JP2016069628A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2016069628A
JP2016069628A JP2015138962A JP2015138962A JP2016069628A JP 2016069628 A JP2016069628 A JP 2016069628A JP 2015138962 A JP2015138962 A JP 2015138962A JP 2015138962 A JP2015138962 A JP 2015138962A JP 2016069628 A JP2016069628 A JP 2016069628A
Authority
JP
Japan
Prior art keywords
copolymer
mass
pneumatic tire
group
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015138962A
Other languages
Japanese (ja)
Other versions
JP6627295B2 (en
Inventor
剛史 土田
Takashi Tsuchida
剛史 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Publication of JP2016069628A publication Critical patent/JP2016069628A/en
Application granted granted Critical
Publication of JP6627295B2 publication Critical patent/JP6627295B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pneumatic tire having operation stability, flex crack growth resistance, chip cut resistance and low fuel consumption which are improved excellently.SOLUTION: There is provided a pneumatic tire manufactured by using a rubber composition containing a hydrogenated copolymer obtained by copolymerizing an aromatic vinyl compound and a conjugated diene compound and having hydrogenation rate of a conjugated diene part of 75 mol% and carbon black having nitrogen adsorption specific surface area of 5 to 200 m/g and having the content of the hydrogenated polymer in the 100 mass% of a rubber component of 75 mass% or more and the content of the carbon black of 30 to 70 pts.mass based on 100 pts.mass of the rubber component.SELECTED DRAWING: None

Description

本発明は、所定のゴム組成物を用いて作製した空気入りタイヤに関する。 The present invention relates to a pneumatic tire manufactured using a predetermined rubber composition.

タイヤのなかでも、特にトラックやバスなどの重荷重用タイヤのサイドウォールについては、従来耐屈曲亀裂成長性及び強度の点から、天然ゴムとポリブタジエンゴムを主体としたゴム組成物が用いられてきた。 Among tires, particularly for sidewalls of heavy-duty tires such as trucks and buses, rubber compositions mainly composed of natural rubber and polybutadiene rubber have been used from the viewpoint of resistance to flex crack growth and strength.

近年、環境問題への関心の高まりから、自動車に対して低燃費化の要求が強くなっており、自動車用タイヤに用いるゴム組成物に対しても、低燃費性に優れることが求められている。 In recent years, due to increasing interest in environmental issues, there has been a strong demand for lower fuel consumption for automobiles, and rubber compositions used for automobile tires are also required to have excellent fuel efficiency. .

低燃費性を改善する方法しては、低補強性充填剤の使用、充填剤の減量、シリカの使用等が知られているが、これらの方法では、例えば、サイドウォールなどの場合、補強性が低下して、ゴム硬度(操縦安定性)、耐屈曲亀裂成長性、耐チップカット性等の破壊特性が悪化する。特に、重荷重用タイヤのサイドウォールは、発熱しやすいため、その発熱を抑制するために、上述の手法が採用されてきたが、上記破壊特性が悪化し、上記破壊特性と低燃費性を両立することは非常に困難であった。このように、ゴム硬度、耐屈曲亀裂成長性、耐チップカット性等の破壊特性と低燃費性とを両立することは困難である。 Known methods for improving fuel efficiency include the use of low reinforcing fillers, weight loss of fillers, silica, etc. In these methods, for example, in the case of sidewalls, reinforcing properties As a result, the fracture properties such as rubber hardness (steering stability), flex crack growth resistance, and chip cut resistance deteriorate. In particular, since the sidewalls of heavy duty tires tend to generate heat, the above-described method has been adopted to suppress the heat generation. However, the breakdown characteristics are deteriorated, and both the breakdown characteristics and fuel efficiency are compatible. It was very difficult. As described above, it is difficult to satisfy both the fracture characteristics such as the rubber hardness, the bending crack growth resistance, and the chip cut resistance and the low fuel consumption.

低燃費性を改善する方法として、例えば、特許文献1では、アミノ基及びアルコキシ基を含有する有機ケイ素化合物で変性されたジエン系ゴム(変性ゴム)を用いる方法が提案されているが、前記破壊特性と低燃費性を両立することは検討されていない。 As a method for improving fuel economy, for example, Patent Document 1 proposes a method using a diene rubber (modified rubber) modified with an organosilicon compound containing an amino group and an alkoxy group. It has not been studied to achieve both characteristics and low fuel consumption.

特開2000−344955号公報JP 2000-344955 A

本発明は、上記課題を解決し、操縦安定性、耐屈曲亀裂成長性、耐チップカット性及び低燃費性が良好に改善された空気入りタイヤを提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems and to provide a pneumatic tire in which steering stability, flex crack growth resistance, chip cut resistance, and fuel efficiency are well improved.

本発明は、ゴム組成物を用いて作製した空気入りタイヤであって、前記ゴム組成物は、芳香族ビニル化合物及び共役ジエン化合物を共重合して得られた、共役ジエン部の水素添加率が75モル%以上である水添共重合体と、窒素吸着比表面積が5〜200m/gのカーボンブラックとを含み、ゴム成分100質量%中の前記水添共重合体の含有量が75質量%以上であり、ゴム成分100質量部に対する前記カーボンブラックの含有量が30〜70質量部である空気入りタイヤに関する。 The present invention is a pneumatic tire produced using a rubber composition, wherein the rubber composition has a hydrogenation rate of a conjugated diene part obtained by copolymerizing an aromatic vinyl compound and a conjugated diene compound. 75% by mass or more of the hydrogenated copolymer and carbon black having a nitrogen adsorption specific surface area of 5 to 200 m 2 / g, and the content of the hydrogenated copolymer in 100% by mass of the rubber component is 75% by mass. It is related with the pneumatic tire whose content of the said carbon black is 30-70 mass parts with respect to 100 mass parts of rubber components.

前記水添共重合体の重量平均分子量が200,000〜2,000,000であることが好ましい。 The hydrogenated copolymer preferably has a weight average molecular weight of 200,000 to 2,000,000.

前記水添共重合体の水素添加率が90モル%以上であることが好ましい。 It is preferable that the hydrogenation rate of the hydrogenated copolymer is 90 mol% or more.

前記水添共重合体が水添スチレンブタジエン共重合体であることが好ましい。 The hydrogenated copolymer is preferably a hydrogenated styrene butadiene copolymer.

前記水添スチレンブタジエン共重合体が水添変性スチレンブタジエン共重合体であることが好ましい。 The hydrogenated styrene butadiene copolymer is preferably a hydrogenated styrene butadiene copolymer.

前記水添スチレンブタジエン共重合体のスチレン含有量が5〜40質量%であることが好ましい。 The hydrogenated styrene butadiene copolymer preferably has a styrene content of 5 to 40% by mass.

前記ゴム組成物は、更にポリブタジエンゴムを含むことが好ましい。 The rubber composition preferably further contains polybutadiene rubber.

ゴム成分100質量%中の前記ポリブタジエンゴムの含有量が5〜25質量%であることが好ましい。 The content of the polybutadiene rubber in 100% by mass of the rubber component is preferably 5 to 25% by mass.

前記ゴム組成物を用いて作製されたサイドウォールを有する空気入りタイヤであることが好ましい。 A pneumatic tire having a sidewall produced using the rubber composition is preferable.

本発明によれば、水素添加率が75モル%以上である特定の水添共重合体と特定窒素吸着比表面積を有するカーボンブラックとをそれぞれ特定量含むゴム組成物を用いて作製した空気入りタイヤであるので、良好な操縦安定性、耐屈曲亀裂成長性、耐チップカット性及び低燃費性を有する。 According to the present invention, a pneumatic tire manufactured using a rubber composition containing a specific amount of a specific hydrogenated copolymer having a hydrogenation rate of 75 mol% or more and carbon black having a specific nitrogen adsorption specific surface area. Therefore, it has good steering stability, resistance to flex crack growth, resistance to chip cut and low fuel consumption.

本発明の空気入りタイヤは、芳香族ビニル化合物及び共役ジエン化合物を共重合して得られた共重合体(以下においては、芳香族ビニル化合物及び共役ジエン化合物の共重合体ともいう)の共役ジエン部が水素添加され、水素添加率が75モル%以上である水添共重合体を、ゴム成分100質量%中に75質量%以上含み、窒素吸着比表面積が5〜200m/gのカーボンブラックを、ゴム成分100質量部に対して30〜70質量部含むゴム組成物を用いて作製したものである。 The pneumatic tire of the present invention is a conjugated diene obtained by copolymerizing an aromatic vinyl compound and a conjugated diene compound (hereinafter also referred to as a copolymer of an aromatic vinyl compound and a conjugated diene compound). Carbon black containing a hydrogenated copolymer having a hydrogenation rate of 75 mol% or more in a part of 75% by mass in 100% by mass of a rubber component and a nitrogen adsorption specific surface area of 5 to 200 m 2 / g. Is produced using a rubber composition containing 30 to 70 parts by mass with respect to 100 parts by mass of the rubber component.

本発明におけるゴム組成物は、ゴム成分100質量部に対して30〜70質量部の特定窒素吸着比表面積のカーボンブラックを含むだけでなく、共役ジエン部の水素添加率を75モル%以上とした特定の水添共重合体をゴム成分100質量%中に75質量%以上含むことで、操縦安定性、耐屈曲亀裂成長性、耐チップカット性及び低燃費性を顕著に改善できる。 The rubber composition in the present invention not only contains 30 to 70 parts by mass of carbon black having a specific nitrogen adsorption specific surface area with respect to 100 parts by mass of the rubber component, but the hydrogenation rate of the conjugated diene part is 75 mol% or more. By containing the specific hydrogenated copolymer in an amount of 75% by mass or more in 100% by mass of the rubber component, the steering stability, the flex crack growth resistance, the chip cut resistance and the low fuel consumption can be remarkably improved.

本発明におけるゴム組成物は、ゴム成分として、芳香族ビニル化合物及び共役ジエン化合物の共重合体の共役ジエン部が水素添加された水添共重合体を含んでいることを特徴としている。通常のゴムは、架橋の反応点となる二重結合部が多数存在するため、架橋の疎密が発生してしまい、この架橋疎密が応力集中による破壊の起点になると考えられる。本発明では、水添処理により二重結合部を減らすことで、架橋の反応点を減らしている。これにより、架橋疎密が低減され、応力集中が緩和されることで、耐チップカット性等が向上すると予想される。 The rubber composition in the present invention is characterized in that it contains a hydrogenated copolymer in which the conjugated diene portion of a copolymer of an aromatic vinyl compound and a conjugated diene compound is hydrogenated as a rubber component. Since ordinary rubber has many double bond portions that serve as cross-linking reaction points, cross-linking density occurs, and this cross-linking density is considered to be a starting point of breakage due to stress concentration. In the present invention, the reactive sites for crosslinking are reduced by reducing the double bond portion by hydrogenation treatment. As a result, it is expected that the chip density and the like will be improved by reducing cross-linking density and reducing stress concentration.

芳香族ビニル化合物としては、例えばスチレン、α−メチルスチレン、1−ビニルナフタレン、3−ビニルトルエン、エチルビニルベンゼン、ジビニルベンゼン、4−シクロヘキシルスチレン、2,4,6−トリメチルスチレンなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよいが、これらの中で、モノマーの入手容易性などの実用面の観点及び本発明の効果がより好適に得られるという理由からスチレンが特に好ましい。 Examples of the aromatic vinyl compound include styrene, α-methylstyrene, 1-vinylnaphthalene, 3-vinyltoluene, ethylvinylbenzene, divinylbenzene, 4-cyclohexylstyrene, 2,4,6-trimethylstyrene, and the like. These may be used singly or may be used in combination of two or more, but among them, the viewpoints of practical aspects such as the availability of monomers and the effect of the present invention can be more suitably obtained. To styrene is particularly preferred.

共役ジエン化合物としては、例えば1,3−ブタジエン、イソプレン、1,3−ペンタジエン、2,3−ジメチルブタジエン、2−フェニル−1,3−ブタジエン、1,3−ヘキサジエンなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよいが、これらの中で、モノマーの入手容易性などの実用面の観点及び本発明の効果がより好適に得られるという理由から1,3−ブタジエン、イソプレンが好ましく、1,3−ブタジエンがより好ましい。 Examples of the conjugated diene compound include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethylbutadiene, 2-phenyl-1,3-butadiene, 1,3-hexadiene, and the like. These may be used singly or may be used in combination of two or more, but among them, the viewpoints of practical aspects such as the availability of monomers and the effect of the present invention can be more suitably obtained. 1,3-butadiene and isoprene are preferred, and 1,3-butadiene is more preferred.

芳香族ビニル化合物及び共役ジエン化合物の共重合体としては、スチレン及び1,3−ブタジエンの共重合体(スチレンブタジエン共重合体)が好ましい。従って、水添共重合体としては、水添スチレンブタジエン共重合体が好ましい。更に、水添スチレンブタジエン共重合体は、後述の方法で変性された水添変性スチレンブタジエン共重合体であることが好ましい。 As a copolymer of an aromatic vinyl compound and a conjugated diene compound, a copolymer of styrene and 1,3-butadiene (styrene butadiene copolymer) is preferable. Accordingly, a hydrogenated styrene butadiene copolymer is preferred as the hydrogenated copolymer. Furthermore, the hydrogenated styrene butadiene copolymer is preferably a hydrogenated styrene butadiene copolymer modified by a method described later.

上記スチレンブタジエン共重合体は、スチレン及び1,3−ブタジエンを共重合させるものである限り、共重合させる順序に特に限定はなく、ランダム共重合でもブロック共重合でもよいが、ランダム共重合が好ましい。スチレンブタジエン共重合体以外の芳香族ビニル化合物及び共役ジエン化合物の共重合体の場合も同様である。 The styrene-butadiene copolymer is not particularly limited in the order of copolymerization as long as it is a copolymer of styrene and 1,3-butadiene, and may be random copolymer or block copolymer, but random copolymer is preferable. . The same applies to a copolymer of an aromatic vinyl compound and a conjugated diene compound other than the styrene-butadiene copolymer.

水添共重合体の水素添加率(芳香族ビニル化合物及び共役ジエン化合物の共重合体の共役ジエン部に対して水素添加された割合)は75モル%以上であり、好ましくは80モル%以上、より好ましくは90モル%以上、更に好ましくは93モル%以上である。水素添加率が75モル%未満では、低燃費性、耐チップカット性及び耐屈曲亀裂成長性の改善が困難である。また、水添共重合体の水素添加率は、好ましくは99モル%以下、より好ましくは98モル%以下である。水素添加率が99モル%を超えると、ゴム組成物が硬くなるおそれがある。
なお、水素添加率は、H−NMRを測定して得られたスペクトルの不飽和結合部のスペクトル減少率から計算することができる。
The hydrogenation rate of the hydrogenated copolymer (ratio of hydrogenation with respect to the conjugated diene part of the copolymer of aromatic vinyl compound and conjugated diene compound) is 75 mol% or more, preferably 80 mol% or more, More preferably, it is 90 mol% or more, More preferably, it is 93 mol% or more. When the hydrogenation rate is less than 75 mol%, it is difficult to improve fuel economy, chip cut resistance and flex crack growth resistance. The hydrogenation rate of the hydrogenated copolymer is preferably 99 mol% or less, more preferably 98 mol% or less. If the hydrogenation rate exceeds 99 mol%, the rubber composition may become hard.
Note that the hydrogenation rate can be calculated from the spectral reduction rate of the unsaturated bonds of the spectrum obtained by measuring the H 1 -NMR.

水添共重合体の重量平均分子量(Mw)は、好ましくは200,000以上、より好ましくは400,000以上である。Mwが200,000未満では、良好な操縦安定性、耐屈曲亀裂成長性、耐チップカット性及び低燃費性が得られないおそれがある。また、水添共重合体のMwは、好ましくは2,000,000以下、より好ましくは1,000,000以下であり、更に好ましくは700,000以下である。Mwが2,000,000を超えると、加工性が低下する傾向がある。 The weight average molecular weight (Mw) of the hydrogenated copolymer is preferably 200,000 or more, more preferably 400,000 or more. If Mw is less than 200,000, good steering stability, flex crack growth resistance, chip cut resistance and low fuel consumption may not be obtained. The Mw of the hydrogenated copolymer is preferably 2,000,000 or less, more preferably 1,000,000 or less, and still more preferably 700,000 or less. When Mw exceeds 2,000,000, the workability tends to decrease.

なお、本明細書において、重量平均分子量(Mw)、数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフ(GPC)(東ソー(株)製GPC−8000シリーズ、検出器:示差屈折計、カラム:東ソー(株)製のTSKGEL SUPERMULTIPORE HZ−M)による測定値を基に標準ポリスチレン換算により求めることができる。 In the present specification, the weight average molecular weight (Mw) and the number average molecular weight (Mn) are gel permeation chromatograph (GPC) (GPC-8000 series, manufactured by Tosoh Corporation), detector: differential refractometer, column: It can be determined in terms of standard polystyrene based on the measured value by TSKGEL SUPERMULTIPORE HZ-M manufactured by Tosoh Corporation.

水添共重合体のムーニー粘度(ML1+4、100℃)は、好ましくは50以上、より好ましくは60以上、更に好ましくは80以上である。50未満では、良好な低燃費性、操縦安定性、耐屈曲亀裂成長性及び耐チップカット性が得られないおそれがある。また、該ムーニー粘度は、好ましくは120以下、より好ましくは110以下、更に好ましくは100以下である。120を超えると、加工性が悪化する傾向がある。
なお、本明細書において、ムーニー粘度(ML1+4、100℃)は、JIS K 6300に従い、100℃でムーニー粘度を測定することにより得られる値である。
The Mooney viscosity (ML 1 + 4 , 100 ° C.) of the hydrogenated copolymer is preferably 50 or more, more preferably 60 or more, and still more preferably 80 or more. If it is less than 50, there is a possibility that good fuel economy, steering stability, resistance to flex crack growth and chip cut resistance cannot be obtained. The Mooney viscosity is preferably 120 or less, more preferably 110 or less, and still more preferably 100 or less. When it exceeds 120, workability tends to deteriorate.
In this specification, Mooney viscosity (ML 1 + 4 , 100 ° C.) is a value obtained by measuring Mooney viscosity at 100 ° C. according to JIS K 6300.

水添共重合体が水添スチレンブタジエン共重合体である場合、水添スチレンブタジエン共重合体のスチレン含有量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上であり、特に好ましくは20質量%以上であり、最も好ましくは25質量%以上である。スチレン含有量が5質量%未満であると、充分な低燃費性が得られないおそれがある。また、水添スチレンブタジエン共重合体のスチレン含有量は、好ましくは40質量%以下、より好ましくは35質量%以下である。スチレン含有量が40質量%を超えると、充分な操縦安定性、耐屈曲亀裂成長性及び耐チップカット性が得られず、低燃費性も悪化するおそれがある。スチレン含有量が上記範囲内であると、本発明の効果がより好適に得られる。
なお、スチレン含有量は、後述する実施例に記載の方法により測定される。
When the hydrogenated copolymer is a hydrogenated styrene butadiene copolymer, the styrene content of the hydrogenated styrene butadiene copolymer is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 15% by mass. % Or more, particularly preferably 20% by mass or more, and most preferably 25% by mass or more. If the styrene content is less than 5% by mass, sufficient fuel economy may not be obtained. Further, the styrene content of the hydrogenated styrene butadiene copolymer is preferably 40% by mass or less, more preferably 35% by mass or less. When the styrene content exceeds 40% by mass, sufficient steering stability, flex crack growth resistance and chip cut resistance cannot be obtained, and fuel efficiency may be deteriorated. When the styrene content is within the above range, the effect of the present invention can be more suitably obtained.
In addition, styrene content is measured by the method as described in the Example mentioned later.

上記水添共重合体は、例えば、芳香族ビニル化合物及び共役ジエン化合物を重合して得られた重合体に水素添加処理を施すことで合成でき、具体的には以下の方法で合成できる。 The hydrogenated copolymer can be synthesized, for example, by subjecting a polymer obtained by polymerizing an aromatic vinyl compound and a conjugated diene compound to a hydrogenation treatment, and specifically, can be synthesized by the following method.

<共重合体の製造方法>
(重合方法)
芳香族ビニル化合物及び共役ジエン化合物の共重合体の重合方法については特に制限はなく、溶液重合法、気相重合法、バルク重合法のいずれも用いることができるが、特に溶液重合法が好ましい。また、重合形式は、回分式及び連続式のいずれであってもよい。
<Method for producing copolymer>
(Polymerization method)
There is no particular limitation on the polymerization method of the copolymer of the aromatic vinyl compound and the conjugated diene compound, and any of the solution polymerization method, the gas phase polymerization method, and the bulk polymerization method can be used, but the solution polymerization method is particularly preferable. Moreover, any of a batch type and a continuous type may be sufficient as the superposition | polymerization form.

溶液重合法を用いた場合には、溶媒中のモノマー濃度(スチレンブタジエン共重合体の場合はスチレン、1,3−ブタジエンの合計)は、5質量%以上が好ましく、10質量%以上がより好ましい。溶液中のモノマー濃度が5質量%未満では、得られる共重合体の量が少なく、コストが高くなる傾向がある。また、溶媒中のモノマー濃度は50質量%以下が好ましく、30質量%以下がより好ましい。溶媒中のモノマー濃度が50質量%を超えると、溶液粘度が高くなりすぎて撹拌が困難となり、重合しにくくなる傾向がある。 When the solution polymerization method is used, the monomer concentration in the solvent (the total of styrene and 1,3-butadiene in the case of a styrene butadiene copolymer) is preferably 5% by mass or more, and more preferably 10% by mass or more. . When the monomer concentration in the solution is less than 5% by mass, the amount of the copolymer obtained is small and the cost tends to increase. The monomer concentration in the solvent is preferably 50% by mass or less, and more preferably 30% by mass or less. When the monomer concentration in the solvent exceeds 50% by mass, the solution viscosity becomes too high, stirring becomes difficult, and polymerization tends to be difficult.

(アニオン重合における重合開始剤)
アニオン重合を行う場合、重合開始剤としては特に制限はないが、有機リチウム化合物が好ましく用いられる。前記有機リチウム化合物としては、炭素数2〜20のアルキル基を有するものが好ましく、例えばエチルリチウム、n−プロピルリチウム、イソプロピルリチウム、n−ブチルリチウム、sec−ブチルリチウム、tert−ブチルリチウム、tert−オクチルリチウム、n−デシルリチウム、フェニルリチウム、2−ナフチルリチウム、2−ブチルーフェニルリチウム、4−フェニル−ブチルリチウム、シクロヘキシルリチウム、シクロペンチルリチウム、ジイソプロペニルベンゼンとブチルリチウムとの反応生成物などが挙げられるが、これらの中で、入手容易性、安全性等の観点からn−ブチルリチウムまたはsec−ブチルリチウムが好ましい。
(Polymerization initiator in anionic polymerization)
When anionic polymerization is performed, the polymerization initiator is not particularly limited, but an organic lithium compound is preferably used. As the organic lithium compound, those having an alkyl group having 2 to 20 carbon atoms are preferable. For example, ethyl lithium, n-propyl lithium, isopropyl lithium, n-butyl lithium, sec-butyl lithium, tert-butyl lithium, tert- Octyl lithium, n-decyl lithium, phenyl lithium, 2-naphthyl lithium, 2-butyl-phenyl lithium, 4-phenyl-butyl lithium, cyclohexyl lithium, cyclopentyl lithium, reaction products of diisopropenylbenzene and butyl lithium, etc. Among these, n-butyllithium or sec-butyllithium is preferable from the viewpoints of availability, safety, and the like.

また、重合反応は、上記の有機リチウム化合物のうち少なくともいずれかと、シリカと相互作用する官能基を有する化合物(B1)とを混合して得られる化合物(R)の存在下で行ってもよい。当該化合物(R)の存在下で重合を行うことにより、共重合体の重合開始末端に、シリカと相互作用を有する官能基を導入することができる。これにより、開始末端が変性された共重合体が得られる。なお、本明細書において「相互作用」とは、分子間で共有結合を形成するか、又は共有結合よりも弱い分子間力(例えば、イオン−双極子相互作用、双極子−双極子相互作用、水素結合、ファンデルワールス力等といった分子間に働く電磁気学的な力)を形成することを意味する。また、「シリカと相互作用する官能基」は、窒素原子、硫黄原子、リン原子、酸素原子などのシリカと相互作用する原子を少なくとも1つ有する基を示す。 Moreover, you may perform a polymerization reaction in presence of the compound (R) obtained by mixing at least any one of said organolithium compounds, and the compound (B1) which has a functional group which interacts with a silica. By performing the polymerization in the presence of the compound (R), a functional group having an interaction with silica can be introduced into the polymerization initiation terminal of the copolymer. Thereby, the copolymer by which the start terminal was modified | denatured is obtained. In the present specification, the term “interaction” refers to an intermolecular force that forms a covalent bond between molecules or is weaker than a covalent bond (eg, ion-dipole interaction, dipole-dipole interaction, It means the formation of electromagnetic force between molecules such as hydrogen bonds and van der Waals forces. The “functional group that interacts with silica” refers to a group having at least one atom that interacts with silica, such as a nitrogen atom, a sulfur atom, a phosphorus atom, or an oxygen atom.

上記化合物(R)としては、中でも有機リチウム化合物と、第2級アミン化合物などの窒素含有化合物との反応生成物であることが好ましい。当該窒素含有化合物の具体例としては、例えばジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ドデカメチレンイミン、N,N’−ジメチル−N’−トリメチルシリル−1,6−ジアミノヘキサン、ピペリジン、ピロリジン、ヘキサメチレンイミン、ヘプタメチレンイミン、ジシクロヘキシルアミン、N−メチルベンジルアミン、ジ−(2−エチルヘキシル)アミン、ジアリルアミン、モルホリン、N−(トリメチルシリル)ピペラジン、N−(tert−ブチルジメチルシリル)ピペラジン、1,3−ジトリメチルシリル−1,3,5−トリアジナン等が挙げられる。なお、化合物(R)の存在下で重合を行う場合、有機リチウム化合物と、化合物(B1)とを予め混合することにより化合物(R)を調製し、その調製した化合物(R)を重合系中に添加して重合を行ってもよい。あるいは、重合系中に、有機リチウム化合物と、化合物(B1)とを添加し、重合系中で両者を混合することにより化合物(R)を調製して重合を行ってもよい。 The compound (R) is preferably a reaction product of an organolithium compound and a nitrogen-containing compound such as a secondary amine compound. Specific examples of the nitrogen-containing compound include, for example, dimethylamine, diethylamine, dipropylamine, dibutylamine, dodecamethyleneimine, N, N′-dimethyl-N′-trimethylsilyl-1,6-diaminohexane, piperidine, pyrrolidine, Hexamethyleneimine, heptamethyleneimine, dicyclohexylamine, N-methylbenzylamine, di- (2-ethylhexyl) amine, diallylamine, morpholine, N- (trimethylsilyl) piperazine, N- (tert-butyldimethylsilyl) piperazine, 1, Examples include 3-ditrimethylsilyl-1,3,5-triazinane. In addition, when superposing | polymerizing in presence of a compound (R), a compound (R) is prepared by mixing an organic lithium compound and a compound (B1) previously, and the prepared compound (R) is made into a polymerization system. Polymerization may be carried out by adding to the above. Alternatively, the polymerization may be carried out by preparing the compound (R) by adding the organolithium compound and the compound (B1) to the polymerization system and mixing both in the polymerization system.

(アニオン重合の方法)
前記重合開始剤を用いてアニオン重合し、共重合体を製造する方法としては、特に制限はなく、従来公知の方法を用いることができる。
具体的には、反応に不活性な有機溶剤、例えば脂肪族、脂環族、芳香族炭化水素化合物などの炭化水素系溶剤中において、例えばブチルリチウムを重合開始剤とし、必要に応じてランダマイザーの存在下でスチレン及び1,3−ブタジエン等をアニオン重合させることにより、スチレンブタジエン共重合体等の目的の共重合体を得ることができる。
(Method of anionic polymerization)
There is no restriction | limiting in particular as a method of anion-polymerizing using the said polymerization initiator and manufacturing a copolymer, A conventionally well-known method can be used.
Specifically, in an organic solvent inert to the reaction, for example, a hydrocarbon solvent such as an aliphatic, alicyclic, or aromatic hydrocarbon compound, for example, butyl lithium is used as a polymerization initiator, and a randomizer is used as necessary. By subjecting styrene, 1,3-butadiene and the like to anionic polymerization in the presence of styrene, a desired copolymer such as a styrene-butadiene copolymer can be obtained.

(アニオン重合における炭化水素系溶剤)
前記炭化水素系溶剤としては、炭素数3〜8のものが好ましく、例えばプロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン、n−ヘキサン、シクロヘキサン、プロペン、1−ブテン、イソブテン、トランス−2−ブテン、シス−2−ブテン、1−ペンテン、2−ペンテン、1−ヘキセン、2−ヘキセン、ベンゼン、トルエン、キシレン、エチルベンゼンなどを挙げることができる。これらは単独で用いてもよく、2種以上を混合して用いてもよい。
(Hydrocarbon solvents in anionic polymerization)
The hydrocarbon solvent is preferably one having 3 to 8 carbon atoms, such as propane, n-butane, isobutane, n-pentane, isopentane, n-hexane, cyclohexane, propene, 1-butene, isobutene and trans-2. -Butene, cis-2-butene, 1-pentene, 2-pentene, 1-hexene, 2-hexene, benzene, toluene, xylene, ethylbenzene and the like. These may be used alone or in combination of two or more.

(アニオン重合におけるランダマイザー)
また、前記ランダマイザーとは、共重合体中の共役ジエン部分のミクロ構造制御、例えばブタジエンにおける1,2−結合、イソプレンにおける3,4−結合の増加など、あるいは共重合体におけるモノマー単位の組成分布の制御、例えばスチレンブタジエン共重合体におけるスチレン単位、ブタジエン単位のランダム化などの作用を有する化合物のことである。このランダマイザーとしては、特に制限はなく、従来ランダマイザーとして一般に使用されている公知の化合物の中から任意のものを用いることができる。例えば、ジメトキシベンゼン、テトラヒドロフラン、ジメトキシエタン、ジエチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ビステトラヒドロフリルプロパン、トリエチルアミン、ピリジン、N−メチルモルホリン、N,N,N’,N’−テトラメチルエチレンジアミン、1,2−ジピペリジノエタンなどのエーテル類及び第三級アミン類などを挙げることができる。また、カリウム−t−アミレート、カリウム−t−ブトキシドなどのカリウム塩類、ナトリウム−t−アミレートなどのナトリウム塩類も用いることができる。これらのランダマイザーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、ランダマイザーの使用量は、有機リチウム化合物1モル当たり、0.01モル当量以上が好ましく、0.05モル当量以上がより好ましい。ランダマイザーの使用量が0.01モル当量未満では、添加効果が小さく、ランダム化しにくい傾向がある。また、ランダマイザーの使用量は、有機リチウム化合物1モル当たり1000モル当量以下が好ましく、500モル当量以下がより好ましい。ランダマイザーの使用量が1000モル当量をこえると、モノマーの反応速度が大きく変化してしまい、逆にランダム化しにくくなる傾向がある。
(Randomizer in anionic polymerization)
The randomizer is a microstructure control of a conjugated diene moiety in a copolymer, for example, an increase in 1,2-bond in butadiene, an increase in 3,4-bond in isoprene, or the composition of monomer units in the copolymer. It is a compound having an action of controlling distribution, for example, randomizing styrene units and butadiene units in a styrene-butadiene copolymer. The randomizer is not particularly limited, and any known compound generally used as a conventional randomizer can be used. For example, dimethoxybenzene, tetrahydrofuran, dimethoxyethane, diethylene glycol dibutyl ether, diethylene glycol dimethyl ether, bistetrahydrofurylpropane, triethylamine, pyridine, N-methylmorpholine, N, N, N ′, N′-tetramethylethylenediamine, 1,2-di Examples include ethers such as piperidinoethane and tertiary amines. Further, potassium salts such as potassium-t-amylate and potassium-t-butoxide, and sodium salts such as sodium-t-amylate can also be used. These randomizers may be used individually by 1 type, and may be used in combination of 2 or more type. The amount of randomizer used is preferably 0.01 molar equivalents or more, more preferably 0.05 molar equivalents or more per mole of the organic lithium compound. If the amount of randomizer used is less than 0.01 molar equivalent, the effect of addition tends to be small and it tends to be difficult to randomize. The amount of randomizer used is preferably 1000 molar equivalents or less, more preferably 500 molar equivalents or less, per mole of the organic lithium compound. If the amount of randomizer used exceeds 1000 molar equivalents, the reaction rate of the monomer changes greatly, and conversely, it tends to be difficult to randomize.

(反応温度)
アニオン重合の際の反応温度は、好適に反応が進行する限り特に限定はないが、通常−10℃〜100℃であることが好ましく、25℃〜70℃であることがより好ましい。
(Reaction temperature)
The reaction temperature during the anionic polymerization is not particularly limited as long as the reaction proceeds suitably, but it is usually preferably −10 ° C. to 100 ° C., more preferably 25 ° C. to 70 ° C.

(変性工程)
上記重合の工程により得られた共重合体の活性末端と、シリカと相互作用する官能基を有する化合物(B2)とを反応させる工程により、共重合体の重合終了末端に、シリカと相互作用する官能基を導入することができる。これにより、重合終了末端が変性された共重合体が得られる。なお、本発明において末端とは、分子鎖の端に存在する、炭素−炭素二重結合を有するモノマーに由来する構造以外の部分を意味する。
(Modification process)
By the step of reacting the active terminal of the copolymer obtained in the above-mentioned polymerization step with the compound (B2) having a functional group that interacts with silica, it interacts with silica at the terminal end of polymerization of the copolymer. Functional groups can be introduced. As a result, a copolymer having a modified terminal end of polymerization is obtained. In the present invention, the term “terminal” means a portion other than the structure derived from a monomer having a carbon-carbon double bond that exists at the end of a molecular chain.

上記変性反応(以下、末端変性反応ともいう。)に用いる共重合体は、活性末端を有している限り、重合開始末端が未変性のものでもよいし、変性されたものでもよい。また、化合物(B2)としては、シリカと相互作用する官能基を有し、かつ重合活性末端と反応し得る化合物であれば特に限定しない。化合物(B2)の好ましい具体例としては、例えば
(I)下記式(1)で表される化合物(B2−1);

Figure 2016069628
(式(1)中、Aは、窒素原子、リン原子及び硫黄原子からなる群より選択される少なくとも一種の原子を有し、活性水素を有さず、かつRに対して窒素原子、リン原子又は硫黄原子で結合する1価の官能基である。R及びRはヒドロカルビル基であり、Rはヒドロカルビレン基であり、nは0〜2の整数である。但し、R及びRが複数存在する場合、複数のR及びRは、それぞれ同じでも異なっていてもよい。)
(II)分子中に、環状エーテル基、(チオ)カルボニル基及びイソ(チオ)シアナート基からなる群より選択される少なくとも1種の官能基(x1)と、窒素原子、リン原子、酸素原子及び硫黄原子からなる群より選択される少なくとも一種の原子(但し、窒素原子、リン原子及び硫黄原子は、少なくともいずれかが3置換のヒドロカルビルシリル基で保護されていてもよい。)を有し、かつ活性水素を有していない、前記官能基(x1)とは異なる基(x2)と、を各々1つ以上有する化合物(B2−2);
(III)分子中に、イソ(チオ)シアナート基を2つ以上有する化合物(B2−3);
等が挙げられる。化合物(B2)としては、これらを一種単独で又は二種以上を組み合わせて使用することができる。なお、本明細書において、(チオ)カルボニル基は、カルボニル基及びチオカルボニル基を示し、イソ(チオ)シアナート基は、イソシアナート基及びイソチオシアナート基を示す。 As long as the copolymer used in the modification reaction (hereinafter also referred to as a terminal modification reaction) has an active terminal, the polymerization initiation terminal may be unmodified or modified. The compound (B2) is not particularly limited as long as it has a functional group that interacts with silica and can react with the polymerization active terminal. Preferable specific examples of compound (B2) include, for example, (I) compound (B2-1) represented by the following formula (1);
Figure 2016069628
(In Formula (1), A 1 has at least one atom selected from the group consisting of a nitrogen atom, a phosphorus atom, and a sulfur atom, does not have active hydrogen, and is a nitrogen atom with respect to R 5 ; R 3 and R 4 are hydrocarbyl groups, R 5 is a hydrocarbylene group, and n is an integer of 0 to 2, where R 3 and R 4 are monovalent functional groups bonded with a phosphorus atom or a sulfur atom. When a plurality of 3 and R 4 are present, the plurality of R 3 and R 4 may be the same or different.)
(II) In the molecule, at least one functional group (x1) selected from the group consisting of a cyclic ether group, a (thio) carbonyl group and an iso (thio) cyanate group, a nitrogen atom, a phosphorus atom, an oxygen atom, and At least one atom selected from the group consisting of sulfur atoms (provided that at least one of the nitrogen atom, phosphorus atom and sulfur atom may be protected by a tri-substituted hydrocarbylsilyl group); A compound (B2-2) having no active hydrogen and each having one or more groups (x2) different from the functional group (x1);
(III) Compound (B2-3) having two or more iso (thio) cyanate groups in the molecule;
Etc. As a compound (B2), these can be used individually by 1 type or in combination of 2 or more types. In the present specification, the (thio) carbonyl group represents a carbonyl group and a thiocarbonyl group, and the iso (thio) cyanate group represents an isocyanate group and an isothiocyanate group.

上記式(1)において、R及びRのヒドロカルビル基としては、炭素数1〜20の直鎖状若しくは分岐状のアルキル基、炭素数3〜20のシクロアルキル基又は炭素数6〜20のアリール基であることが好ましい。
は、炭素数1〜20の直鎖状若しくは分岐状のアルカンジイル基、炭素数3〜20のシクロアルキレン基又は炭素数6〜20のアリーレン基であることが好ましい。
nは、共重合体との反応性を高める観点から、0又は1が好ましい。
は、窒素原子、リン原子及び硫黄原子からなる群より選択される少なくとも一種の原子(以下、特定原子ともいう。)を有し、これら特定原子でRに結合する。特定原子は活性水素に結合しておらず、例えば3置換のヒドロカルビルシリル基等で保護されていてもよい。なお、ここでいう「活性水素」とは、炭素原子以外の原子に結合した水素原子をいい、好ましくはポリメチレンの炭素−水素結合よりも結合エネルギが低いものを指す。
In the above formula (1), the hydrocarbyl group of R 3 and R 4 is a linear or branched alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or a 6 to 20 carbon atom. An aryl group is preferred.
R 5 is preferably a linear or branched alkanediyl group having 1 to 20 carbon atoms, a cycloalkylene group having 3 to 20 carbon atoms, or an arylene group having 6 to 20 carbon atoms.
n is preferably 0 or 1 from the viewpoint of increasing the reactivity with the copolymer.
A 1 has at least one atom selected from the group consisting of a nitrogen atom, a phosphorus atom and a sulfur atom (hereinafter also referred to as a specific atom), and binds to R 5 with these specific atoms. The specific atom is not bonded to active hydrogen, and may be protected with, for example, a trisubstituted hydrocarbylsilyl group. Here, “active hydrogen” refers to a hydrogen atom bonded to an atom other than a carbon atom, and preferably refers to a substance having a bond energy lower than that of polymethylene.

は、中でも、オニウム塩生成剤によってオニウムイオンになり得る基であることが好ましい。化合物(B2)がこのような基(A)を有することにより、変性共重合体に対して優れた形状保持性を付与することができる。
の具体例としては、例えば1級アミノ基の2つの水素原子が2つの保護基によって置換されてなる窒素含有基、2級アミノ基の1つの水素原子が1つの保護基によって置換されてなる窒素含有基、3級アミノ基、イミノ基、ピリジル基、1級ホスフィノ基の2つの水素原子が2つの保護基によって置換されてなるリン含有基、2級ホスフィノ基の1つの水素原子が1つの保護基によって置換されてなるリン含有基、3級ホスフィノ基、及び、チオール基の1つの水素原子が1つの保護基によって置換されてなる硫黄含有基等が挙げられる。これらの中でも、シリカとの親和性が良好である観点から、窒素原子を有する基であることが好ましい。なお、「保護基」とは、Aを重合活性末端に対して不活性な官能基に変換しておく官能基であり、例えば3置換のヒドロカルビルシリル基等が挙げられる。
In particular, A 1 is preferably a group capable of becoming an onium ion by the onium salt generator. When the compound (B2) has such a group (A 1 ), excellent shape retention can be imparted to the modified copolymer.
Specific examples of A 1 include, for example, a nitrogen-containing group in which two hydrogen atoms of a primary amino group are substituted by two protecting groups, and one hydrogen atom of a secondary amino group is substituted by one protecting group. A nitrogen-containing group, a tertiary amino group, an imino group, a pyridyl group, a phosphorus-containing group in which two hydrogen atoms of a primary phosphino group are substituted by two protecting groups, and one hydrogen atom of a secondary phosphino group is 1 Examples thereof include a phosphorus-containing group that is substituted by one protecting group, a tertiary phosphino group, and a sulfur-containing group in which one hydrogen atom of a thiol group is substituted by one protecting group. Among these, a group having a nitrogen atom is preferable from the viewpoint of good affinity with silica. The “protecting group” is a functional group that converts A 1 into a functional group that is inactive with respect to the polymerization active terminal, and examples thereof include a trisubstituted hydrocarbylsilyl group.

上記化合物(B2−1)の具体例としては、1級アミンの2つの水素原子が2つの保護基によって置換されてなる窒素含有基、2級アミンの1つの水素原子が1つの保護基によって置換されてなる窒素含有基、又は3級アミノ基と、アルコキシシリル基とを有する化合物として、例えば、N,N−ビス(トリメチルシリル)アミノプロピルトリメトキシシラン、N,N−ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン、N,N’,N’−トリス(トリメチルシリル)−N−(2−アミノエチル)−3−アミノプロピルトリエトキシシラン、3−(4−トリメチルシリル−1−ピペラジノ)プロピルメチルジメトキシシラン、等を挙げることができる。 Specific examples of the compound (B2-1) include a nitrogen-containing group in which two hydrogen atoms of a primary amine are substituted by two protecting groups, and one hydrogen atom of a secondary amine is substituted by one protecting group. Examples of the compound having a nitrogen-containing group or a tertiary amino group and an alkoxysilyl group are, for example, N, N-bis (trimethylsilyl) aminopropyltrimethoxysilane, N, N-bis (trimethylsilyl) aminopropylmethyl. Diethoxysilane, N, N ′, N′-tris (trimethylsilyl) -N- (2-aminoethyl) -3-aminopropyltriethoxysilane, 3- (4-trimethylsilyl-1-piperazino) propylmethyldimethoxysilane, Etc.

イミノ基又はピリジル基と、アルコキシシリル基とを有する化合物としては、N−(1,3−ジメチルブチリデン)−3−(トリエトキシシリル)−1−プロパンアミン、N−(1−メチルプロピリデン)−3−(トリエトキシシリル)−1−プロパンアミン、N−(4−N,N−ジメチルアミノベンジリデン)−3−(トリエトキシシリル)−1−プロパンアミン、N−(シクロヘキシリデン)−3−(トリエトキシシリル)−1−プロパンアミン及びこれらのトリエトキシシリル化合物に対応するトリメトキシシリル化合物、メチルジエトキシシリル化合物、エチルジメトキシシリル化合物、N−(3−トリメトキシシリルプロピル)−4,5−ジヒドロイミダゾール、N−(3−トリエトキシシリルプロピル)−4,5−ジヒドロイミダゾール、N−(3−トリメトキシシリルプロピル)−4,5−イミダゾール、N−(3−トリエトキシシリルプロピル)−4,5−イミダゾール、3−ヘキサメチレンイミノプロピルトリメトキシシラン、3−ヘキサメチレンイミノプロピルメチルジメトキシシラン、並びに上記化合物中のアルキル基、アルカンジイル基を、各々炭素数1〜6のアルキル基、炭素数1〜6のアルカンジイル基に置き換えた化合物等が挙げられる。 Examples of the compound having an imino group or pyridyl group and an alkoxysilyl group include N- (1,3-dimethylbutylidene) -3- (triethoxysilyl) -1-propanamine, N- (1-methylpropylidene). ) -3- (Triethoxysilyl) -1-propanamine, N- (4-N, N-dimethylaminobenzylidene) -3- (triethoxysilyl) -1-propanamine, N- (cyclohexylidene)- 3- (Triethoxysilyl) -1-propanamine and trimethoxysilyl compounds, methyldiethoxysilyl compounds, ethyldimethoxysilyl compounds, N- (3-trimethoxysilylpropyl) -4 corresponding to these triethoxysilyl compounds , 5-dihydroimidazole, N- (3-triethoxysilylpropyl) -4,5-dihydroimi Sol, N- (3-trimethoxysilylpropyl) -4,5-imidazole, N- (3-triethoxysilylpropyl) -4,5-imidazole, 3-hexamethyleneiminopropyltrimethoxysilane, 3-hexamethylene Examples include iminopropylmethyldimethoxysilane, and compounds obtained by replacing the alkyl group and alkanediyl group in the above compound with an alkyl group having 1 to 6 carbon atoms and an alkanediyl group having 1 to 6 carbon atoms, respectively.

1級ホスフィノ基の2つの水素原子が2つの保護基によって置換されてなるリン含有基、2級ホスフィノ基の1つの水素原子が1つの保護基によって置換されてなるリン含有基、3級ホスフィノ基、又はチオール基の1つの水素原子が1つの保護基によって置換されてなる硫黄含有基と、アルコキシシリル基とを有する化合物としては、P,P−ビス(トリメチルシリル)ホスフィノプロピルメチルジメトキシシラン、P,P−ビス(トリメチルシリル)ホスフィノプロピルトリメトキシシラン、3−ジメチルフォスフィノプロピルトリメトキシシラン、3−ジメチルフォスフィノプロピルメチルジメトキシシラン、3−ジフェニルフォスフィノプロピルトリメトキシシラン、3−ジフェニルフォスフィノプロピルトリエトキシシラン、3−ジフェニルフォスフィノプロピルメリルジメトキシシラン、S−トリメチルシリルメルカプトプロピルメチルジメトキシシラン、S−トリメチルシリルメルカプトプロピルトリメトキシシラン、S−トリメチルシリルメルカプトプロピルトリエトキシシラン、S−トリメチルシリルメルカプトプロピルメチルジエトキシシラン、及び上記化合物中のアルキル基、アルカンジイル基を、各々炭素数1〜6のアルキル基、炭素数1〜6のアルカンジイル基に置き換えた化合物等を挙げることができる。その他、イソ(チオ)シアナート基を有する化合物として、3−イソシアナトプロピルトリメトキシシラン、3−イソシアナトプロピルトリエトキシシラン等を挙げることができる。 A phosphorus-containing group in which two hydrogen atoms of a primary phosphino group are substituted by two protecting groups, a phosphorus-containing group in which one hydrogen atom of a secondary phosphino group is substituted by one protecting group, a tertiary phosphino group Or a compound having a sulfur-containing group in which one hydrogen atom of a thiol group is substituted with one protecting group and an alkoxysilyl group include P, P-bis (trimethylsilyl) phosphinopropylmethyldimethoxysilane, P , P-bis (trimethylsilyl) phosphinopropyltrimethoxysilane, 3-dimethylphosphinopropyltrimethoxysilane, 3-dimethylphosphinopropylmethyldimethoxysilane, 3-diphenylphosphinopropyltrimethoxysilane, 3-diphenylphosphinopropyl Triethoxysilane, 3- Phenylphosphinopropylmeryldimethoxysilane, S-trimethylsilylmercaptopropylmethyldimethoxysilane, S-trimethylsilylmercaptopropyltrimethoxysilane, S-trimethylsilylmercaptopropyltriethoxysilane, S-trimethylsilylmercaptopropylmethyldiethoxysilane, and the above compounds The compound etc. which replaced the alkyl group and the alkanediyl group with the C1-C6 alkyl group and the C1-C6 alkanediyl group, respectively can be mentioned. In addition, examples of the compound having an iso (thio) cyanate group include 3-isocyanatopropyltrimethoxysilane and 3-isocyanatopropyltriethoxysilane.

上記化合物(B2−2)は、上記基(x2)が、活性水素に結合していない窒素原子を含む基であることが好ましく、その具体例としては、環状エーテル基を有する化合物として、例えばテトラグリシジル−1,3−ビスアミノメチルシクロヘキサン等のエポキシアミン化合物などを;
(チオ)カルボニル基を有する化合物として、例えば4−N,N−ジメチルアミノベンゾフェノン等の4−アミノアセトフェノン;1,7−ビス(メチルエチルアミノ)−4−ヘプタノン等のビス(ジヒドロカルビルアミノアルキル)ケトン;2−ジメチルアミノエチルアクリレート等のジヒドロカルビルアミノアルキル(メタ)アクリレート;1,3−ジメチル−2−イミダゾリジノン等のヒドロカルビルイミダゾリジノン;1−フェニル−2−ピロリドン等のN−ヒドロカルビルピロリドン;N−メチル−ε−カプロラクタム等のN−ヒロドカルビルカプトラクタム;N,N−ジエチルホルムアミド等のN−ジヒドロカルビルホルムアミド;N,N−ジメチルアセトアミド等のN,N−ジヒドロカルビルアセトアミド;N,N−ジメチルアクリルアミド等の(メタ)アクリルアミド;などを;
イソ(チオ)シアナート基を有する化合物として、例えば3−イソシアナトプロピルトリメトキシシランなどを;挙げることができる。
In the compound (B2-2), the group (x2) is preferably a group containing a nitrogen atom that is not bonded to active hydrogen. Specific examples thereof include a compound having a cyclic ether group such as tetra Epoxyamine compounds such as glycidyl-1,3-bisaminomethylcyclohexane;
Examples of the compound having a (thio) carbonyl group include 4-aminoacetophenone such as 4-N, N-dimethylaminobenzophenone; bis (dihydrocarbylaminoalkyl) such as 1,7-bis (methylethylamino) -4-heptanone Ketones; dihydrocarbylaminoalkyl (meth) acrylates such as 2-dimethylaminoethyl acrylate; hydrocarbyl imidazolidinones such as 1,3-dimethyl-2-imidazolidinone; N-hydrocarbyl pyrrolidones such as 1-phenyl-2-pyrrolidone N-hydrocarbylcaptolactam such as N-methyl-ε-caprolactam; N-dihydrocarbylformamide such as N, N-diethylformamide; N, N-dihydrocarbylacetamide such as N, N-dimethylacetamide; N-dimethyl Acrylamide such as (meth) acrylamide; and the like;
Examples of the compound having an iso (thio) cyanate group include 3-isocyanatopropyltrimethoxysilane.

上記化合物(B2−3)としては、例えば2,4−トリレンジイソシアナート、2,6−トリレンジイソシアナート、ジフェニルメタンジイソシアナート、ナフタレンジイソシアナート、トリフェニルメタントリイソシアナート、p−フェニレンジイソシアナート、トリス(イソシアナートフェニル)チオホスフェート、キシレンジイソシアナート、ベンゼン−1,2,4−トリイソシアナート、ナフタレン−1,2,5,7−テトライソシアナート、1,4−フェニレンジイソチオシアナートなどを挙げることができる。 Examples of the compound (B2-3) include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate, triphenylmethane triisocyanate, and p-phenylene diene. Isocyanate, tris (isocyanatophenyl) thiophosphate, xylene diisocyanate, benzene-1,2,4-triisocyanate, naphthalene-1,2,5,7-tetraisocyanate, 1,4-phenylene diisothiate Examples include an isocyanate.

化合物(B2)としては、シリカとの親和性が強い点において、特に化合物(B2−1)を用いることが好ましい。なお、シラン化合物(B2−1)を用いる場合、変性共重合体のムーニー粘度を調整する目的で、シラン化合物(B2−1)と共に、四塩化ケイ素、エポキシ含有化合物(例えば、テトラグリシジル−1,3−ビスアミノメチルシクロヘキサンなど)などを用いてもよい。上記で例示した化合物(B2)は、重合終了末端が変性された変性共重合体を得ることが可能である点において、いずれも同様の作用を有するものである。したがって、後述の実施例に記載されていないものであっても、本発明において使用することが可能である。なお、上記式(1)で表される化合物と変性共重合体との反応によって下記式(1−1)で表される構造が重合体末端に導入される。

Figure 2016069628
(一般式(1−1)中、Rは水素原子またはヒドロカルビル基であり、複数存在するRは同じであっても異なっていてもよい。A、R、R及びnは上記式(1)のA、R、R及びnと同義である。) As the compound (B2), it is particularly preferable to use the compound (B2-1) in terms of strong affinity with silica. When using the silane compound (B2-1), for the purpose of adjusting the Mooney viscosity of the modified copolymer, together with the silane compound (B2-1), silicon tetrachloride, an epoxy-containing compound (for example, tetraglycidyl-1, 3-bisaminomethylcyclohexane and the like) may be used. The compound (B2) exemplified above has the same action in that it can obtain a modified copolymer in which the terminal end of polymerization is modified. Accordingly, even those not described in the examples described later can be used in the present invention. In addition, the structure represented by the following formula (1-1) is introduced into the polymer terminal by the reaction between the compound represented by the above formula (1) and the modified copolymer.
Figure 2016069628
(In General Formula (1-1), R 6 is a hydrogen atom or a hydrocarbyl group, and a plurality of R 6 may be the same or different. A 4 , R 3 , R 5 and n are the same as above. (It is synonymous with A < 1 >, R < 3 >, R < 5 > and n of Formula (1).)

上記の末端変性反応は、例えば溶液反応として行うことができる。この溶液反応は、上記重合工程における重合反応の終了後の未反応モノマーを含む溶液を用いて行ってもよく、当該溶液に含まれる共重合体を単離し、シクロヘキサン等の適当な溶媒に溶解した上で行ってもよい。また、末端変性反応は、回分式及び連続式のいずれを用いて行ってもよい。このとき、化合物(B2)の添加方法は特に制限されず、一括して添加する方法、分割して添加する方法、連続的に添加する方法などが挙げられる。 The above terminal modification reaction can be performed as a solution reaction, for example. This solution reaction may be performed using a solution containing unreacted monomers after completion of the polymerization reaction in the polymerization step, and the copolymer contained in the solution is isolated and dissolved in a suitable solvent such as cyclohexane. You may do it above. The terminal modification reaction may be performed using either a batch system or a continuous system. At this time, the method for adding the compound (B2) is not particularly limited, and examples thereof include a method of adding all at once, a method of adding in divided portions, and a method of adding continuously.

末端変性反応に使用する化合物(B2)の量は、反応に使用する化合物の種類に応じて適宜設定すればよいが、重合開始剤が有する重合反応に関与する金属原子に対し、好ましくは0.1モル当量以上、より好ましくは0.3モル当量以上である。0.1モル当量以上とすることにより、変性反応を十分に進行させることができ、シリカの分散性を好適に改良することができる。
末端変性反応の温度は、通常、上記重合反応の温度と同じであり、−20〜150℃であることが好ましく、0〜120℃であることがより好ましく、20〜100℃であることが特に好ましい。変性反応の温度が低いと、変性共重合体の粘度が上昇する傾向がある。一方、変性反応の温度が高いと、重合活性末端が失活しやすくなる。変性反応の反応時間は、好ましくは1分〜5時間であり、より好ましくは2分〜1時間である。
The amount of the compound (B2) used for the terminal modification reaction may be appropriately set according to the type of the compound used for the reaction, but is preferably 0.8 with respect to the metal atom involved in the polymerization reaction possessed by the polymerization initiator. 1 molar equivalent or more, more preferably 0.3 molar equivalent or more. By setting it to 0.1 molar equivalent or more, the modification reaction can be sufficiently advanced, and the dispersibility of silica can be suitably improved.
The temperature of the terminal modification reaction is usually the same as the temperature of the polymerization reaction, preferably −20 to 150 ° C., more preferably 0 to 120 ° C., and particularly preferably 20 to 100 ° C. preferable. When the temperature of the modification reaction is low, the viscosity of the modified copolymer tends to increase. On the other hand, when the temperature of the modification reaction is high, the polymerization active terminal tends to be deactivated. The reaction time of the denaturation reaction is preferably 1 minute to 5 hours, more preferably 2 minutes to 1 hour.

(反応停止)
上記アニオン重合は、この分野で通常使用する反応停止剤の添加により、停止させることができる。そのような反応停止剤としては、例えば、メタノール、エタノール、イソプロパノールなどのアルコールまたは酢酸などの活性プロトンを有する極性溶媒およびこれらの混液、またはそれらの極性溶媒とヘキサン、シクロヘキサンなどの無極性溶媒との混液が挙げられる。反応停止剤の添加量は、通常、アニオン重合開始剤に対し、同モル量もしくは2倍モル量程度で充分である。
(Reaction stopped)
The anionic polymerization can be stopped by adding a reaction terminator usually used in this field. Examples of such a reaction terminator include polar solvents having active protons such as alcohols such as methanol, ethanol and isopropanol or acetic acid and mixtures thereof, or polar solvents and nonpolar solvents such as hexane and cyclohexane. A mixed solution is mentioned. The amount of the reaction terminator added is usually about the same molar amount or twice the molar amount relative to the anionic polymerization initiator.

<カップリング>
上記共重合体の製造方法においては、単量体の重合開始から、後述する重合体の回収までに、共重合体の炭化水素溶液にカップリング剤を添加してもよい。カップリング剤としては、下記式(2−1)で表される化合物を挙げることができる。
ML4−a (2−1)
(式(2−1)中、Rはアルキル基、アルケニル基、シクロアルケニル基またはアリール基を表し、Mはケイ素原子またはスズ原子を表し、Lはハロゲン原子またはヒドロカルビルオキシ基を表し、aは0〜2の整数を表す。)
<Coupling>
In the method for producing the copolymer, a coupling agent may be added to the hydrocarbon solution of the copolymer from the start of the polymerization of the monomer to the recovery of the polymer described later. Examples of the coupling agent include compounds represented by the following formula (2-1).
R 1 a ML 4-a (2-1)
(In formula (2-1), R 1 represents an alkyl group, an alkenyl group, a cycloalkenyl group or an aryl group, M represents a silicon atom or a tin atom, L represents a halogen atom or a hydrocarbyloxy group, and a represents Represents an integer of 0 to 2.)

上記式(2−1)で表されるカップリング剤としては、四塩化ケイ素、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、四塩化スズ、メチルトリクロロスズ、ジメチルジクロロスズ、トリメチルクロロスズ、テトラメトキシシラン、メチルトリメトキシシラン、ジメトキシジメチルシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、ジメトキシジエチルシラン、ジエトキシジメチルシラン、テトラエトキシシラン、エチルトリエトキシシラン、ジエトキシジエチルシランなどを挙げることができる。 As the coupling agent represented by the above formula (2-1), silicon tetrachloride, methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, tin tetrachloride, methyltrichlorotin, dimethyldichlorotin, trimethylchlorotin, tetramethoxy Examples include silane, methyltrimethoxysilane, dimethoxydimethylsilane, methyltriethoxysilane, ethyltrimethoxysilane, dimethoxydiethylsilane, diethoxydimethylsilane, tetraethoxysilane, ethyltriethoxysilane, and diethoxydiethylsilane.

カップリング剤の添加量は重合体の加工性を高めるために、アルカリ金属触媒由来のアルカリ金属1mol当たり、好ましくは0.03mol以上、より好ましくは0.05mol以上である。また低燃費性を高めるために、好ましくは0.4mol以下、より好ましくは0.3mol以下である。 The amount of the coupling agent added is preferably 0.03 mol or more, more preferably 0.05 mol or more, per 1 mol of alkali metal derived from the alkali metal catalyst in order to improve the processability of the polymer. Moreover, in order to improve low fuel consumption, Preferably it is 0.4 mol or less, More preferably, it is 0.3 mol or less.

<水素添加方法>
水添共重合体の製造方法においては、これまでに説明した共重合体を水素添加して、水素添加率が75モル%以上の水添共重合体を得る。共重合体を水素添加することによって、耐熱性が向上するという利点がある。また、水素添加率が低いと、低燃費性、耐屈曲亀裂成長性及び耐チップカット性の改善効果が充分に得られない。
<Hydrogen addition method>
In the method for producing a hydrogenated copolymer, the copolymer described so far is hydrogenated to obtain a hydrogenated copolymer having a hydrogenation rate of 75 mol% or more. There is an advantage that heat resistance is improved by hydrogenating the copolymer. On the other hand, if the hydrogenation rate is low, the effects of improving fuel economy, bending crack growth resistance and chip cut resistance cannot be sufficiently obtained.

水素添加の方法、反応条件については特に限定はなく、公知の方法、公知の条件で水素添加すればよい。通常は、20〜150℃、0.1〜10MPaの水素加圧下、水添触媒の存在下で実施される。なお、水素添加率は、水添触媒の量、水添反応時の水素圧力、反応時間等を変えることにより、任意に選定することができる。水添触媒として、通常は、元素周期表4〜11族金属のいずれかを含む化合物を用いることができる。例えば、Ti、V、Co、Ni、Zr、Ru、Rh、Pd、Hf、Re、Pt原子を含む化合物を水添触媒として用いることができる。より具体的な水添触媒としては、Ti、Zr、Hf、Co、Ni、Pd、Pt、Ru、Rh、Re等のメタロセン系化合物;Pd、Ni、Pt、Rh、Ru等の金属をカーボン、シリカ、アルミナ、ケイソウ土等の担体に担持させた担持型不均一系触媒;Ni、Co等の金属元素の有機塩又はアセチルアセトン塩と有機アルミニウム等の還元剤とを組み合わせた均一系チーグラー型触媒;Ru、Rh等の有機金属化合物又は錯体;水素を吸蔵させたフラーレンやカーボンナノチューブ等を挙げることができる。 There are no particular limitations on the hydrogenation method and reaction conditions, and hydrogenation may be performed using known methods and known conditions. Usually, it is carried out in the presence of a hydrogenation catalyst at 20 to 150 ° C. under hydrogen pressure of 0.1 to 10 MPa. The hydrogenation rate can be arbitrarily selected by changing the amount of the hydrogenation catalyst, the hydrogen pressure during the hydrogenation reaction, the reaction time, and the like. As the hydrogenation catalyst, a compound containing any of metals in Group 4 to 11 of the periodic table can be used. For example, a compound containing Ti, V, Co, Ni, Zr, Ru, Rh, Pd, Hf, Re, and Pt atoms can be used as the hydrogenation catalyst. More specific hydrogenation catalysts include metallocene compounds such as Ti, Zr, Hf, Co, Ni, Pd, Pt, Ru, Rh, and Re; metals such as Pd, Ni, Pt, Rh, and Ru are carbon, A supported heterogeneous catalyst supported on a carrier such as silica, alumina, diatomaceous earth; a homogeneous Ziegler catalyst in which an organic salt of a metal element such as Ni or Co or an acetylacetone salt and a reducing agent such as organoaluminum is combined; Examples include organometallic compounds or complexes such as Ru and Rh; fullerenes and carbon nanotubes in which hydrogen is occluded.

これらのうち、Ti、Zr、Hf、Co、Niのいずれかを含むメタロセン系化合物は、不活性有機溶媒中、均一系で水添反応できる点で好ましい。更に、Ti、Zr、Hfのいずれかを含むメタロセン系化合物が好ましい。特に、チタノセン化合物とアルキルリチウムとを反応させた水添触媒は、安価で工業的に特に有用な触媒であるので好ましい。具体的な例として、例えば、特開平1−275605号公報、特開平5−271326号公報、特開平5−271325号公報、特開平5−222115号公報、特開平11−292924号公報、特開2000−37632号公報、特開昭59−133203号公報、特開昭63−5401号公報、特開昭62−218403号公報、特開平7−90017号公報、特公昭43−19960号公報、特公昭47−40473号公報に記載の水添触媒を挙げることができる。なお、これらの水添触媒は、一種単独で又は二種以上を組み合わせて用いることができる。 Of these, metallocene compounds containing any of Ti, Zr, Hf, Co, and Ni are preferable in that they can be hydrogenated in a homogeneous system in an inert organic solvent. Furthermore, metallocene compounds containing any of Ti, Zr, and Hf are preferred. In particular, a hydrogenation catalyst obtained by reacting a titanocene compound with an alkyl lithium is preferable because it is an inexpensive and industrially useful catalyst. Specific examples include, for example, JP-A-1-275605, JP-A-5-271326, JP-A-5-271325, JP-A-5-222115, JP-A-11-292924, and JP-A-11-292924. JP 2000-37632 A, JP 59-133203 A, JP 63-5401 A, JP 62-218403 A, JP 7-90017 A, JP 43-19960 A, Mention may be made of the hydrogenation catalyst described in JP-B 47-40473. In addition, these hydrogenation catalysts can be used individually by 1 type or in combination of 2 or more types.

ゴム成分100質量%中の水添共重合体の含有量は、75質量%以上であり、好ましくは80質量%以上である。水添共重合体の含有量が75質量%未満であると、本発明の効果が得られにくい傾向がある。また、該含有量は、好ましくは95質量%以下、より好ましくは90質量%以下、更に好ましくは85質量%以下である。該含有量が95質量%を超えると、耐屈曲亀裂成長性及び耐チップカット性が低下するおそれがある。 The content of the hydrogenated copolymer in 100% by mass of the rubber component is 75% by mass or more, preferably 80% by mass or more. When the content of the hydrogenated copolymer is less than 75% by mass, the effect of the present invention tends to be hardly obtained. Moreover, this content becomes like this. Preferably it is 95 mass% or less, More preferably, it is 90 mass% or less, More preferably, it is 85 mass% or less. When the content exceeds 95% by mass, the flex crack growth resistance and the chip cut resistance may be deteriorated.

上記水添共重合体以外に使用できるその他のゴム成分としては、従来のスチレンブタジエン共重合体ゴム(SBR)、ポリブタジエンゴム(BR)、ブタジエンイソプレン共重合体ゴム、ブチルゴムなどを挙げることができる。また、天然ゴム(NR)、エチレンプロピレン共重合体、エチレンオクテン共重合体なども挙げることができる。なかでも、本発明の効果を充分に発揮できる点で、BR、NR、SBRが好ましく、BRが特に好ましい。これらのゴム成分は、2種以上組み合わせて用いてもよい。上記水添共重合体とBRを併用すると、本発明の効果がより顕著に発揮される。 Examples of other rubber components that can be used other than the hydrogenated copolymer include conventional styrene butadiene copolymer rubber (SBR), polybutadiene rubber (BR), butadiene isoprene copolymer rubber, and butyl rubber. Moreover, natural rubber (NR), an ethylene propylene copolymer, an ethylene octene copolymer, etc. can be mentioned. Of these, BR, NR, and SBR are preferable, and BR is particularly preferable in that the effects of the present invention can be sufficiently exhibited. Two or more of these rubber components may be used in combination. When the hydrogenated copolymer and BR are used in combination, the effects of the present invention are more remarkably exhibited.

BRとしては、特に限定されず、例えば、日本ゼオン(株)製のBR1220、宇部興産(株)製のBR150B等の高シス配合量のBR、宇部興産(株)製のVCR412、VCR617等の1,2−シンジオタクチックポリブタジエン結晶(SPB)を含むBR、希土類元素系触媒を用いて合成されたBR(希土類系BR)等、タイヤ工業において一般的なものを使用できる。 The BR is not particularly limited. For example, BR 1220 manufactured by Nippon Zeon Co., Ltd., BR 150B manufactured by Ube Industries, Ltd., high cis blending amount BR, 1 such as VCR412, VCR617 manufactured by Ube Industries, Ltd. , 2-syndiotactic polybutadiene crystal (SPB) containing BR, BR synthesized by using a rare earth element-based catalyst (rare earth BR), and the like in the tire industry can be used.

ゴム成分100質量%中のBRの含有量は、好ましくは5質量%以上、より好ましくは10質量%以上である。また、該含有量は、好ましくは25質量%以下、より好ましくは20質量%以下である。上記範囲内であると、本発明の効果が顕著に発揮される。 The content of BR in 100% by mass of the rubber component is preferably 5% by mass or more, more preferably 10% by mass or more. The content is preferably 25% by mass or less, more preferably 20% by mass or less. Within the above range, the effect of the present invention is remarkably exhibited.

ゴム成分100質量%中の上記水添共重合体及びBRの合計含有量は、好ましくは80質量%以上、より好ましくは90質量%以上、100質量%であってもかまわない。80質量%未満であると、本発明の効果が充分に得られないおそれがある。 The total content of the hydrogenated copolymer and BR in 100% by mass of the rubber component is preferably 80% by mass or more, more preferably 90% by mass or more and 100% by mass. If it is less than 80% by mass, the effects of the present invention may not be sufficiently obtained.

本発明におけるゴム組成物は、特定窒素吸着比表面積のカーボンブラックを含む。 The rubber composition in the present invention contains carbon black having a specific nitrogen adsorption specific surface area.

上記カーボンブラックの窒素吸着比表面積(NSA)は、5〜200m/gである。下限は、好ましくは15m/g以上、より好ましくは50m/g以上である。また、上限は、好ましくは180m/g以下、より好ましくは150m/g以下、更に好ましくは130m/g以下、特に好ましくは100m/g以下である。5m/g未満であると、充分な補強効果が得られないおそれがあり、200m/gを超えると、低燃費性が低下するおそれがある。
なお、本発明におけるカーボンブラックのNSAは、JIS K 6217−2:2001に準拠して測定される。
The carbon black has a nitrogen adsorption specific surface area (N 2 SA) of 5 to 200 m 2 / g. The lower limit is preferably 15 m 2 / g or more, more preferably 50 m 2 / g or more. Moreover, an upper limit becomes like this. Preferably it is 180 m < 2 > / g or less, More preferably, it is 150 m < 2 > / g or less, More preferably, it is 130 m < 2 > / g or less, Most preferably, it is 100 m < 2 > / g or less. If it is less than 5 m 2 / g, a sufficient reinforcing effect may not be obtained, and if it exceeds 200 m 2 / g, fuel economy may be reduced.
Incidentally, N 2 SA of the carbon black in the present invention, JIS K 6217-2: measured according to 2001.

上記カーボンブラックのジブチルフタレート(DBP)吸油量は、好ましくは50ml/100g以上、より好ましくは70ml/100g以上、更に好ましくは90ml/100g以上である。また、該DBP吸油量は、好ましくは200ml/100g以下、より好ましくは150ml/100g以下である。50ml/100g未満であると、充分な補強効果が得られないおそれがあり、200ml/100gを超えると、低燃費性が低下するおそれがある。
なお、本発明におけるカーボンブラックのDBP吸油量は、JIS K 6217−4:2001に準拠して測定される。
The carbon black has a dibutyl phthalate (DBP) oil absorption of preferably 50 ml / 100 g or more, more preferably 70 ml / 100 g or more, and even more preferably 90 ml / 100 g or more. The DBP oil absorption is preferably 200 ml / 100 g or less, more preferably 150 ml / 100 g or less. If it is less than 50 ml / 100 g, a sufficient reinforcing effect may not be obtained, and if it exceeds 200 ml / 100 g, the fuel efficiency may be lowered.
In addition, the DBP oil absorption of carbon black in the present invention is measured according to JIS K 6217-4: 2001.

上記カーボンブラックの含有量は、ゴム成分100質量部に対して、30質量部以上、好ましくは35質量部以上である。該含有量は、70質量部以下、好ましくは60質量部以下、より好ましくは55質量部以下である。上記範囲内であると、良好な低燃費性、耐チップカット性及び耐屈曲亀裂成長性が得られる。 The content of the carbon black is 30 parts by mass or more, preferably 35 parts by mass or more with respect to 100 parts by mass of the rubber component. The content is 70 parts by mass or less, preferably 60 parts by mass or less, more preferably 55 parts by mass or less. Within the above range, good fuel economy, chip cut resistance and flex crack growth resistance can be obtained.

本発明におけるゴム組成物は、カーボンブラック以外の他の充填剤を更に含んでもよい。他の充填剤としては、例えば、シリカ、炭酸カルシウム、セリサイトなどの雲母、水酸化アルミニウム、酸化マグネシウム、水酸化マグネシウム、クレー、タルク、アルミナ、酸化チタン、マイカ等の白色充填剤が挙げられる。 The rubber composition in the present invention may further contain a filler other than carbon black. Examples of other fillers include mica such as silica, calcium carbonate, and sericite, and white fillers such as aluminum hydroxide, magnesium oxide, magnesium hydroxide, clay, talc, alumina, titanium oxide, and mica.

本発明におけるゴム組成物には、前記成分以外にも、硫黄などの加硫剤;チアゾール系加硫促進剤、チウラム系加硫促進剤、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤などの加硫促進剤;ステアリン酸、酸化亜鉛などの加硫活性化剤;有機過酸化物;伸展油(オイル)、滑剤などの加工助剤;老化防止剤などの従来ゴム工業で使用される配合剤を用いることができる。 In addition to the above components, the rubber composition in the present invention includes a vulcanizing agent such as sulfur; a thiazole vulcanization accelerator, a thiuram vulcanization accelerator, a sulfenamide vulcanization accelerator, and a guanidine vulcanization accelerator. Vulcanization accelerators such as agents; vulcanization activators such as stearic acid and zinc oxide; organic peroxides; processing aids such as extenders (oils) and lubricants; Can be used.

伸展油(オイル)としては、アロマチック系鉱物油(粘度比重恒数(V.G.C.値)0.900〜1.049)、ナフテン系鉱物油(V.G.C.値0.850〜0.899)、パラフィン系鉱物油(V.G.C.値0.790〜0.849)などを挙げることができる。伸展油の多環芳香族含有量は、好ましくは3質量%未満であり、より好ましくは1質量%未満である。該多環芳香族含有量は、英国石油学会346/92法に従って測定される。また、伸展油の芳香族化合物含有量(CA)は、好ましくは20質量%以上である。これらの伸展油は、2種以上組み合わされて用いられてもよい。 As the extending oil (oil), aromatic mineral oil (viscosity specific gravity constant (VGC value) 0.900 to 1.049), naphthenic mineral oil (VGC value 0. 850 to 0.899), paraffinic mineral oil (VGC value 0.790 to 0.849), and the like. The polycyclic aromatic content of the extender oil is preferably less than 3% by mass, more preferably less than 1% by mass. The polycyclic aromatic content is measured according to the British Petroleum Institute 346/92 method. Moreover, the aromatic compound content (CA) of the extending oil is preferably 20% by mass or more. These extending oils may be used in combination of two or more.

加硫促進剤としては、2−メルカプトベンゾチアゾール、ジベンゾチアジルジサルファイド、N−シクロヘキシル−2−ベンゾチアジルスルフェンアミド等のチアゾール系加硫促進剤;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド等のチウラム系加硫促進剤;N−シクロヘキシル−2−ベンゾチアゾールスルフェンアミド、N−t−ブチル−2−ベンゾチアゾールスルフェンアミド、N−オキシエチレン−2−ベンゾチアゾールスルフェンアミド、N−オキシエチレン−2−ベンゾチアゾールスルフェンアミド、N,N’−ジイソプロピル−2−ベンゾチアゾールスルフェンアミド等のスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジン等のグアニジン系加硫促進剤を挙げることができる。なかでも、本発明の効果がより好適に得られるという理由から、スルフェンアミド系加硫促進剤が好ましく、N−シクロヘキシル−2−ベンゾチアゾールスルフェンアミドがより好ましい。また、更にグアニジン系加硫促進剤を併用することも好ましい。加硫促進剤の使用量は、ゴム成分100質量部に対して0.1〜5質量部が好ましく、さらに好ましくは0.2〜4質量部である。 Examples of the vulcanization accelerator include 2-mercaptobenzothiazole, dibenzothiazyl disulfide, and thiazole vulcanization accelerators such as N-cyclohexyl-2-benzothiazylsulfenamide; tetramethylthiuram monosulfide, tetramethylthiuram disulfide Thiuram vulcanization accelerators such as N-cyclohexyl-2-benzothiazole sulfenamide, Nt-butyl-2-benzothiazole sulfenamide, N-oxyethylene-2-benzothiazole sulfenamide, N- Sulfenamide vulcanization accelerators such as oxyethylene-2-benzothiazole sulfenamide, N, N′-diisopropyl-2-benzothiazole sulfenamide; diphenylguanidine, diortolylguanidine, orthotolylbiguanidine, etc. Guani It can be mentioned emission-based vulcanization accelerator. Of these, sulfenamide-based vulcanization accelerators are preferable and N-cyclohexyl-2-benzothiazole sulfenamide is more preferable because the effects of the present invention can be more suitably obtained. It is also preferable to use a guanidine vulcanization accelerator in combination. 0.1-5 mass parts is preferable with respect to 100 mass parts of rubber components, and, as for the usage-amount of a vulcanization accelerator, More preferably, it is 0.2-4 mass parts.

加硫剤としては、特に限定されないが、硫黄を好適に使用できる。硫黄の含有量は、ゴム成分100質量部に対して、好ましくは0.5〜5質量部、より好ましくは1〜3質量部である。これにより、本発明の効果がより好適に得られる。 Although it does not specifically limit as a vulcanizing agent, Sulfur can be used conveniently. The content of sulfur is preferably 0.5 to 5 parts by mass, more preferably 1 to 3 parts by mass with respect to 100 parts by mass of the rubber component. Thereby, the effect of this invention is acquired more suitably.

本発明におけるゴム組成物は、一般的な方法で製造される。すなわち、バンバリーミキサーやニーダー、オープンロールなどで上記各成分を混練りし、その後加硫する方法等により製造できる。 The rubber composition in the present invention is produced by a general method. That is, it can be produced by a method of kneading the above components with a Banbury mixer, a kneader, an open roll or the like and then vulcanizing.

本発明におけるゴム組成物は、タイヤの各部材(トレッド、サイドウォール、カーカス、ベルト、ビード等)に使用でき、なかでも、タイヤのサイドウォールとして好適に用いられる。 The rubber composition in the present invention can be used for each member (tread, sidewall, carcass, belt, bead, etc.) of a tire, and is particularly preferably used as a sidewall of a tire.

本発明の空気入りタイヤは、上記ゴム組成物を用いて通常の方法により製造される。すなわち、水添共重合体を含むゴム成分及び必要に応じて上記各種配合剤を配合したゴム組成物を、未加硫の段階でサイドウォールなどの各タイヤ部材の形状に合わせて押し出し加工し、他のタイヤ部材とともに、タイヤ成型機上にて通常の方法で成形することにより、未加硫タイヤを形成する。この未加硫タイヤを加硫機中で加熱加圧することで、本発明の空気入りタイヤが得られる。 The pneumatic tire of the present invention is produced by a usual method using the rubber composition. That is, a rubber composition containing a hydrogenated copolymer and, if necessary, a rubber composition containing the above-mentioned various compounding agents, extruded in accordance with the shape of each tire member such as a sidewall at an unvulcanized stage, An unvulcanized tire is formed by shaping | molding with another tire member with a normal method on a tire molding machine. The pneumatic tire of the present invention is obtained by heating and pressurizing the unvulcanized tire in a vulcanizer.

本発明の空気入りタイヤは、乗用車用タイヤ、トラック・バスなどの重荷重用タイヤ、二輪車用タイヤ、競技用タイヤ等として好適に用いられ、特に重荷重用タイヤとして好適に用いられる。 The pneumatic tire of the present invention is preferably used as a tire for passenger cars, heavy duty tires for trucks and buses, two-wheeled vehicle tires, competition tires, and the like, and particularly preferably used as a heavy duty tire.

実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these examples.

以下、合成、重合時に用いた各種薬品について、まとめて説明する。なお、薬品は必要に応じて定法に従い精製を行った。
n−ヘキサン:関東化学(株)製
スチレン:関東化学(株)製
ブタジエン:東京化成工業(株)製の1,3−ブタジエン
TMEDA:関東化学(株)製のN,N,N’,N’−テトラメチルエチレンジアミン
n−ブチルリチウム溶液:関東化学(株)製の1.6M n−ブチルリチウムヘキサン溶液
2,6−ジ−tert−ブチル−p−クレゾール:大内新興化学工業(株)製のノクラック200
アルコール:東京化成工業(株)製のメタノール
アミン系変性剤:N,N−ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン
Hereinafter, various chemicals used at the time of synthesis and polymerization will be described together. In addition, the chemical | medical agent refine | purified according to the usual method as needed.
n-hexane: styrene manufactured by Kanto Chemical Co., Ltd .: butadiene manufactured by Kanto Chemical Co., Ltd .: 1,3-butadiene TMEDA manufactured by Tokyo Chemical Industry Co., Ltd .: N, N, N ′, N manufactured by Kanto Chemical Co., Ltd. '-Tetramethylethylenediamine n-butyllithium solution: 1.6M n-butyllithium hexane solution 2,6-di-tert-butyl-p-cresol manufactured by Kanto Chemical Co., Ltd .: manufactured by Ouchi Shinsei Chemical Co., Ltd. No crack 200
Alcohol: Methanolamine-based modifier manufactured by Tokyo Chemical Industry Co., Ltd .: N, N-bis (trimethylsilyl) aminopropylmethyldiethoxysilane

また、得られた共重合体の評価方法について、以下にまとめて説明する。 Moreover, the evaluation method of the obtained copolymer is demonstrated collectively below.

(共重合体の共役ジエン部の水素添加率の測定)
四塩化炭素を溶媒として用いて15質量%濃度の溶液を調製して、100MHzのH−NMRの不飽和結合部のスペクトル減少率から算出した。
(Measurement of hydrogenation rate of conjugated diene part of copolymer)
A solution having a concentration of 15% by mass was prepared using carbon tetrachloride as a solvent, and calculated from the spectrum reduction rate of the unsaturated bond part of 100 MHz H 1 -NMR.

(スチレン含有量の測定)
25℃にてJEOL JNM−A 400NMR装置を用いてH−NMRを測定し、そのスペクトルより求めた6.5〜7.2ppmのスチレン単位に基づくフェニルプロトンと4.9〜5.4ppmのブタジエン単位に基づくビニルプロトンの比からスチレン含有量を決定した。
(Measurement of styrene content)
H 1 -NMR was measured at 25 ° C. using a JEOL JNM-A 400 NMR apparatus, and phenyl protons based on 6.5 to 7.2 ppm styrene units and 4.9 to 5.4 ppm butadiene were obtained from the spectrum. The styrene content was determined from the ratio of vinyl protons based on units.

(重量平均分子量(Mw)、数平均分子量(Mn)の測定)
共重合体の重量平均分子量(Mw)及び数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフ(GPC)(東ソー(株)製GPC−8000シリーズ、検出器:示差屈折計、カラム:東ソー(株)製のTSKGEL SUPERMULTIPORE HZ−M)による測定値を基に標準ポリスチレン換算により求めた。また、共重合体が変性基を有する場合、変性処理を実施する前にMw、Mnを測定した。これは、変性基を有する共重合体を測定した場合、変性基とカラムのシリカゲルとが相互作用を起こし、正確なMw、Mnが得られないためである。
(Measurement of weight average molecular weight (Mw), number average molecular weight (Mn))
The weight average molecular weight (Mw) and number average molecular weight (Mn) of the copolymer were determined by gel permeation chromatography (GPC) (GPC-8000 series, manufactured by Tosoh Corporation), detector: differential refractometer, column: Tosoh Corporation ) Obtained from TSKGEL SUPERMULTIPORE HZ-M, manufactured by TSKGEL, based on standard polystyrene conversion. Moreover, when the copolymer has a modifying group, Mw and Mn were measured before carrying out the modification treatment. This is because when a copolymer having a modifying group is measured, the modifying group and the silica gel of the column interact, and accurate Mw and Mn cannot be obtained.

(ムーニー粘度(ML1+4))
JIS K 6300(1994)に従って、100℃にて重合体のムーニー粘度を測定した。
(Mooney viscosity (ML 1 + 4 ))
The Mooney viscosity of the polymer was measured at 100 ° C. according to JIS K 6300 (1994).

<共重合体の製造例>
合成例1(共重合体(1)の合成:水素添加率0モル%、SBR)
十分に窒素置換した耐熱反応容器にn−ヘキサン2000ml、スチレン60g、1,3−ブタジエン140g、TMEDA0.93g、n−ブチルリチウム0.45mmolを加えて、50℃で5時間攪拌し、重合反応を行った。その後、アルコールを加えて反応を止め、反応溶液に2,6−tert−ブチル−p−クレゾール1gを添加後、再沈殿精製により共重合体(1)を得た。得られた共重合体(1)は重量平均分子量(Mw)490,000、スチレン含有量30質量%であった。
<Example of copolymer production>
Synthesis Example 1 (Synthesis of copolymer (1): hydrogenation rate 0 mol%, SBR)
In a heat-resistant reaction vessel sufficiently purged with nitrogen, add 2000 ml of n-hexane, 60 g of styrene, 140 g of 1,3-butadiene, 0.93 g of TMEDA, and 0.45 mmol of n-butyllithium, and stir at 50 ° C. for 5 hours to carry out the polymerization reaction. went. Thereafter, alcohol was added to stop the reaction, 1 g of 2,6-tert-butyl-p-cresol was added to the reaction solution, and then copolymer (1) was obtained by reprecipitation purification. The obtained copolymer (1) had a weight average molecular weight (Mw) of 490,000 and a styrene content of 30% by mass.

合成例2(共重合体(2)の合成:水素添加率60モル%、水添SBR)
得られた重合体を水素添加する以外は、共重合体(1)と同様の処方にて共重合体(2)を得た。すなわち、共重合体(1)において重合転化反応後、アルコールを加えて重合反応を停止させず、次いで、水素ガスを0.4MPa−Gaugeの圧力で供給しながら20分間撹拌し、未反応のポリマー末端リチウムと反応させ、水素化リチウムとした。水素ガス供給圧力を0.7MPa−Gauge、反応温度を90℃とし、チタノセンジクロリドを主体とする触媒を用いて水素添加を行った。水素の吸収が目的の水素添加率となる積算量に達した時点で、反応温度を常温とし、水素圧を常圧に戻して反応容器より抜き出し、反応溶液を水中に撹拌投入して溶媒をスチームストリッピングにより除去することによって、共重合体(2)を得た。得られた共重合体(2)の水素添加率は60モル%であり、重量平均分子量(Mw)は450,000であった。
Synthesis Example 2 (Synthesis of copolymer (2): hydrogenation rate 60 mol%, hydrogenated SBR)
A copolymer (2) was obtained by the same formulation as the copolymer (1) except that the obtained polymer was hydrogenated. That is, after the polymerization conversion reaction in the copolymer (1), alcohol is not added to stop the polymerization reaction, and then the mixture is stirred for 20 minutes while supplying hydrogen gas at a pressure of 0.4 MPa-Gauge. Reaction with terminal lithium gave lithium hydride. Hydrogenation was performed using a catalyst mainly composed of titanocene dichloride at a hydrogen gas supply pressure of 0.7 MPa-Gauge, a reaction temperature of 90 ° C. When the amount of hydrogen absorption reaches an integrated amount that achieves the target hydrogenation rate, the reaction temperature is brought to room temperature, the hydrogen pressure is returned to normal pressure, the reaction vessel is withdrawn from the reaction vessel, the reaction solution is stirred into water, and the solvent is steamed. The copolymer (2) was obtained by removing by stripping. The resulting copolymer (2) had a hydrogenation rate of 60 mol% and a weight average molecular weight (Mw) of 450,000.

合成例3(共重合体(3)の合成:水素添加率80モル%、水添SBR)
目的の水素添加率となるように、水素の吸引の積算量を調整した以外は、共重合体(2)と同様の処方により、共重合体(3)を得た。得られた共重合体(3)の水素添加率は80モル%であり、重量平均分子量(Mw)は480,000であった。
Synthesis Example 3 (Synthesis of copolymer (3): hydrogenation rate 80 mol%, hydrogenated SBR)
A copolymer (3) was obtained by the same formulation as the copolymer (2) except that the cumulative amount of hydrogen suction was adjusted so as to achieve the target hydrogenation rate. The resulting copolymer (3) had a hydrogenation rate of 80 mol% and a weight average molecular weight (Mw) of 480,000.

合成例4(共重合体(4)の合成:水素添加率95モル%、水添SBR)
目的の水素添加率となるように、水素の吸引の積算量を調整した以外は、共重合体(2)と同様の処方により、共重合体(4)を得た。得られた共重合体(4)の水素添加率は95モル%であり、重量平均分子量(Mw)は450,000であった。
Synthesis Example 4 (Synthesis of copolymer (4): hydrogenation rate 95 mol%, hydrogenated SBR)
A copolymer (4) was obtained by the same formulation as the copolymer (2) except that the integrated amount of hydrogen suction was adjusted so as to achieve the target hydrogenation rate. The resulting copolymer (4) had a hydrogenation rate of 95 mol% and a weight average molecular weight (Mw) of 450,000.

合成例5(共重合体(5)の合成:水素添加率95モル%)
目的の水素添加率となるように、水素の吸引の積算量を調整した以外は、共重合体(2)と同様の処方により、共重合体(5)を得た。得られた共重合体(5)は重量平均分子量(Mw)2,000,000、水素添加率は95モル%であった。
Synthesis Example 5 (Synthesis of copolymer (5): hydrogenation rate 95 mol%)
A copolymer (5) was obtained by the same formulation as the copolymer (2) except that the cumulative amount of hydrogen suction was adjusted so as to achieve the target hydrogenation rate. The resulting copolymer (5) had a weight average molecular weight (Mw) of 2,000,000 and a hydrogenation rate of 95 mol%.

合成例6(共重合体(6)の合成:水素添加率95モル%)
目的の水素添加率となるように、水素の吸引の積算量を調整した以外は、共重合体(2)と同様の処方により、共重合体(6)を得た。得られた共重合体(6)は重量平均分子量(Mw)200,000、水素添加率は95モル%であった。
Synthesis Example 6 (Synthesis of copolymer (6): hydrogenation rate 95 mol%)
A copolymer (6) was obtained by the same formulation as the copolymer (2) except that the cumulative amount of hydrogen suction was adjusted so as to achieve the target hydrogenation rate. The resulting copolymer (6) had a weight average molecular weight (Mw) of 200,000 and a hydrogenation rate of 95 mol%.

合成例7(共重合体(7)の合成:水素添加率95モル%、水添変性SBR)
十分に窒素置換した耐熱反応容器にn−ヘキサン2000ml、スチレン60g、1,3−ブタジエン140g、TMEDA0.93g、n−ブチルリチウム0.45mmolを加えて、50℃で5時間攪拌し、重合反応を行った。その後アミン系変性剤を0.15mol加えて、0℃で1時間撹拌した。その後の工程については、水素の吸引の積算量を調整した以外は、共重合体(2)と同様の処方により、共重合体(7)を得た。得られた共重合体(7)の水素添加率は95モル%であり、変性前の重量平均分子量(Mw)は440,000であった。
Synthesis Example 7 (Synthesis of copolymer (7): hydrogenation rate: 95 mol%, hydrogenated modified SBR)
In a heat-resistant reaction vessel sufficiently purged with nitrogen, add 2000 ml of n-hexane, 60 g of styrene, 140 g of 1,3-butadiene, 0.93 g of TMEDA, and 0.45 mmol of n-butyllithium, and stir at 50 ° C. for 5 hours to carry out the polymerization reaction. went. Thereafter, 0.15 mol of an amine-based modifier was added and stirred at 0 ° C. for 1 hour. Regarding the subsequent steps, a copolymer (7) was obtained by the same formulation as the copolymer (2) except that the integrated amount of hydrogen suction was adjusted. The resulting copolymer (7) had a hydrogenation rate of 95 mol% and a weight average molecular weight (Mw) before modification of 440,000.

Figure 2016069628
Figure 2016069628

以下に、実施例及び比較例で用いた各種薬品について説明する。
共重合体(1)〜(7):上記方法で合成
ポリブタジエンゴム:宇部興産(株)製のウベポールBR150B
カーボンブラック1:キャボットジャパン(株)製のショウブラックN330(NSA:75m/g、DBP吸油量:102ml/100g)
カーボンブラック2:キャボットジャパン(株)製のショウブラックN220(NSA:125m/g、DBP吸油量:115ml/100g)
オイル:(株)ジャパンエナジー製のX−140
老化防止剤:住友化学(株)製のアンチゲン3C
ステアリン酸:日油(株)製のビーズステアリン酸つばき
酸化亜鉛:三井金属鉱業(株)製の亜鉛華1号
ワックス:大内新興化学工業(株)製のサンノックN
硫黄:鶴見化学工業(株)製の粉末硫黄
加硫促進剤1:住友化学(株)製のソクシノールCZ(N−シクロヘキシル−2−ベンゾチアゾールスルフェンアミド)
加硫促進剤2:住友化学(株)製のソクシノールD(1,3−ジフェニルグアニジン)
Below, various chemical | medical agents used by the Example and the comparative example are demonstrated.
Copolymers (1) to (7): Synthetic polybutadiene rubber by the above method: Ubepol BR150B manufactured by Ube Industries, Ltd.
Carbon Black 1: Show Black N330 manufactured by Cabot Japan Co., Ltd. (N 2 SA: 75 m 2 / g, DBP oil absorption: 102 ml / 100 g)
Carbon Black 2: Show Black N220 (N 2 SA: 125 m 2 / g, DBP oil absorption: 115 ml / 100 g) manufactured by Cabot Japan
Oil: X-140 manufactured by Japan Energy Co., Ltd.
Anti-aging agent: Antigen 3C manufactured by Sumitomo Chemical Co., Ltd.
Stearic acid: Beads manufactured by NOF Corporation Zinc stearate Zinc oxide: Zinc flower No. 1 manufactured by Mitsui Kinzoku Mining Co., Ltd. Wax: Sunnock N manufactured by Ouchi Shinsei Chemical Co., Ltd.
Sulfur: Powder sulfur vulcanization accelerator manufactured by Tsurumi Chemical Co., Ltd. 1: Soxinol CZ (N-cyclohexyl-2-benzothiazole sulfenamide) manufactured by Sumitomo Chemical Co., Ltd.
Vulcanization accelerator 2: Soxinol D (1,3-diphenylguanidine) manufactured by Sumitomo Chemical Co., Ltd.

(実施例及び比較例)
表2に示す配合内容に従い、(株)神戸製鋼所製の1.7Lバンバリーミキサーを用いて、硫黄及び加硫促進剤以外の材料を150℃の条件下で5分間混練りし、混練り物を得た。次に、得られた混練り物に硫黄及び加硫促進剤を添加し、オープンロールを用いて、80℃の条件下で5分間練り込み、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物を170℃で20分間、0.5mm厚の金型でプレス加硫し、加硫ゴム組成物を得た。
また、得られた未加硫ゴム組成物をサイドウォールの形状に成形し、タイヤ成型機上で他のタイヤ部材とともに貼り合わせて未加硫タイヤを形成し、170℃で12分間加硫し、試験用タイヤ(サイズ:195/65R15)を製造した。
(Examples and Comparative Examples)
According to the blending content shown in Table 2, materials other than sulfur and vulcanization accelerator were kneaded for 5 minutes at 150 ° C. using a 1.7 L Banbury mixer manufactured by Kobe Steel Co., Ltd. Obtained. Next, sulfur and a vulcanization accelerator were added to the obtained kneaded product, and kneaded for 5 minutes under the condition of 80 ° C. using an open roll to obtain an unvulcanized rubber composition. The obtained unvulcanized rubber composition was press vulcanized with a 0.5 mm thick mold at 170 ° C. for 20 minutes to obtain a vulcanized rubber composition.
Further, the obtained unvulcanized rubber composition was molded into a sidewall shape, and bonded together with other tire members on a tire molding machine to form an unvulcanized tire, and vulcanized at 170 ° C. for 12 minutes, A test tire (size: 195 / 65R15) was produced.

<評価項目及び試験方法>
得られた加硫ゴム組成物及び試験用タイヤについて、下記の評価を行った。結果を表2に示す。
<Evaluation items and test methods>
The following evaluation was performed about the obtained vulcanized rubber composition and the tire for a test. The results are shown in Table 2.

(低燃費性指数)
(株)上島製作所製スペクトロメーターを用いて、動的歪振幅1%、周波数10Hz、温度50℃で加硫ゴム組成物のtanδを測定した。tanδの逆数の値について比較例1を100として指数表示した。数値が大きいほど転がり抵抗が小さく、低燃費性に優れることを示している。
(Low fuel consumption index)
Using a spectrometer manufactured by Ueshima Seisakusho, tan δ of the vulcanized rubber composition was measured at a dynamic strain amplitude of 1%, a frequency of 10 Hz, and a temperature of 50 ° C. The reciprocal value of tan δ was expressed as an index with Comparative Example 1 being 100. Larger values indicate lower rolling resistance and better fuel efficiency.

(ゴム硬度指数)
JIS K 6253「加硫ゴム及び熱可塑性ゴムの硬さ試験方法」に従い、タイプAデュロメーターにてゴム硬度を測定した。比較例1のゴム硬度を100として、下記計算式により、ゴム硬度指数を算出した。ゴム硬度指数が高いほど、操縦安定性が良好であることを示す。
(ゴム硬度指数)=(各配合のゴム硬度)/(比較例1のゴム硬度)×100
(Rubber hardness index)
The rubber hardness was measured with a type A durometer in accordance with JIS K 6253 “Method for testing hardness of vulcanized rubber and thermoplastic rubber”. The rubber hardness index was calculated by the following calculation formula, assuming that the rubber hardness of Comparative Example 1 was 100. The higher the rubber hardness index, the better the steering stability.
(Rubber hardness index) = (Rubber hardness of each compound) / (Rubber hardness of Comparative Example 1) × 100

(耐屈曲亀裂成長性指数)
JIS K 6260「加硫ゴム及び熱可塑性ゴムのデマッチャ屈曲亀裂成長試験方法」に準じて、室温25℃の条件下で、加硫ゴム組成物に1mmのクラックを発生させ、このクラックが1mm成長するまでの屈曲回数を測定した。なお、この測定は2回行い、その平均値を100とし、下記計算式により耐屈曲亀裂成長性指数を算出した。また、数値が大きいほど、耐屈曲亀裂成長性に優れる。70%及び110%は、もとの加硫ゴム組成物の長さに対する伸び率を示す。
(耐屈曲亀裂成長性指数)=(各配合の屈曲回数)/(比較例1の屈曲回数)×100
(Bending crack growth resistance index)
According to JIS K 6260 “Dematcher bending crack growth test method for vulcanized rubber and thermoplastic rubber”, a crack of 1 mm is generated in the vulcanized rubber composition at a room temperature of 25 ° C., and this crack grows by 1 mm. The number of bends up to was measured. In addition, this measurement was performed twice, the average value was set to 100, and the bending crack growth resistance index was calculated by the following formula. Moreover, the larger the value, the better the resistance to flex crack growth. 70% and 110% indicate the elongation with respect to the length of the original vulcanized rubber composition.
(Bending crack growth index) = (Number of bendings for each formulation) / (Number of bendings for Comparative Example 1) × 100

(耐チップカット性指数)
試験用タイヤから切り出した試験片をそれぞれ、80℃にて10日間ギヤーオーブン試験機で空気熱老化させたのちに、JIS K 6251に準ずる引張試験を行い、試験片の破断強度(TB)及び破断時伸び(EB)を測定した。そして、得られた破断強度及び破断時伸びの積(TB×EB)の数値を算出し、下記計算式により該積をそれぞれ指数表示して耐チップカット性を評価した。指数が高いほど良好である。
(耐チップカット性指数)=(各配合のTB×EB)/(比較例1のTB×EB)×100
(Chip cut resistance index)
Each test piece cut out from the test tire was subjected to air heat aging in a gear oven tester at 80 ° C. for 10 days, and then subjected to a tensile test according to JIS K 6251 to determine the breaking strength (TB) and the breaking strength of the test piece. The time elongation (EB) was measured. And the numerical value of the product (TBxEB) of the obtained breaking strength and elongation at break (TBxEB) was calculated, and the product was indexed according to the following calculation formula to evaluate the chip cut resistance. The higher the index, the better.
(Chip cut resistance index) = (TB × EB of each formulation) / (TB × EB of Comparative Example 1) × 100

Figure 2016069628
Figure 2016069628

表2より、水素添加率が75モル%以上である水添スチレンブタジエン共重合体をゴム成分100質量%中に75質量%以上、及び特定量のカーボンブラックを含むゴム組成物を用いた実施例1〜8では、低燃費性、操縦安定性、耐チップカット性、耐屈曲亀裂成長性が良好に改善できることが明らかとなった。 From Table 2, an example using a rubber composition containing a hydrogenated styrene butadiene copolymer having a hydrogenation rate of 75 mol% or more and 75 mass% or more in a rubber component of 100 mass% and a specific amount of carbon black. In 1 to 8, it became clear that fuel economy, steering stability, chip cut resistance, and flex crack growth resistance can be improved satisfactorily.

Claims (9)

ゴム組成物を用いて作製した空気入りタイヤであって、
前記ゴム組成物は、芳香族ビニル化合物及び共役ジエン化合物を共重合して得られた、共役ジエン部の水素添加率が75モル%以上である水添共重合体と、窒素吸着比表面積が5〜200m/gのカーボンブラックとを含み、
ゴム成分100質量%中の前記水添共重合体の含有量が75質量%以上であり、
ゴム成分100質量部に対する前記カーボンブラックの含有量が30〜70質量部である空気入りタイヤ。
A pneumatic tire produced using a rubber composition,
The rubber composition is obtained by copolymerizing an aromatic vinyl compound and a conjugated diene compound, a hydrogenated copolymer having a conjugated diene portion hydrogenation rate of 75 mol% or more, and a nitrogen adsorption specific surface area of 5 ~ 200 m 2 / g carbon black,
The content of the hydrogenated copolymer in 100% by mass of the rubber component is 75% by mass or more,
The pneumatic tire whose content of the said carbon black is 30-70 mass parts with respect to 100 mass parts of rubber components.
前記水添共重合体の重量平均分子量が200,000〜2,000,000である請求項1に記載の空気入りタイヤ。 The pneumatic tire according to claim 1, wherein the hydrogenated copolymer has a weight average molecular weight of 200,000 to 2,000,000. 前記水添共重合体の水素添加率が90モル%以上である請求項1又は2に記載の空気入りタイヤ。 The pneumatic tire according to claim 1 or 2, wherein a hydrogenation rate of the hydrogenated copolymer is 90 mol% or more. 前記水添共重合体が水添スチレンブタジエン共重合体である請求項1〜3のいずれかに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 3, wherein the hydrogenated copolymer is a hydrogenated styrene butadiene copolymer. 前記水添スチレンブタジエン共重合体が水添変性スチレンブタジエン共重合体である請求項4に記載の空気入りタイヤ。 The pneumatic tire according to claim 4, wherein the hydrogenated styrene butadiene copolymer is a hydrogenated modified styrene butadiene copolymer. 前記水添スチレンブタジエン共重合体のスチレン含有量が5〜40質量%である請求項4又は5に記載の空気入りタイヤ。 The pneumatic tire according to claim 4 or 5, wherein the hydrogenated styrene-butadiene copolymer has a styrene content of 5 to 40% by mass. 前記ゴム組成物は、更にポリブタジエンゴムを含む請求項1〜6のいずれかに記載の空気入りタイヤ。 The pneumatic tire according to claim 1, wherein the rubber composition further contains a polybutadiene rubber. ゴム成分100質量%中の前記ポリブタジエンゴムの含有量が5〜25質量%である請求項7記載の空気入りタイヤ。 The pneumatic tire according to claim 7, wherein the content of the polybutadiene rubber in 100% by mass of the rubber component is 5 to 25% by mass. 前記ゴム組成物を用いて作製されたサイドウォールを有する空気入りタイヤである請求項1〜8のいずれかに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 8, which is a pneumatic tire having a sidewall produced using the rubber composition.
JP2015138962A 2014-09-30 2015-07-10 Pneumatic tire Active JP6627295B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014200894 2014-09-30
JP2014200894 2014-09-30

Publications (2)

Publication Number Publication Date
JP2016069628A true JP2016069628A (en) 2016-05-09
JP6627295B2 JP6627295B2 (en) 2020-01-08

Family

ID=55866099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015138962A Active JP6627295B2 (en) 2014-09-30 2015-07-10 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP6627295B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056349A (en) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 Pneumatic tire
JP2016056351A (en) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 Pneumatic tire
JP2016056350A (en) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 Pneumatic tire
CN108084532A (en) * 2016-11-22 2018-05-29 住友橡胶工业株式会社 Pneumatic tire
WO2018199280A1 (en) * 2017-04-28 2018-11-01 Jsr株式会社 Crosslinked rubber and tire
WO2019082728A1 (en) * 2017-10-25 2019-05-02 Jsr株式会社 Polymer composition and tire
DE112017006313T5 (en) 2016-12-15 2019-09-05 Toyo Tire Corporation Rubber composition for tires and pneumatic tires using them
DE112017006324T5 (en) 2016-12-15 2019-09-19 Toyo Tire Corporation Rubber composition for tires and pneumatic tires using them
WO2021066106A1 (en) * 2019-10-02 2021-04-08 株式会社ブリヂストン Rubber composition and run-flat tire
KR20240000968A (en) * 2022-06-24 2024-01-03 한국타이어앤테크놀로지 주식회사 Side wall rubber composition and tire manufactured using the same

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147646A (en) * 1988-11-29 1990-06-06 Bridgestone Corp Rubber composition
JPH04139219A (en) * 1990-10-01 1992-05-13 Asahi Chem Ind Co Ltd Crosslinked rubber composition
JP2000053706A (en) * 1998-08-07 2000-02-22 Jsr Corp Hydrogenated conjugated di olefin polymer
JP2003277560A (en) * 2002-03-25 2003-10-02 Asahi Kasei Corp Hydrogenated copolymer composition
WO2014126184A1 (en) * 2013-02-14 2014-08-21 Jsr株式会社 Method for producing hydrogenated conjugated diene polymer
WO2014133097A1 (en) * 2013-02-28 2014-09-04 Jsr株式会社 Tire member, hydrogenated conjugated diene polymer and polymer composition
WO2016039008A1 (en) * 2014-09-08 2016-03-17 住友ゴム工業株式会社 Pneumatic tire
WO2016039009A1 (en) * 2014-09-08 2016-03-17 住友ゴム工業株式会社 Pneumatic tire
WO2016039007A1 (en) * 2014-09-08 2016-03-17 住友ゴム工業株式会社 Pneumatic tire
WO2016039006A1 (en) * 2014-09-08 2016-03-17 住友ゴム工業株式会社 Pneumatic tire
WO2016039005A1 (en) * 2014-09-08 2016-03-17 住友ゴム工業株式会社 Pneumatic tire
JP2016056349A (en) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 Pneumatic tire
JP2016056351A (en) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 Pneumatic tire
JP2016056350A (en) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 Pneumatic tire
JP2016056252A (en) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 Pneumatic tire

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147646A (en) * 1988-11-29 1990-06-06 Bridgestone Corp Rubber composition
JPH04139219A (en) * 1990-10-01 1992-05-13 Asahi Chem Ind Co Ltd Crosslinked rubber composition
JP2000053706A (en) * 1998-08-07 2000-02-22 Jsr Corp Hydrogenated conjugated di olefin polymer
JP2003277560A (en) * 2002-03-25 2003-10-02 Asahi Kasei Corp Hydrogenated copolymer composition
WO2014126184A1 (en) * 2013-02-14 2014-08-21 Jsr株式会社 Method for producing hydrogenated conjugated diene polymer
WO2014133097A1 (en) * 2013-02-28 2014-09-04 Jsr株式会社 Tire member, hydrogenated conjugated diene polymer and polymer composition
WO2016039008A1 (en) * 2014-09-08 2016-03-17 住友ゴム工業株式会社 Pneumatic tire
WO2016039009A1 (en) * 2014-09-08 2016-03-17 住友ゴム工業株式会社 Pneumatic tire
WO2016039007A1 (en) * 2014-09-08 2016-03-17 住友ゴム工業株式会社 Pneumatic tire
WO2016039006A1 (en) * 2014-09-08 2016-03-17 住友ゴム工業株式会社 Pneumatic tire
WO2016039005A1 (en) * 2014-09-08 2016-03-17 住友ゴム工業株式会社 Pneumatic tire
JP2016056349A (en) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 Pneumatic tire
JP2016056351A (en) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 Pneumatic tire
JP2016056350A (en) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 Pneumatic tire
JP2016056252A (en) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 Pneumatic tire

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056349A (en) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 Pneumatic tire
JP2016056351A (en) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 Pneumatic tire
JP2016056350A (en) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 Pneumatic tire
CN108084532A (en) * 2016-11-22 2018-05-29 住友橡胶工业株式会社 Pneumatic tire
JP2018083884A (en) * 2016-11-22 2018-05-31 住友ゴム工業株式会社 Pneumatic tire
CN108084532B (en) * 2016-11-22 2021-09-14 住友橡胶工业株式会社 Pneumatic tire
DE112017006324T5 (en) 2016-12-15 2019-09-19 Toyo Tire Corporation Rubber composition for tires and pneumatic tires using them
DE112017006313T5 (en) 2016-12-15 2019-09-05 Toyo Tire Corporation Rubber composition for tires and pneumatic tires using them
DE112017006324B4 (en) 2016-12-15 2023-07-06 Toyo Tire Corporation Rubber composition for tires and vulcanized product, especially pneumatic tires, using the same
WO2018199280A1 (en) * 2017-04-28 2018-11-01 Jsr株式会社 Crosslinked rubber and tire
WO2019082728A1 (en) * 2017-10-25 2019-05-02 Jsr株式会社 Polymer composition and tire
EP3702404A4 (en) * 2017-10-25 2020-11-11 JSR Corporation Polymer composition and tire
WO2021066106A1 (en) * 2019-10-02 2021-04-08 株式会社ブリヂストン Rubber composition and run-flat tire
CN114466888A (en) * 2019-10-02 2022-05-10 株式会社普利司通 Rubber composition and run-flat tire
KR20240000968A (en) * 2022-06-24 2024-01-03 한국타이어앤테크놀로지 주식회사 Side wall rubber composition and tire manufactured using the same
KR102686782B1 (en) * 2022-06-24 2024-07-19 한국타이어앤테크놀로지 주식회사 Side wall rubber composition and tire manufactured using the same

Also Published As

Publication number Publication date
JP6627295B2 (en) 2020-01-08

Similar Documents

Publication Publication Date Title
CN109206691B (en) Pneumatic tire
JP6631254B2 (en) Pneumatic tire
JP6627513B2 (en) Pneumatic tire
JP6627512B2 (en) Pneumatic tire
JP6862787B2 (en) Pneumatic tires
JP6627295B2 (en) Pneumatic tire
JP6627294B2 (en) Pneumatic tire
JP6716942B2 (en) Pneumatic tire and method for manufacturing pneumatic tire
JP6627293B2 (en) Pneumatic tire
JP2017145342A (en) Pneumatic tire
JP6627511B2 (en) Pneumatic tire
JP6801183B2 (en) Pneumatic tires
JP6631059B2 (en) Pneumatic tire
JP7298643B2 (en) Rubber composition and pneumatic tire
JP7253897B2 (en) Rubber composition and pneumatic tire
JP7224150B2 (en) Rubber composition and pneumatic tire
JP7159799B2 (en) pneumatic tire
JP7224149B2 (en) Rubber composition and pneumatic tire
JP6927363B2 (en) Rubber composition and pneumatic tires
JP7088325B2 (en) Rubber composition and pneumatic tires
US20240132706A1 (en) Rubber composition for tires and tire
JP2021004309A (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191118

R150 Certificate of patent or registration of utility model

Ref document number: 6627295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250