosslinking agent system consisting of a radical generating compound such as dicumyl peroxide and a crosslinking assistant such as sulfur.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、耐熱性、機械的強度、耐候性、耐オゾン性、
耐久性などに優れた水素添加共役ジエン系重合体の架橋
ゴム組成物に関する。
[Detailed Description of the Invention] [Industrial Fields of Application] The present invention is applicable to heat resistance, mechanical strength, weather resistance, ozone resistance,
This invention relates to a crosslinked rubber composition made of a hydrogenated conjugated diene polymer that has excellent durability.

[従来の技術] ゴム組成物は、他の材料に比較して弾性率が低く大きな
変形が可能であること、振動吸収性能を有していること
、大きな摩擦抵抗を有していること等の特徴を生かし各
方面に使用されている。
[Prior Art] Rubber compositions have the following properties: compared to other materials, rubber compositions have a low elastic modulus and are capable of large deformations, have vibration absorption performance, and have large frictional resistance. It is used in various fields to take advantage of its characteristics.

近年、自動車部品、電気部品、工業用品、建築材料など
に使用されるゴム組成物に対し、使用温度、使用環境の
過酷化、使用期間の延長などの要因により、耐熱性、耐
候性、耐オゾン性、耐久性の改良が求められてきている
In recent years, rubber compositions used for automobile parts, electrical parts, industrial products, building materials, etc. have become less resistant to heat, weather, and ozone due to factors such as operating temperatures, harsher operating environments, and longer operating periods. There is a growing demand for improvements in performance and durability.

従来よりある各種の原料ゴムポリマーの中で、天然ゴム
、ポリブタジェンゴム、スチレン−ブタジエンゴムなど
の共役ジエン系ゴムを主体とするゴム組成物は、いずれ
も耐オゾン性か十分ではなく、また耐熱性が劣るため、
屋外で多く使用される用途や、高温に長時間さらされる
用途には、必ずしも適していない。
Among various conventional raw material rubber polymers, rubber compositions based on conjugated diene rubbers such as natural rubber, polybutadiene rubber, and styrene-butadiene rubber do not have sufficient ozone resistance, and Due to poor heat resistance,
It is not necessarily suitable for applications that are often used outdoors or applications that are exposed to high temperatures for long periods of time.

一方、不飽和結合が少ないエチレン−プロピレン共重合
体ゴム(EPM)やエチレン−プロピレン−ポリエン共
重合体ゴム(EPDM)は、耐候性、耐オゾン性、耐熱
性が共役ジエン系ゴムより良好であるため、自動車部品
、耐熱ホース類、建築資材等に使用されるようになって
きている。しかし、EPMやEPDMを主体とするゴム
組成物は、耐圧縮永久歪性、機械的強度、耐発熱性など
が必ずしも十分でなかった。
On the other hand, ethylene-propylene copolymer rubber (EPM) and ethylene-propylene-polyene copolymer rubber (EPDM), which have fewer unsaturated bonds, have better weather resistance, ozone resistance, and heat resistance than conjugated diene rubber. Therefore, it has come to be used in automobile parts, heat-resistant hoses, construction materials, etc. However, rubber compositions mainly composed of EPM or EPDM have not always had sufficient compression set resistance, mechanical strength, heat resistance, etc.

この様な状況下において、従来の共役ジエン系重合体の
耐候性、耐オゾン性を改良するポリマーとして、共役ジ
エン系重合体の不飽和二重結合を水素添加した重合体及
びそのゴム組成物が、特公昭46−35497号公報、
特公昭47−8928号公報、特公昭48−30351
号公報、特開昭52−96695号公報等に提案されて
いるが、加工性、強度、耐摩耗性などが十分でないとさ
れている。さらに、上記の水素添加重合体を改良するも
のとして、特開昭60252643号公報、特開昭62
−283105号公報、特開昭63−41547号公報
等に特定の構造のポリブタジェンあるいはスチレン−ブ
タジエン共重合体の水素添加ポリマーおよびその組成物
が開示されている。しかし、これらに開示された技術は
、ゴム組成物の加工性改良や耐摩耗性等のタイヤ用途の
性能改良を目的としており、これらの組成物の耐オゾン
性は、従来の共役ジエン系重合体の組成物に比べである
程度の改良が見られるものの、EPDMに比べ劣り、耐
熱性も十分とはいえない。
Under these circumstances, polymers in which the unsaturated double bonds of conjugated diene polymers are hydrogenated and rubber compositions thereof are being developed as polymers that improve the weather resistance and ozone resistance of conventional conjugated diene polymers. , Special Publication No. 46-35497,
Special Publication No. 47-8928, Special Publication No. 48-30351
However, it is said that the workability, strength, wear resistance, etc. are insufficient. Further, as improvements to the above hydrogenated polymers, Japanese Patent Laid-Open No. 60252643 and Japanese Patent Laid-Open No. 62
Hydrogenated polymers of polybutadiene or styrene-butadiene copolymers with specific structures and compositions thereof are disclosed in Japanese Patent Application Laid-open No. 283105, Japanese Patent Application Laid-Open No. 63-41547, and the like. However, the technologies disclosed in these publications are aimed at improving the processability of rubber compositions and the performance of tire applications such as wear resistance, and the ozone resistance of these compositions is higher than that of conventional conjugated diene polymers. Although some improvement can be seen compared to the composition of , it is inferior to EPDM and its heat resistance is not sufficient.

更に、特開平1−185341号公報、特開平2−70
733号公報、特開平2−70734号公報には、耐候
性の良好な水素添加共役ジエン系重合体ゴム組成物が示
されているが、これらに開示される水素添加共役ジエン
系重合体を使用しただけでは、充分な強度、耐候性、耐
オゾン性、耐熱性、耐圧縮永久歪性を有したゴム組成物
を得ることはできない。
Furthermore, JP-A No. 1-185341, JP-A No. 2-70
No. 733 and JP-A-2-70734 disclose hydrogenated conjugated diene polymer rubber compositions with good weather resistance. By simply doing so, it is not possible to obtain a rubber composition having sufficient strength, weather resistance, ozone resistance, heat resistance, and compression set resistance.

[発明が解決しようとする課題] 本発明は、前記の従来の技術的な課題を解決すべくなさ
れたものであり、耐オゾン性、耐熱性、耐圧縮永久歪性
、機械的強度、耐発熱性の良好なゴム組成物を提供する
ことを目的とする。
[Problems to be Solved by the Invention] The present invention has been made to solve the above-mentioned conventional technical problems, and improves ozone resistance, heat resistance, compression set resistance, mechanical strength, and heat resistance. The object of the present invention is to provide a rubber composition with good properties.

[課題を解決するための手段] 本発明者らは、水素添加共役ジエン系重合体のポリマー
構造および架橋方法に関して鋭意検討を進めた結果、上
記問題点を解決するためには、水素添加共役ジエン系重
合体のポリマー構造を規定するだけでは十分でなく、架
橋方法に関する規定が必要であること、すなわち、水素
添加共役ジエン系重合体の水添率を極めて高くし、かつ
特定の架橋系を使用することにより前記問題点を解決で
きることを見出し、本発明に到達した。
[Means for Solving the Problems] As a result of intensive studies on the polymer structure and crosslinking method of hydrogenated conjugated diene polymers, the present inventors found that in order to solve the above problems, hydrogenated conjugated diene polymers It is not enough to specify the polymer structure of the polymer, but it is also necessary to specify the crosslinking method, that is, to make the hydrogenation rate of the hydrogenated conjugated diene polymer extremely high and to use a specific crosslinking system. The inventors have discovered that the above-mentioned problems can be solved by doing the following, and have arrived at the present invention.

すなわち、本発明は、 スチレン含有量が0〜40重量%、ブタジェン含有量が
100〜60重量%、ブタジェン部分のビニル結合量が
25〜70%であるポリブタジェンまたはスチレン−ブ
タジエン共重合体のオレフィン性不飽和二重結合の97
〜100%が水素添加された水素添加共役ジエン系重合
体を、ラジカル発生剤と架橋助剤よりなる架橋剤系によ
って架橋したことを特徴とする架橋ゴム組成物である。
That is, the present invention provides an olefinic property of a polybutadiene or styrene-butadiene copolymer having a styrene content of 0 to 40% by weight, a butadiene content of 100 to 60% by weight, and a vinyl bond content of the butadiene moiety of 25 to 70%. 97 unsaturated double bonds
This is a crosslinked rubber composition characterized in that a hydrogenated conjugated diene polymer that is hydrogenated to 100% is crosslinked using a crosslinking agent system consisting of a radical generator and a crosslinking aid.

本発明の架橋ゴム組成物に使用するゴム状重合体は、特
定構造のポリブタジェンまたはスチレン−ブタジエン共
重合体のオレフィン性不飽和二重結合の97〜100%
が水素添加された水素添加共役ジエン系重合体である。
The rubbery polymer used in the crosslinked rubber composition of the present invention has a specific structure of polybutadiene or styrene-butadiene copolymer with 97 to 100% of the olefinically unsaturated double bonds.
is a hydrogenated conjugated diene polymer.

この、オレフィン性不飽和二重結合の水素添加率が97
%未満では、架橋ゴム組成物の耐候性および耐オゾン性
が劣る。
The hydrogenation rate of this olefinically unsaturated double bond is 97
If it is less than %, the weather resistance and ozone resistance of the crosslinked rubber composition will be poor.

水素添加率は、98〜100%の範囲が好ましく、99
〜100%の範囲がさらに好ましい。
The hydrogenation rate is preferably in the range of 98 to 100%, and 99
A range of 100% is more preferable.

水素添加する以前のポリブタジェンまたはスチレン−ブ
タジエン共重合体は、炭化水素溶剤中で、アルカリ金属
あるいはアルカリ土類金属を重合触媒とし、必要に応じ
て助触媒としてアルコキシド、有機酸塩、さらにビニル
結合量調節剤として、エーテル、ポリエーテル、三級ア
ミン等の極性化合物を添加し、ブタジェンを重合あるい
はスチレンとブタジェンを共重合するアニオン重合法に
より得られ、特に有機リチウム化合物を重合触媒とする
重合方法で得るのが好ましい。
Before hydrogenation, polybutadiene or styrene-butadiene copolymer is polymerized in a hydrocarbon solvent using an alkali metal or alkaline earth metal as a polymerization catalyst, and if necessary, an alkoxide, an organic acid salt, and a vinyl bond amount as a cocatalyst. It is obtained by an anionic polymerization method in which butadiene is polymerized or styrene and butadiene are copolymerized by adding a polar compound such as ether, polyether, or tertiary amine as a regulator, and in particular, by a polymerization method using an organic lithium compound as a polymerization catalyst. It is preferable to obtain

水素添加する以前のポリブタジェンまたはスチレン−ブ
タジエン共重合体のスチレン含有量は0〜40重量%の
範囲であり、ブタジェン含有量は100〜60重量%の
範囲である。スチレン含有量が40重量%を超えると、
ゴム弾性が充分でなくなる。スチレン含有量は0〜30
重量%の範囲が、良好な耐熱性をもたらすためにさらに
好ましく、0〜20重量%の範囲が特に好ましい。
The styrene content of the polybutadiene or styrene-butadiene copolymer before hydrogenation ranges from 0 to 40% by weight, and the butadiene content ranges from 100 to 60% by weight. When the styrene content exceeds 40% by weight,
Rubber elasticity becomes insufficient. Styrene content is 0-30
A range of % by weight is more preferred to provide good heat resistance, and a range of 0 to 20% by weight is particularly preferred.

スチレン−ブタジエン共重合体の場合、目的に応じ、ラ
ンダム共重合体またはブロック共重合体およびそれらを
組み合わせた共重合体が用いられ、架橋ゴム組成物を特
にゴム弾性の良好なものにする場合は、いわゆるブロッ
クスチレン量(1,M、 K。
In the case of styrene-butadiene copolymers, random copolymers, block copolymers, and copolymers combining them are used depending on the purpose, and when the crosslinked rubber composition is made to have particularly good rubber elasticity, , so-called block styrene content (1, M, K.

Ithoff、 J、Polymer Sci、 1 
、429(1946)の方法による)が重合体の5重量
%未満であるランダム共重合体が好ましく、一方、架橋
ゴム組成物が硬度の高い物とするには、ブロックスチレ
ン量が5重量%以上含まれるブロック共重合体であるこ
とが好ましい。スチレンは、分子鎖に均一に存在しても
、分子鎖に沿って増加または減少するものでも良く、ス
チレン量が異なるランダム部分が結合した形のものでも
良い。
Ithoff, J., Polymer Sci, 1
, 429 (1946)) is preferably less than 5% by weight of the polymer. On the other hand, if the crosslinked rubber composition is to have high hardness, the amount of block styrene should be 5% by weight or more. Preferably, it is a block copolymer containing. Styrene may exist uniformly in the molecular chain, may increase or decrease along the molecular chain, or may be in the form of bonding random parts with different amounts of styrene.

水素添加する以前のポリブタジェンまたはスチレン−ブ
タジエン共重合体のブタジェン部分のビニル結合量は2
5〜70%の範囲である。
The amount of vinyl bonds in the butadiene moiety of polybutadiene or styrene-butadiene copolymer before hydrogenation is 2
It ranges from 5 to 70%.

ブタジェン部分のビニル結合量が少なくなると、水素添
加後のゴム状重合体が結晶化して樹脂的性質を示す傾向
が強くなる。この場合、架橋ゴム組成物の室温での引張
強度が高く、硬度も高くなるが、使用温度領域すなわち
0〜100℃間での弾性率の温度変化が大きく好ましく
ない。ゴム状重合体が結晶化しにくくなるビニル結合量
は、スチレン含有量か多いほど少なくなる傾向にある。
When the amount of vinyl bonds in the butadiene moiety decreases, the rubbery polymer after hydrogenation has a strong tendency to crystallize and exhibit resinous properties. In this case, the tensile strength and hardness of the crosslinked rubber composition at room temperature are high, but the temperature change in the elastic modulus in the service temperature range, that is, 0 to 100° C. is large, which is not preferable. The amount of vinyl bonds, which makes it difficult for a rubbery polymer to crystallize, tends to decrease as the styrene content increases.

−方、ブタジェン部分のビニル結合量が多くなると、機
械的強度が低下して耐久性が問題となり、さらにガラス
転移温度が高くなるため低温性能も悪化する。
- On the other hand, if the amount of vinyl bonds in the butadiene moiety increases, the mechanical strength will decrease and durability will become a problem, and the glass transition temperature will also increase, resulting in poor low-temperature performance.

ブタジェン部分のビニル結合量は、30〜60%の範囲
が、ゴム弾性、低温性能、圧縮永久歪みのバランスを考
慮すると好まし句、30〜55%の範囲がさらに好まし
い。
The amount of vinyl bond in the butadiene moiety is preferably in the range of 30 to 60%, considering the balance of rubber elasticity, low temperature performance, and compression set, and more preferably in the range of 30 to 55%.

ブタジェン部分のビニル結合は、分子内に均一に存在し
ても、分子鎖に沿って増加あるいは減少するもの、ブロ
ック状に存在しても良い。
The vinyl bonds of the butadiene moiety may exist uniformly within the molecule, may increase or decrease along the molecular chain, or may exist in the form of blocks.

また、水素添加する前の重合体は直鎖状構造であっても
、分岐状構造であっても、それらが混合された構造であ
っても良い。分岐構造とすることにより、水素添加後の
重合体の加工性の改良がはかられるが、極端な分岐構造
は自由分子末端を増加させ、架橋ゴム組成物の耐発熱性
、機械的強度を損なうので好ましくない。分岐構造を有
する重合体は、前記のアニオン重合法において、重合体
の活性末端を、多官能性のカップリング剤1例えば、四
塩化ケイ素、四塩化スズ、アジピン酸ジメチル、ポリエ
ポキシ化合物などと反応させることにより得られる。
Moreover, the polymer before hydrogenation may have a linear structure, a branched structure, or a mixed structure thereof. A branched structure improves the processability of the polymer after hydrogenation, but an extremely branched structure increases the number of free molecular ends, impairing the heat resistance and mechanical strength of the crosslinked rubber composition. So I don't like it. A polymer having a branched structure is produced by reacting the active end of the polymer with a polyfunctional coupling agent 1 such as silicon tetrachloride, tin tetrachloride, dimethyl adipate, or a polyepoxy compound in the anionic polymerization method described above. It can be obtained by

又、水素添加する前の重合体の重量平均分子量(M w
 )は、1〜100万の範囲であることが好ましく、分
子量分布(M w / M n )は、1.2〜5.0
の範囲であることが好ましい。
In addition, the weight average molecular weight (M w
) is preferably in the range of 1 to 1 million, and the molecular weight distribution (M w / M n ) is 1.2 to 5.0.
It is preferable that it is in the range of .

これらの水素添加前の重合体の製造プロセスは、バッチ
プロセス、連続プロセスおよびそれらの組み合わせのい
ずれも用いることができる。
The process for producing the polymer before hydrogenation can be a batch process, a continuous process, or a combination thereof.

本発明の水素添加重合体は、上記の共役ジエン系重合体
を炭化水素溶剤中において1〜100kg/ciの圧力
をかけ水素化触媒の存在下で、所定の水素化率まで水素
添加反応させることにより得られる。
The hydrogenated polymer of the present invention can be obtained by subjecting the above conjugated diene polymer to a hydrogenation reaction in a hydrocarbon solvent under a pressure of 1 to 100 kg/ci in the presence of a hydrogenation catalyst to a predetermined hydrogenation rate. It is obtained by

水素添加反応の方法および条件は、本発明で限定する高
い水素添加率の重合体が得られるのであれば、いずれの
方法および条件を用いることも可能である。それらの水
素添加方法の例としては、チタンの有機金属化合物を主
成分とする触媒を水素添加触媒として使用する方法、鉄
、ニッケル、コバルトの有機化合物とアルキルアルミニ
ウム等の有機金属化合物からなる触媒を使用する方法、
ルテニウム、ロジウム等の有機金属化合物の有機錯触媒
を使用する方法、パラジウム、白金、ルテニウム、コバ
ルト、ニッケル等の金属を、カーボン、シリカ、アルミ
ナ等の担体に担持した触媒を使用する方法などがある。
Any method and conditions for the hydrogenation reaction may be used as long as a polymer having a high hydrogenation rate as defined in the present invention can be obtained. Examples of these hydrogenation methods include methods that use catalysts mainly composed of organometallic compounds of titanium, and methods that use catalysts that consist of organic compounds of iron, nickel, and cobalt and organometallic compounds such as alkyl aluminum. how to use,
There are methods that use organic complex catalysts of organometallic compounds such as ruthenium and rhodium, and methods that use catalysts in which metals such as palladium, platinum, ruthenium, cobalt, and nickel are supported on supports such as carbon, silica, and alumina. .

各種の方法の中では。Among various methods.

最近開発されたチタンの有機金属化合物単独またはそれ
とリチウム、マグネシウム、アルミニウムの有機金属化
合物とからなる均一触媒(特開昭59−133203号
公報、特開昭60−220147号公報)を用い、低圧
、低温の温和な条件で水素添加する方法が工業的に好ま
しい。
Using a recently developed homogeneous catalyst consisting of an organometallic compound of titanium alone or an organometallic compound of lithium, magnesium, or aluminum (Japanese Unexamined Patent Publication No. 133203/1983, No. 220147/1983), low pressure, A method of hydrogenation under mild conditions at low temperatures is industrially preferred.

つぎに、発明の架橋ゴム組成物ラジカル発生剤と架橋助
剤とからなる架橋系によって架橋される。
Next, the crosslinked rubber composition of the invention is crosslinked using a crosslinking system consisting of a radical generator and a crosslinking aid.

本発明で使用する高い水素添加率の重合体は、天然ゴム
、BR,SBRなどの共役ジエン系重合体やEPDMの
架橋剤として用いる硫黄と加硫促進剤からなる組合せの
架橋系では、充分な架橋密度を得ることが出来ない。又
、本発明で使用する高い水素添加率の重合体は、ラジカ
ル発生剤単独の架橋系でも充分な架橋密度を得ることが
出来ない。
The polymer with a high hydrogenation rate used in the present invention is a conjugated diene polymer such as natural rubber, BR, or SBR, or a crosslinking system consisting of a combination of sulfur and a vulcanization accelerator used as a crosslinking agent for EPDM. Unable to obtain crosslink density. Furthermore, in the polymer with a high hydrogenation rate used in the present invention, a sufficient crosslink density cannot be obtained even with a crosslinking system using only a radical generator.

本発明で示すごとく、ラジカル発生剤と特定の種類の架
橋助剤を特定の比率の範囲で組合せることにより、本発
明で使用する高い水素添加率の重合体は十分な架橋密度
を得ることが可能となり、架橋ゴム組成物は、高い引張
強度、低い圧縮永久歪、低い発熱性、良好な耐熱性、良
好な耐久性、良好な耐候性、耐オゾン性を示す。
As shown in the present invention, by combining a radical generator and a specific type of crosslinking aid in a specific ratio range, the highly hydrogenated polymer used in the present invention can obtain sufficient crosslink density. The crosslinked rubber composition exhibits high tensile strength, low compression set, low heat generation, good heat resistance, good durability, good weather resistance, and ozone resistance.

架橋剤として使用するラジカル発生剤は、パーオキサイ
ド化合物及びアゾ化合物など加熱によりラジカルを発生
する化合物であり、好ましくは本発明の組成物との混合
性が良好な有機系のラジカル発生剤が好ましい。それら
の例としては、ジクミルパーオキサイド、tert−ブ
チルクミルパーオキサイド、ジーtert−ブチルパー
オキサイド、1゜1−bis(tert−ブチルパーオ
キシ) −3,3,5−トリメチルシクロヘキサン、2
,5−ジメチル−2,5−シー(tert−ブチルパー
オキシ)ヘキサン、2.5−ジメチル2.5−ジー(t
ert−ブチルパーオキシ)ヘキシン−31,2,(1
−−bis(tert−ブチルバーオキシードイソプロ
ピル)ベンゼン、tert−プチルパーオ本ジベンゾエ
ート、2,5−ジメチル−2,5−ジー(ベンゾイルパ
ーオキシ)ヘキサン、1.1−bis (tert−ブ
チルパーオキシ)オクタン、n−ブチル−4,4−bi
s(tert−ブチルパーオキシ)バレレート、ter
t−ブチルパーオキシイソプロピルカーボネート、アゾ
ビスイソブチロニトリルなどが使用でき、それらを併用
することも可能である。これらのラジカル発生剤の量は
、重合体100重量部あたり、0.002モル〜0.1
モルの範囲で使用する。ラジカル発生剤の量が0.00
2モル未満では、架橋が十分でなく、弾性、引張強度が
劣り、0.1モルを超えると伸び、引張強度が低下し耐
久性が劣る。この量は、重合体100重量部あたり0.
005モル〜0,05モルの範囲がより好ましい。
The radical generator used as a crosslinking agent is a compound that generates radicals when heated, such as a peroxide compound or an azo compound, and preferably an organic radical generator that has good miscibility with the composition of the present invention. Examples of these are dicumyl peroxide, tert-butylcumyl peroxide, di-tert-butyl peroxide, 1°1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane, 2
, 5-dimethyl-2,5-di(tert-butylperoxy)hexane, 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane,
ert-butylperoxy)hexyne-31,2,(1
--bis(tert-butylperoxide isopropyl)benzene, tert-butylperoxybenzoate, 2,5-dimethyl-2,5-di(benzoylperoxy)hexane, 1.1-bis(tert-butylperoxy) ) octane, n-butyl-4,4-bi
s(tert-butylperoxy)valerate, ter
T-butylperoxyisopropyl carbonate, azobisisobutyronitrile, etc. can be used, and it is also possible to use them in combination. The amount of these radical generators is 0.002 mol to 0.1 mol per 100 parts by weight of the polymer.
Use in molar range. The amount of radical generator is 0.00
If it is less than 2 moles, crosslinking will not be sufficient, resulting in poor elasticity and tensile strength, and if it exceeds 0.1 mole, elongation, tensile strength will decrease, and durability will be poor. This amount is 0.00 parts per 100 parts by weight of polymer.
The range of 0.005 mol to 0.05 mol is more preferable.

次に、架橋助剤として使用する化合物は、ラジカル発生
剤の架橋効率を高める機能を有する化合物である。それ
らの化合物としては、イオウ、N。
Next, the compound used as a crosslinking aid is a compound that has the function of increasing the crosslinking efficiency of the radical generator. These compounds include sulfur, N.

N−−m−フェニレンビスマレイミド、p−キノンジオ
キシム、エチレングリコールジメタクリレート、トリメ
チロールプロパントリメタクリレート、トリアリルシア
ヌラート、トリアリルイソシアヌラートなどが使用でき
、またそれらを併用することもできる。
N--m-phenylene bismaleimide, p-quinone dioxime, ethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, triallyl cyanurate, triallyl isocyanurate, etc. can be used, and they can also be used in combination. .

架橋助剤の使用量は、ラジカル発生剤に対して一定のモ
ル比の範囲で使用し、その量はラジカル発生剤1モルあ
たり、0.2モル〜5モルの範囲の量で使用する。06
5モル〜2モルの範囲が好ましい。
The amount of the crosslinking aid used is within a certain molar ratio to the radical generator, and the amount is between 0.2 mol and 5 mol per mol of the radical generator. 06
The range of 5 mol to 2 mol is preferred.

架橋助剤の量がラジカル発生剤1モルあたり0゜2モル
未満では、十分な架橋がなされず、また5モルを超える
場合には架橋密度が低下し、圧縮永久歪みか劣る。架橋
助剤の量はラジカル発生剤1モルあたり、0.5モル〜
2モルの範囲がより好ましい。
If the amount of the crosslinking aid is less than 0.2 mol per mol of the radical generator, sufficient crosslinking will not be achieved, and if it exceeds 5 mol, the crosslinking density will decrease and the compression set will be poor. The amount of crosslinking aid is 0.5 mol to 1 mol of radical generator.
A range of 2 moles is more preferred.

本発明の架橋ゴム組成物には、必要に応じゴム組成物の
性能の特徴を失わせない範囲において他のゴム状重合体
として、エチレン−プロピレンポリエン共重合ゴム(E
PDM)、エチレン−プロピレンゴム(EPM)、ブチ
ルゴム、アクリルゴム、フッ素ゴム、シリコンゴム、塩
素化ポリエチレン、エピクロルヒドリンゴム、アクリロ
ニトリル−ブタジェンゴム、水素添加アクリロニトリル
−ブタンエンゴム、スチレン−ブタジエンゴム、ポリブ
タジェンゴム、ポリイソプレンゴム、天然ゴムなどを添
加することができる。
The crosslinked rubber composition of the present invention may optionally contain ethylene-propylene polyene copolymer rubber (E
PDM), ethylene-propylene rubber (EPM), butyl rubber, acrylic rubber, fluororubber, silicone rubber, chlorinated polyethylene, epichlorohydrin rubber, acrylonitrile-butadiene rubber, hydrogenated acrylonitrile-butane rubber, styrene-butadiene rubber, polybutadiene rubber, poly Isoprene rubber, natural rubber, etc. can be added.

本発明の架橋ゴム組成物には、通常ゴム組成物に配合す
る各種配合剤を配合することができる。
The crosslinked rubber composition of the present invention can be blended with various compounding agents that are normally blended into rubber compositions.

それらの配合剤は、補強剤、充填剤、軟化剤、可塑剤、
加工助剤、酸化防止剤、老化防止剤、スコーチ防止剤、
紫外線防止剤、滑剤、発泡剤、発泡助剤、難燃剤、帯電
防止剤、着色防止剤などである。
These compounding agents include reinforcing agents, fillers, softeners, plasticizers,
Processing aids, antioxidants, anti-aging agents, anti-scorch agents,
These include ultraviolet inhibitors, lubricants, foaming agents, foaming aids, flame retardants, antistatic agents, and anti-coloring agents.

本発明の架橋ゴム組成物に配合する補強剤としては、カ
ーボンブラックのSAF、l5AF、HAF、FEF、
SRFのファーネスブラックおよびMT、FTなどのサ
ーマルブラック、ホワイトカーボン、塩基性炭酸カルシ
ウム、活性化炭酸カルシウムなどの無機補強剤、ハイス
チレン樹脂、クマロン−インデン樹脂、フェノールホル
ムアルデヒド樹脂などの有機補強剤などを使用し、なか
でもカーボンブラックおよび無機補強剤が好ましい。補
強剤を使用する場合、その使用量は、重合体100重量
部あたり、5〜200重量部である。
Examples of reinforcing agents to be added to the crosslinked rubber composition of the present invention include carbon black SAF, 15AF, HAF, FEF,
Furnace black of SRF, thermal black such as MT, FT, inorganic reinforcing agents such as white carbon, basic calcium carbonate, activated calcium carbonate, organic reinforcing agents such as high styrene resin, coumaron-indene resin, phenol formaldehyde resin, etc. carbon black and inorganic reinforcing agents are preferred. If a reinforcing agent is used, the amount used is 5 to 200 parts by weight per 100 parts by weight of the polymer.

充填剤としては、炭酸カルシウム、クレー、タルク、ゼ
オライト、ケイソウ土、硫酸アルミニウム、硫酸バリウ
ムなどが使用できる。
As fillers, calcium carbonate, clay, talc, zeolite, diatomaceous earth, aluminum sulfate, barium sulfate, etc. can be used.

軟化剤としては、パラフィン系プロセス油、ナフテン系
プロセス油、芳香族(アロマチック)系プロセス油、パ
ラフィンワックス、石油樹脂、アスファルト、植物油系
軟化剤、サブ類などを使用する。とくに、パラフィン系
プロセス油、ナフテン系プロセス油、芳香族(アロマチ
ック)系プロセス油が好ましい。軟化剤を使用する場合
、その使用量は、重合体100重量部あたり、1〜20
0重量部である。
As the softener, paraffinic process oil, naphthenic process oil, aromatic process oil, paraffin wax, petroleum resin, asphalt, vegetable oil-based softener, sub-types, etc. are used. Particularly preferred are paraffinic process oils, naphthenic process oils, and aromatic process oils. When a softener is used, the amount used is 1 to 20 parts by weight per 100 parts by weight of the polymer.
It is 0 parts by weight.

前記の補強剤および軟化剤の量は、得られる架橋ゴム組
成物の硬さおよび弾性率を考慮して使用する。
The amounts of the reinforcing agent and softening agent mentioned above are selected in consideration of the hardness and elastic modulus of the resulting crosslinked rubber composition.

可塑剤としては、フタル酸誘導体、アジピン酸誘導体、
トリメリット酸誘導体、オレイン酸誘導体、ステアリン
酸誘導体、リン酸誘導体などが使用できる。
As plasticizers, phthalic acid derivatives, adipic acid derivatives,
Trimellitic acid derivatives, oleic acid derivatives, stearic acid derivatives, phosphoric acid derivatives, etc. can be used.

加工助剤としては、ステアリン酸、ラウリン酸、パルミ
チン酸などの脂肪酸および、その金属塩などが使用でき
る。
As processing aids, fatty acids such as stearic acid, lauric acid, and palmitic acid, and metal salts thereof can be used.

酸化防止剤ないし老化防止剤としては、ジフェニルアミ
ン系、p−フェニレンジアミン系などのアミン誘導体、
キノリン誘導体、ハイドロキノン誘導体、モノフェノー
ル類、ジフェノール類、チオビスフェノール類、ヒンダ
ードフェノール類、亜リン酸エステル類などが使用でき
る。
As antioxidants or anti-aging agents, amine derivatives such as diphenylamine type and p-phenylenediamine type;
Quinoline derivatives, hydroquinone derivatives, monophenols, diphenols, thiobisphenols, hindered phenols, phosphorous esters, etc. can be used.

紫外線防止剤、滑剤、発泡剤、発泡助剤、難燃剤、帯電
防止剤、着色防止剤その他のゴム配合薬品は、公知のも
のをその使用目的に応じて使用する。
Known rubber compounding chemicals such as ultraviolet inhibitors, lubricants, foaming agents, foaming aids, flame retardants, antistatic agents, anti-coloring agents, and others are used depending on the purpose of use.

本発明の架橋ゴム組成物は、公知の方法により、配合、
混練、成型、架橋の工程を経て架橋ゴム組成物となる。
The crosslinked rubber composition of the present invention can be prepared by compounding,
A crosslinked rubber composition is obtained through the steps of kneading, molding, and crosslinking.

本発明の架橋ゴム組成物は、公知のゴム製品として使用
可能であり、それらの例としてはタイヤチューブ、エン
ジンマウント、ブツシュ、ストッパーなどの防振ゴム、
窓枠、グラスラン、スポンジ、防水シート、ルーフィン
グ、電線、パツキン、ヒーターホース、ラジェターホー
スなどの工業用品、自動車部品、建築資材などの各種用
途に使用可能である。
The crosslinked rubber composition of the present invention can be used as known rubber products, such as anti-vibration rubber for tire tubes, engine mounts, bushings, stoppers, etc.
It can be used for various purposes such as window frames, glass runs, sponges, tarpaulins, roofings, electric wires, packing, heater hoses, radiator hoses, and other industrial products, automobile parts, and construction materials.

以下、実施例、比較例により本発明を具体的に説明する
が、これらは本発明の範囲を限定するものではない。
EXAMPLES The present invention will be specifically explained below with reference to Examples and Comparative Examples, but these are not intended to limit the scope of the present invention.

[実施例コ 表1に示す本発明で限定するポリマー構造の範囲にある
水素添加ポリブタジェン(試料1〜5)および、水素添
加スチレン−ブタジエン共重合体(試料6〜12)、表
2に示す本発明の限定外である比較のための水素添加ポ
リブタジェン(試料13.14.17)および比較のた
めの水素添加スチレシーブタジェン共重合体(試料15
.16゜18、ユ9)、さらに表3に示す比較のための
エチレン−プロピレン共重合体(試料2o)、エチレン
−プロピレン−ポリエン共重合体(試料21゜22)を
用意した。
[Examples] Hydrogenated polybutadiene (samples 1 to 5) within the range of polymer structures defined in the present invention shown in Table 1, hydrogenated styrene-butadiene copolymers (samples 6 to 12), and books shown in Table 2 Hydrogenated polybutadiene for comparison (Sample 13.14.17) and hydrogenated styrene butadiene copolymer for comparison (Sample 15), which are outside the scope of the invention.
.. Furthermore, an ethylene-propylene copolymer (sample 2o) and an ethylene-propylene-polyene copolymer (sample 21°22) shown in Table 3 were prepared for comparison.

表1および表2の水素添加ポリブタジェンおよび、水素
添加スチレン−ブタジエン共重合体は、有機リチウム系
触媒を用い少量のテトラハイドロフランを含むシクロヘ
キサン溶媒中で、ブタジェンを重合またはスチレンとブ
タジェンを共重合し、引き続いて、ジ−p−トリルビス
(1−シクロペンタジェニル)チタニウムとn−ブチル
リチウムを水素添加触媒として、水素添加して得られた
試料である。
The hydrogenated polybutadiene and hydrogenated styrene-butadiene copolymer in Tables 1 and 2 are obtained by polymerizing butadiene or copolymerizing styrene and butadiene in a cyclohexane solvent containing a small amount of tetrahydrofuran using an organolithium catalyst. This sample was obtained by subsequent hydrogenation using di-p-tolylbis(1-cyclopentadienyl)titanium and n-butyllithium as hydrogenation catalysts.

これらの、重合体のスチレン含有量、ブタジェン部分の
ビニル結合量、重量平均分子量(Mw)。
The styrene content of the polymer, the amount of vinyl bonds in the butadiene moiety, and the weight average molecular weight (Mw).

分子量分布(M w / M n )および水素添加率
は、以下に示す方法で測定した。
The molecular weight distribution (M w / M n ) and hydrogenation rate were measured by the methods shown below.

スチレン含有量、水素添加前の重合体をクロロホルム溶
液とし、スチレンのフェニル基によるU V 254n
mの吸収により、測定した。
Styrene content, UV 254n due to phenyl group of styrene when the polymer before hydrogenation is dissolved in chloroform
It was measured by the absorption of m.

ブタジェン部分のビニル結合量:水素添加前の重合体を
重クロロホルム溶液とし、FT−NMR(270メガ、
日本電子製)にて、NMRスペクトルを測定し、化学シ
フト4.7ppm〜5.2ppmの1,2結合によるプ
ロトン(二CH2)と、化学シフト5.2ppm 〜5
.8ppmのプロトン(=CH)の積分強度比より、計
算した。
Amount of vinyl bonds in the butadiene moiety: The polymer before hydrogenation was dissolved in deuterated chloroform, and FT-NMR (270 M,
(manufactured by JEOL Ltd.), the NMR spectrum was measured, and a proton (diCH2) due to a 1,2 bond with a chemical shift of 4.7 ppm to 5.2 ppm, and a proton (diCH2) with a chemical shift of 5.2 ppm to 5.
.. Calculated from the integrated intensity ratio of protons (=CH) of 8 ppm.

重量平均分子量(M w )および、分子量分布(M 
w / M n )  水素添加前の重合体をTHF(
テトラハイドロフラン)溶液とし、GPC(高滓製作所
製LC−5A、  カラム:ポリスチレンゲルHSG−
40,50,60各1本、検出器:示差屈折計)にて、
クロマトグラムを測定。標準ポリスチレンのピークの分
子量と保持流量との関係の検量線を用い、定法によりポ
リスチレン換算の重量平均分子量(Mw)、数平均分子
量(Mn)を計算して求めた。
Weight average molecular weight (M w ) and molecular weight distribution (M
w/M n ) The polymer before hydrogenation was dissolved in THF (
Tetrahydrofuran) solution and GPC (LC-5A manufactured by Takasu Seisakusho Column: Polystyrene gel HSG-
40, 50, 60 each, detector: differential refractometer),
Measure the chromatogram. The weight-average molecular weight (Mw) and number-average molecular weight (Mn) in terms of polystyrene were calculated and determined by a conventional method using a calibration curve showing the relationship between the peak molecular weight and retention flow rate of standard polystyrene.

水素添加率:水素添加前の重合体および水素添加後の重
合体を重クロロホルム溶液とし、FT−NMR(270
メガ、日本電子製)にて、各々のNMRスペクトルを測
定し、水素添加前の重合体に関しては化学シフト4.7
ppm〜5.2ppmの1,2結合によるプロトン(=
CH2)と、化学シフト5.2ppm〜5.8ppmの
プロトン(=CH−)の積分強度を計算し、一方水素添
加後の重合体に関しては、化学シフトo、 61)pI
〜L Oppmの水素添加した1、2結合によるメチル
プロトン(−CH3)、化学シフ 素添加されていない1゜ (=CH2)、化学シフ 素添加されていないプロ ぞれの積分強度を求め、 ト4.7ppm〜5.2ppmの水 2結合によるプロトン ト5.2ppm〜5.3ppmの水 トン(= CH−)それ 水素添加率を計算した。
Hydrogenation rate: The polymer before hydrogenation and the polymer after hydrogenation were dissolved in deuterated chloroform, and subjected to FT-NMR (270
The NMR spectra of each were measured using Mega, manufactured by JEOL Ltd., and the chemical shift of the polymer before hydrogenation was 4.7.
ppm to 5.2 ppm of protons (=
CH2) and the integrated intensity of the proton (=CH-) with a chemical shift of 5.2 ppm to 5.8 ppm, while for the polymer after hydrogenation, the chemical shift o, 61) pI
Calculate the integrated intensities of methyl protons (-CH3) due to hydrogenated 1 and 2 bonds of ~L Oppm, 1° (=CH2) without chemical addition of sulfurine, and protons without chemical addition of sulfurine, and The hydrogenation rate of 5.2 ppm to 5.3 ppm of water (=CH-) due to 4.7 ppm to 5.2 ppm of water 2 bonds was calculated.

(取下イ\臼) 表 実施例1および比較例1 本発明で限定する範囲のポリマー構造を有する試料1を
用い、表4に示す評価配合で、B型バンバリーミキサ−
で混練してゴム組成物とし、表5に示す各種の架橋系に
より架橋した。架橋温度は160°Cとし、各架橋系ご
とにモンサンドレオメーターにより160℃の架橋曲線
を求め、定法により最適加硫時間を決定して所定時間架
橋した。
(Removal) Table Example 1 and Comparative Example 1 Using Sample 1 having a polymer structure within the range limited by the present invention, a B-type Banbury mixer was prepared using the evaluation formulation shown in Table 4.
The mixture was kneaded to obtain a rubber composition, which was then crosslinked using various crosslinking systems shown in Table 5. The crosslinking temperature was 160°C, a crosslinking curve at 160°C was obtained for each crosslinking system using a Monsande rheometer, the optimum vulcanization time was determined by a conventional method, and crosslinking was carried out for a predetermined period of time.

表5にこれら試料の、性能測定結果を示す。Table 5 shows the performance measurement results of these samples.

又、比較のためにEPDMを使用し、表6に示す架橋系
で、同様に架橋組成物として性能測定し、その結果を表
6に示した。
Further, for comparison, EPDM was used and the performance was similarly measured as a crosslinked composition using the crosslinked system shown in Table 6, and the results are shown in Table 6.

各測定は、以下のごとく行った。Each measurement was performed as follows.

(1)硬さ、引張試験 J I S−に−6301に従
って測定。
(1) Hardness, tensile test Measured according to JIS-6301.

(2)グツドリッチ発熱:グツドリッチ発熱試験機を使
用し、ASTM−D623−58に準じ、ストローク0
.225インチ、荷重55ボンド、試験温度50°Cの
条件で測定し、20分後の試験片の温度上昇(八T)を
測定。
(2) Gutdrich heat generation: Using a Gutdrich heat generation tester, according to ASTM-D623-58, stroke 0
.. Measured under the conditions of 225 inches, load 55 bond, and test temperature 50°C, and measured the temperature rise (8T) of the test piece after 20 minutes.

(3)耐久性 ASTM−D430−59のM e t
 h o d −BのDe  Mattia屈曲試験機
を用いる方法に従い、23°Cで、JIS−3号ダンベ
ル試験片を、標線間20mmとして、100%伸長を繰
り返し、試料が破断するまでの回数を測定。
(3) Durability ASTM-D430-59 Met
According to the method using the De Mattia bending tester of h o d -B, a JIS-3 dumbbell test piece was repeatedly stretched 100% at 23°C with a gauge line spacing of 20 mm, and the number of times until the sample broke was calculated. measurement.

(4)耐熱老化性: J IS−に−6301に従い、
125℃に設定したギヤー式老化試験機中で空気老化を
行い、硬差、引張強度、伸びの変化を測定。
(4) Heat aging resistance: according to JIS-6301,
Air aging was performed in a gear aging tester set at 125°C, and changes in hardness, tensile strength, and elongation were measured.

(5)圧縮永久歪 JIS−に−6301に従い125
°C,70時間後の歪みを測定。
(5) Compression set: 125 according to JIS-6301
Measure the strain after 70 hours at °C.

(6)耐オゾン性 J I S−に−6301に従い、
40°Cl2O%伸長、オゾン濃度lppmの条件で、
500時間オゾン暴露後の亀裂発生状況を観察。JIS
に従って、亀裂の数および大きさおよび深さを表示。
(6) Ozone resistance According to JIS-6301,
Under the conditions of 40°Cl2O% elongation and ozone concentration lppm,
Observe the occurrence of cracks after 500 hours of ozone exposure. JIS
Displays the number, size and depth of cracks according to the number of cracks.

表5の結果より、実施例1−1〜1−5のパーオキサイ
ド化合物と硫黄を架橋系とする架橋ゴム組成物、実施例
1−6〜1−9のパーオキサイド化合物とN、N−m−
フェニレンビスマレイミド、トリアリルイソシアヌレー
ト、その他の特定化合物との架橋系からなる架橋ゴム組
成物は、十分なモジュラス、高い引張強度、低いグツド
リッチ発熱、良好な耐久性、良好な耐熱老化性、低い圧
縮永久歪、良好な耐オゾン性を示す。
From the results in Table 5, the crosslinked rubber compositions in which the peroxide compounds of Examples 1-1 to 1-5 and sulfur are crosslinked, the peroxide compounds of Examples 1-6 to 1-9, and N,N-m −
Crosslinked rubber compositions consisting of crosslinked systems with phenylene bismaleimide, triallyl isocyanurate, and other specific compounds have sufficient modulus, high tensile strength, low gludrich heat generation, good durability, good heat aging resistance, and low compression. Shows permanent set and good ozone resistance.

これに対し、試料1を使用しても、架橋系がパーオキサ
イド化合物単独の比較例1−1の組成物、共架橋剤とし
ての機能を有さない物質との併用系の比較例1−2の組
成物、一般的な加硫促進剤と硫黄との組合わせの架橋系
による比較例1−3の組成物は、十分な架橋密度となら
ず、引張強度が低く、発熱が高く、耐オゾン性も劣る。
On the other hand, even if Sample 1 is used, the composition of Comparative Example 1-1 in which the crosslinking system is a peroxide compound alone, and the composition of Comparative Example 1-2 in which the crosslinking system is a combination system with a substance that does not have a function as a co-crosslinking agent. The composition of Comparative Example 1-3, which is based on a crosslinking system in combination with a general vulcanization accelerator and sulfur, does not have sufficient crosslinking density, has low tensile strength, high heat generation, and has poor ozone resistance. Sex is also inferior.

さらに、表6に示す比較のためのEPDMを使用する架
橋ゴム組成物は、本発明と同じ架橋系の比較例1−4で
も1発熱および耐久性が本発明の架橋ゴム組成物よりも
劣り、パーオキサイド化合物単独の比較例1−5は、引
張強度および耐久性か劣り、さらに一般的な硫黄と加硫
促進剤の架橋系の比較例1−6は、耐久性、耐熱老化性
、圧縮永久歪が劣り、いずれも実施例の本発明の架橋ゴ
ム組成物にくらべて良好な性能ではない。
Furthermore, the crosslinked rubber compositions using EPDM for comparison shown in Table 6 were inferior to the crosslinked rubber compositions of the present invention in terms of heat generation and durability, even in Comparative Examples 1-4, which had the same crosslinking system as the present invention. Comparative Example 1-5, which uses a peroxide compound alone, has inferior tensile strength and durability, and Comparative Example 1-6, which uses a general crosslinked system of sulfur and a vulcanization accelerator, has poor durability, heat aging resistance, and compression durability. The strain was poor, and none of them had better performance than the crosslinked rubber compositions of the present invention in Examples.

(払下余色) 表 評価配合 (実施例1゜ 比較例1) ポリマー N330カーボンブラツク パラフィン系プロセス油*1 亜鉛華 ステアリン酸 重量部 重量部 重量部 重量部 重量部 架橋系 変 量 *1:比光興産製ダイアナプロセスオイルPW380 表 喰較例1つづき) 実施例2および比較例2 表1に示した、本発明の限定の範囲内に含まれるポリマ
ー構造の水素添加重合体、表2に示す本発明の限定の範
囲にないポリマー構造の比較のための水素添加重合体お
よび、表3に示すエチレンプロピレン共重合体、エチレ
ン−プロピレンポリエン共重合体を使用し、表7に示す
配合で、同一な架橋系で、実施例1と同様にして架橋ゴ
ム組成物を得、性能を測定した。その結果を表8および
表9に示す。
(Removed residual color) Table evaluation formulation (Example 1゜Comparative Example 1) Polymer N330 Carbon Black Paraffin Process Oil *1 Zinc white stearic acid Part by weight Part by weight Part by weight Crosslinking system variable *1: Hiko Kosan Example 2 and Comparative Example 2 Hydrogenated polymers with polymer structures shown in Table 1 that fall within the scope of the limitations of the present invention, Hydrogenated polymers of the present invention shown in Table 2 Hydrogenated polymers for comparison of polymer structures not in the limited range, ethylene propylene copolymers and ethylene-propylene polyene copolymers shown in Table 3 were used, and the same crosslinked system was used with the formulation shown in Table 7. A crosslinked rubber composition was obtained in the same manner as in Example 1, and its performance was measured. The results are shown in Tables 8 and 9.

表8および表9の結果より、本発明で限定するスチレン
含有量、ブタジェン部分のビニル結合量、水素添加率の
範囲にある試料1〜試料12を使用した実施例の各架橋
ゴム組成物は、硬さの温度変化が少なく、十分なモジュ
ラス、高い引張強度、低いグツドリッチ発熱、良好な耐
久性、良好な耐熱老化性、低い圧縮永久歪、良好な耐オ
ゾン性を示すことか明らかである。
From the results in Tables 8 and 9, each of the crosslinked rubber compositions of Examples using Samples 1 to 12 having a styrene content, a vinyl bond amount in the butadiene moiety, and a hydrogenation rate within the ranges defined in the present invention, It is clear that there is little change in hardness with temperature, sufficient modulus, high tensile strength, low heat generation, good durability, good heat aging resistance, low compression set, and good ozone resistance.

これに対し、ポリマー構造が、本発明の限定の範囲に含
まれない比較のための水素添加重合体の試料13〜試料
19を用いた各比較例の架橋ゴム組成物、ならびにエチ
レン−プロピレン共重合体、エチレン−プロピレン−ポ
リエン共重合体を使用した架橋ゴム組成物は、硬さの温
度変化、引張強度、発熱、耐久性、耐熱老化性、圧縮永
久歪、耐オゾン性のいずれか1種以上の性能が劣る。
In contrast, the crosslinked rubber compositions of each comparative example using samples 13 to 19 of hydrogenated polymers for comparison whose polymer structure does not fall within the scope of the limitations of the present invention, and the ethylene-propylene copolymer A crosslinked rubber composition using an ethylene-propylene-polyene copolymer has one or more of the following properties: temperature change in hardness, tensile strength, heat generation, durability, heat aging resistance, compression set, and ozone resistance. performance is poor.

(双下奈白) 表 評伍配合 (実施例2゜ 比較例2) ポリマー N330カーボンブラツク パラフィン系プロセス油8 亜鉛華 ステアリン酸 重量部 重量部 重量部 重量部 重量部 ジクミルパーオキサイド 硫黄 2.70重量部 0.32重量部 *1 出光興産製ダイアナプロセスオイル PW380 [発明の効果] 本発明に係わる架橋ゴム組成物は、上記のごとく、良好
な引張強度、低い発熱性、良好な耐久性、良好な耐熱性
、良好な耐オゾン性など架橋ゴム組成物として優れた特
徴を有しており、各種工業用品、自動車部品をはじめと
するゴム製品用途に極めて好適なゴム組成物であり、工
業的意義は大きい。
(Futoshita Nairaku) Ratings: 5 (Example 2゜Comparative Example 2) Polymer N330 Carbon Black Paraffinic Process Oil 8 Zinc White Stearic Acid Parts by Weight Parts by Weight Parts by Weight Dicumyl Peroxide Sulfur 2.70 Part by weight: 0.32 parts by weight*1 Diana Process Oil PW380 manufactured by Idemitsu Kosan [Effects of the Invention] As described above, the crosslinked rubber composition according to the present invention has good tensile strength, low heat build-up, good durability, and good properties. It has excellent characteristics as a crosslinked rubber composition, such as high heat resistance and good ozone resistance, and is extremely suitable for use in rubber products such as various industrial products and automobile parts, and has industrial significance. is big.

特許出願人 旭化成工業株式会社Patent applicant: Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、スチレン含有量が0〜40重量%、ブタジエン含有
量が100〜60重量%、ブタジエン部分のビニル結合
量が25〜70%であるポリブタジエンまたはスチレン
−ブタジエン共重合体のオレフィン性不飽和二重結合の
97〜100%が水素添加された水素添加共役ジエン系
重合体を、ラジカル発生化合物と架橋助剤よりなる架橋
剤系によって架橋したことを特徴とする架橋ゴム組成物
1. Olefinically unsaturated double polybutadiene or styrene-butadiene copolymer with a styrene content of 0 to 40% by weight, a butadiene content of 100 to 60% by weight, and a vinyl bond content of the butadiene moiety of 25 to 70%. A crosslinked rubber composition characterized in that a hydrogenated conjugated diene polymer in which 97 to 100% of the bonds are hydrogenated is crosslinked with a crosslinking agent system comprising a radical generating compound and a crosslinking aid.
JP26055490A 1990-10-01 1990-10-01 Crosslinked rubber composition Expired - Lifetime JP3199374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26055490A JP3199374B2 (en) 1990-10-01 1990-10-01 Crosslinked rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26055490A JP3199374B2 (en) 1990-10-01 1990-10-01 Crosslinked rubber composition

Publications (2)

Publication Number Publication Date
JPH04139219A true JPH04139219A (en) 1992-05-13
JP3199374B2 JP3199374B2 (en) 2001-08-20

Family

ID=17349573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26055490A Expired - Lifetime JP3199374B2 (en) 1990-10-01 1990-10-01 Crosslinked rubber composition

Country Status (1)

Country Link
JP (1) JP3199374B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088980A1 (en) * 2006-02-02 2007-08-09 Jsr Corporation Hydrogenated diene polymer composition and rubber molded article
JP2009515016A (en) * 2005-11-12 2009-04-09 ランクセス・ドイチュランド・ゲーエムベーハー Sulfur-crosslinked hydrogenated vinyl polybutadiene with good recovery performance over a wide temperature range and its use for the production of industrial rubber products
WO2009060931A1 (en) * 2007-11-08 2009-05-14 Jsr Corporation Hydrogenated conjugated diene (co)polymer rubber and method for producing the same
JP2011111504A (en) * 2009-11-25 2011-06-09 Toyo Tire & Rubber Co Ltd Rubber composition for vibration-proof rubber and vibration-proof rubber
US8956706B2 (en) 2009-12-29 2015-02-17 Saint-Gobain Performance Plastics Corporation Flexible tubing material and method of forming the material
JP2016056349A (en) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 Pneumatic tire
JP2016056350A (en) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 Pneumatic tire
JP2016056252A (en) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 Pneumatic tire
JP2016056351A (en) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 Pneumatic tire
JP2016069628A (en) * 2014-09-30 2016-05-09 住友ゴム工業株式会社 Pneumatic tire
WO2017014283A1 (en) * 2015-07-22 2017-01-26 Jsr株式会社 Hydrogenated conjugated diene polymer, production method therefor, polymer composition, crosslinked polymer, and tire
WO2017014281A1 (en) * 2015-07-22 2017-01-26 Jsr株式会社 Hydrogenated conjugated diene polymer, production method therefor, polymer composition, crosslinked polymer, and tire
WO2017014282A1 (en) * 2015-07-22 2017-01-26 Jsr株式会社 Hydrogenated conjugated diene polymer, production method therefor, polymer composition, crosslinked polymer, and tire‑{}‑
JP2017200960A (en) * 2016-05-02 2017-11-09 日本曹達株式会社 Rubber composition
US9987784B2 (en) 2012-06-06 2018-06-05 Saint-Gobain Performance Plastics Corporation Thermoplastic elastomer tubing and method to make and use same
JP2020139155A (en) * 2019-02-27 2020-09-03 旭有機材株式会社 Rubber member for use as seal member for fluid transport pipe
JP2022506196A (en) * 2018-10-30 2022-01-17 チャイナ ペトロレウム アンド ケミカル コーポレーション Hydrogenated styrene / conjugated diene copolymer and its foaming material and use
JP2022175415A (en) * 2021-05-13 2022-11-25 三菱電線工業株式会社 Seal material

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515016A (en) * 2005-11-12 2009-04-09 ランクセス・ドイチュランド・ゲーエムベーハー Sulfur-crosslinked hydrogenated vinyl polybutadiene with good recovery performance over a wide temperature range and its use for the production of industrial rubber products
WO2007088980A1 (en) * 2006-02-02 2007-08-09 Jsr Corporation Hydrogenated diene polymer composition and rubber molded article
JPWO2007088980A1 (en) * 2006-02-02 2009-06-25 Jsr株式会社 Hydrogenated diene polymer composition and rubber molded article
WO2009060931A1 (en) * 2007-11-08 2009-05-14 Jsr Corporation Hydrogenated conjugated diene (co)polymer rubber and method for producing the same
JPWO2009060931A1 (en) * 2007-11-08 2011-03-24 Jsr株式会社 Hydrogenated conjugated diene-based (co) polymer rubber and method for producing the same
JP2011111504A (en) * 2009-11-25 2011-06-09 Toyo Tire & Rubber Co Ltd Rubber composition for vibration-proof rubber and vibration-proof rubber
US8956706B2 (en) 2009-12-29 2015-02-17 Saint-Gobain Performance Plastics Corporation Flexible tubing material and method of forming the material
US9133332B2 (en) 2009-12-29 2015-09-15 Saint-Gobain Performance Plastics Corporation Flexible tubing material and method of forming the material
US9670351B2 (en) 2009-12-29 2017-06-06 Saint-Gobain Performance Plastics Corporation Flexible tubing material and method of forming the material
US9987784B2 (en) 2012-06-06 2018-06-05 Saint-Gobain Performance Plastics Corporation Thermoplastic elastomer tubing and method to make and use same
JP2016056349A (en) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 Pneumatic tire
JP2016056350A (en) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 Pneumatic tire
JP2016056252A (en) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 Pneumatic tire
JP2016056351A (en) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 Pneumatic tire
JP2016069628A (en) * 2014-09-30 2016-05-09 住友ゴム工業株式会社 Pneumatic tire
WO2017014281A1 (en) * 2015-07-22 2017-01-26 Jsr株式会社 Hydrogenated conjugated diene polymer, production method therefor, polymer composition, crosslinked polymer, and tire
WO2017014282A1 (en) * 2015-07-22 2017-01-26 Jsr株式会社 Hydrogenated conjugated diene polymer, production method therefor, polymer composition, crosslinked polymer, and tire‑{}‑
CN107683293A (en) * 2015-07-22 2018-02-09 Jsr株式会社 Hydrogenating conjugated diene polymers and its manufacture method, polymer composition, cross-linked polymer and tire
CN107709373A (en) * 2015-07-22 2018-02-16 Jsr株式会社 Hydrogenating conjugated diene polymers and its manufacture method, polymer composition, cross-linked polymer and tire
JPWO2017014281A1 (en) * 2015-07-22 2018-05-24 Jsr株式会社 Hydrogenated conjugated diene polymer and process for producing the same, polymer composition, crosslinked polymer, and tire
JPWO2017014283A1 (en) * 2015-07-22 2018-05-24 Jsr株式会社 Hydrogenated conjugated diene polymer and process for producing the same, polymer composition, crosslinked polymer, and tire
JPWO2017014282A1 (en) * 2015-07-22 2018-05-24 Jsr株式会社 Hydrogenated conjugated diene polymer and process for producing the same, polymer composition, crosslinked polymer, and tire
WO2017014283A1 (en) * 2015-07-22 2017-01-26 Jsr株式会社 Hydrogenated conjugated diene polymer, production method therefor, polymer composition, crosslinked polymer, and tire
JP2017200960A (en) * 2016-05-02 2017-11-09 日本曹達株式会社 Rubber composition
JP2022506196A (en) * 2018-10-30 2022-01-17 チャイナ ペトロレウム アンド ケミカル コーポレーション Hydrogenated styrene / conjugated diene copolymer and its foaming material and use
US11897988B2 (en) 2018-10-30 2024-02-13 China Petroleum & Chemical Corporation Hydrogenated styrene/conjugated diolefin copolymer, foaming material thereof, and application thereof
JP2020139155A (en) * 2019-02-27 2020-09-03 旭有機材株式会社 Rubber member for use as seal member for fluid transport pipe
JP2022175415A (en) * 2021-05-13 2022-11-25 三菱電線工業株式会社 Seal material

Also Published As

Publication number Publication date
JP3199374B2 (en) 2001-08-20

Similar Documents

Publication Publication Date Title
JPH04139219A (en) Crosslinked rubber composition
EP1561783B1 (en) Thermoplastic elastomer composition
US5010137A (en) Rubber composition, and oil seal and rubber hose obtained therefrom
JP6266762B2 (en) Thermoplastic elastomer composition, medical container stopper and medical container
JP5116644B2 (en) Thermoplastic polymer composition
JP5463838B2 (en) Method and composition for producing cis-1,4-polybutadiene
JPWO2009004918A1 (en) Sulfur-containing conjugated diolefin copolymer rubber and rubber composition containing the same
JPH043779B2 (en)
JP3069173B2 (en) Hydrogenated butadiene copolymer composition
JP2000109641A (en) Soft gel polymer for use at high temperature
JP3022888B2 (en) Hydrogenated polymer and composition thereof
JP4013002B2 (en) Anti-vibration rubber composition and anti-vibration rubber
JP4705279B2 (en) Thermoplastic elastomer composition
JPH06313013A (en) Hydrogenated butadiene-based copolymer and its composition
JP3391052B2 (en) Oil resistant rubber and rubber composition thereof
JP2004091530A (en) Thermoplastic polymer composition
US4751277A (en) Amino group-containing diene copolymer
JPH04255733A (en) Hydrogenated butadiene copolymer and composition therefrom
JP3448782B2 (en) Rubber composition and rubber
JP2020026467A (en) Vulcanizate
JP2006152030A (en) Method for producing thermoplastic elastomer composition
US5019630A (en) Rubbery copolymer, process for production thereof, and vulcanizable elastomer composition
JP2003277520A (en) Dynamically crosslinked hydrogenated copolymer
JPWO2006095854A1 (en) Anti-vibration material composition
JP3016264B2 (en) Hydrogenated polymer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 10