JPH04139141A - Method for transproting energy - Google Patents

Method for transproting energy

Info

Publication number
JPH04139141A
JPH04139141A JP25711890A JP25711890A JPH04139141A JP H04139141 A JPH04139141 A JP H04139141A JP 25711890 A JP25711890 A JP 25711890A JP 25711890 A JP25711890 A JP 25711890A JP H04139141 A JPH04139141 A JP H04139141A
Authority
JP
Japan
Prior art keywords
energy
carbon
area
methanol
consuming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25711890A
Other languages
Japanese (ja)
Inventor
Yasuhiro Yamauchi
康弘 山内
Akira Yamada
明 山田
Kimiyo Tokuda
君代 徳田
Toshimitsu Ichinose
利光 一ノ瀬
Nobuaki Murakami
信明 村上
Yozo Tosa
土佐 陽三
Masahiro Soda
曽田 正浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP25711890A priority Critical patent/JPH04139141A/en
Publication of JPH04139141A publication Critical patent/JPH04139141A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

PURPOSE:To effectively utilize methanol in an energy-consuming area by transporting nearly valueless carbon separated during or before combustion of a fossil fuel, etc., in the energy-consuming area to an energy-rich area, gasifying the aforementioned carbon, reacting the resultant gas with hydrogen in the energy-rich area and converting the gas into the methanol. CONSTITUTION:Carbon 02 separated in a carbon fixing apparatus 011 during or before combustion of a carbon-containing compound or a fossil fuel (coal, petroleum or LNG) 08 in an energy-consuming area is transported to an area rich in energy and gasified into CO and H2 in the aforementioned area according to water gas-converting reaction using hydrogen 041 produced from natural energy 07, etc., as a heat source. The resultant gas is then reacted with the above-mentioned hydrogen 041 in a methanol synthetic plant 05 to synthesize methanol 06, which is subsequently retransported to the energy-consuming area and used as a fuel for an electric power plant 01, etc. Thereby, the carbon of nearly no value in the energy-consuming area is converted into the methanol which is a high-energy substance in the area rich in energy, returned to the energy-consuming area and effectively utilized as a fuel.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はエネルギの豊富な地域からエネルギの消費地域
へエネルギをメタノールの状態で輸送する方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for transporting energy in the form of methanol from an energy-rich region to an energy-consuming region.

〔従来の技術〕[Conventional technology]

これまで、エネルギ消費地域で生成したそれ自体価値の
少ない材料をエネルギの豊富な地域に送り、該地域で該
材料を高エネルギ材料に変え、再びエネルギ消費地域に
送り返すような技術は存在していないと云って過言では
ない。
Until now, there is no technology that allows materials produced in energy-consuming areas to be sent to energy-rich areas, where they are converted into high-energy materials, and then sent back to the energy-consuming areas. It is no exaggeration to say that.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は上記技術水準に鑑み、上記希望的な技術を実現
可能にする方法を提供しようとするものである。
In view of the above-mentioned state of the art, the present invention seeks to provide a method that enables the above-mentioned desired technology to be realized.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はエネルギ消費地域で炭素を含む化合物あるいは
化石燃料の燃焼時または燃焼前に分離した炭素をエネル
ギの豊富な地域へ輸送し、該地域で製造された水素と、
前8己炭素をガス化して製造したガス化とを反応させて
メタノールを合成し、該メタノールをエネルギ消費地域
へ輸送することを特徴とするエネルギの輸送方法である
The present invention transports carbon-containing compounds or carbon separated during or before combustion of fossil fuels in an energy-consuming region to an energy-rich region, and combines hydrogen produced in the region with hydrogen.
This is an energy transport method characterized by synthesizing methanol by reacting with gas produced by gasifying carbon and transporting the methanol to an energy consuming area.

炭素を含む化合物あるいは化石燃料の燃焼時に炭素を分
離する技術としては石炭の乾留によるコークスの採取、
化石燃料の不完全燃焼による煤の採取といった技術があ
げられ、炭素を含む化合物あるいは化石燃料の燃焼前に
炭素を分離する技術としては例えば本出願人が先に提案
した脱炭装置及び燃焼装置(特願平2〜111826号
)があげられる。該装置は炭化水素系燃料を燃料として
用いる際に、該燃料を部分燃焼させて固定炭素と生成ガ
スに分離して固定炭素を回収し、生成ガス(主としてH
2)を燃料として用いるようにした装置である。
Technologies for separating carbon during the combustion of carbon-containing compounds or fossil fuels include extracting coke by carbonizing coal;
Techniques include the extraction of soot through incomplete combustion of fossil fuels, and techniques for separating carbon before combustion of carbon-containing compounds or fossil fuels include, for example, the decarburization equipment and combustion equipment ( (Japanese Patent Application No. 111826). When using hydrocarbon fuel as fuel, this device partially burns the fuel and separates it into fixed carbon and produced gas, recovers the fixed carbon, and converts the produced gas (mainly H
2) is used as fuel.

また、炭素をガス化してメタノール合成用ガスとする技
術としては、温度800〜に00℃、圧力10〜20 
at9.下で炭素を水蒸気でガス化する技術(2C+3
H20→co+co□+3H2)があげられる。
In addition, as a technology for gasifying carbon to produce methanol synthesis gas, the temperature is 800 - 00°C and the pressure is 10 - 20°C.
at9. Technology to gasify carbon with water vapor (2C+3
H20→co+co□+3H2).

メタノール合成に必要な水素は、特にエネルギの豊富な
地域では水の電気分解によって容易に得ることができる
The hydrogen required for methanol synthesis can be easily obtained by electrolysis of water, especially in energy-rich regions.

メタノール合成技術は、炭素のガス化でよって得られる
ガス(CO,CO2、L)と水素とを[1,u/ZnO
系触媒の存在l 、圧力50〜60atg、、温度25
0℃で反応させる周知の反応(CD+2H2→CH,D
H、C02+31に→C1130H)によって行うこと
ができる。
Methanol synthesis technology combines gas (CO, CO2, L) obtained by gasifying carbon and hydrogen with [1, u/ZnO
Presence of system catalyst l, pressure 50-60 atg, temperature 25
The well-known reaction (CD+2H2→CH,D
H, C02+31→C1130H).

〔作用及び効果〕[Action and effect]

本発明によればエネルギ消費地域では殆んど無価値であ
る炭素を、高エネルギ物質であるメタノールとして入手
し得ることができ、輸送費を考慮しても工業的意義は顕
著なものがある。
According to the present invention, carbon, which is almost worthless in energy-consuming areas, can be obtained as methanol, which is a high-energy substance, and has significant industrial significance even considering transportation costs.

〔実施例1〕 以下、本発明の一実施例を第1図によって説明する。[Example 1] An embodiment of the present invention will be described below with reference to FIG.

エネルギ消費地域の発電プラント01で化石燃料08が
消費され電力09が供給される。発電プラント01に付
属した炭素固定化装置011で燃焼時に固定された炭素
02はエネルギ豊富地域へ輸送され、 炭素ガス化装置
03で自然エネルギ07から水素製造プラント04で製
造された水素を熱源として、水性ガス化反応によってC
DとH2にガス化される。これをメタノール合成プラン
ト05で水素製造プラント04で製造された水素とを反
応させてメタノール06を合成する。
A power generation plant 01 in an energy consumption area consumes fossil fuel 08 and supplies electric power 09. The carbon 02 fixed during combustion in the carbon fixation device 011 attached to the power generation plant 01 is transported to an energy-rich region, and the carbon gasification device 03 converts natural energy 07 into hydrogen produced in the hydrogen production plant 04 as a heat source. C by water gasification reaction
It is gasified into D and H2. This is reacted with hydrogen produced in the hydrogen production plant 04 in a methanol synthesis plant 05 to synthesize methanol 06.

メタノール06はエネルギ消費地域まで輸送され、そこ
で発電プラント01の燃料として用いられる。また炭素
固定化装置011で炭素を固定化した残りの燃料も発電
プラント01の燃料として用いられる。
Methanol 06 is transported to an energy consuming region, where it is used as fuel for power plant 01. Further, the remaining fuel after carbon fixation in the carbon fixation device 011 is also used as fuel for the power generation plant 01.

第1表に燃料が石炭の場合の炭素固定・再利用率と、取
込んだ自然エネルギの全体エネルギに対する割合を示す
Table 1 shows the carbon fixation/reuse rate when the fuel is coal and the ratio of the natural energy taken in to the total energy.

第  1  表 第1表の意義は次の通りである。Table 1 The significance of Table 1 is as follows.

石炭の場合、全発熱量に占める炭素の発熱量は高い。例
として93%が炭素の発熱量である石炭について考える
。この炭素のX%をC固定してメタノールの原料として
再利用するとする。
In the case of coal, the calorific value of carbon is high in the total calorific value. As an example, consider coal whose calorific value is 93% carbon. It is assumed that X% of this carbon is fixed with C and reused as a raw material for methanol.

CとH2から製造されたメタノールの発熱量はCより7
0%増加するため、X%のCを再利用したときの全利用
可能なエネルギは H2を化合させることによって取込んだエネルギと全利
用可能なエネルギの比は である。これをXを10%、50%、100%と変化さ
せたときの値を第1表に示している。
The calorific value of methanol produced from C and H2 is 7
0% increase, so the total available energy when reusing X% of C is the ratio of the energy captured by combining H2 to the total available energy. Table 1 shows the values when X is changed to 10%, 50%, and 100%.

第1表より明らかなように、本発明方法で炭素を固定・
再利用することによって最大39%の自然エネルギの輸
送が可能となり、この分化石燃料の消費量が減少する。
As is clear from Table 1, carbon can be fixed and fixed by the method of the present invention.
By reusing it, up to 39% of natural energy can be transported, reducing the consumption of this fractionated fossil fuel.

第2図には各燃料の燃料中の炭素の発熱量割合と最大取
込み自然エネルギの全体エネルギに対する割合を示す。
FIG. 2 shows the calorific value ratio of carbon in each fuel and the ratio of the maximum natural energy taken in to the total energy.

第2図には再利用率を100%としたときの、燃料中の
炭素の発熱量割合をパラメータとして取込んだエネルギ
と全利用可能なエネルギの比を表わしている。炭素が多
い燃料はど、メタノールの原料となる炭素が多いため、
輸送によって取込める自然エネルギの割合が増加する。
FIG. 2 shows the ratio of the energy taken in as a parameter to the calorific value ratio of carbon in the fuel and the total available energy when the reuse rate is 100%. Carbon-rich fuels have a lot of carbon, which is the raw material for methanol.
The proportion of natural energy that can be captured through transportation will increase.

〔実施例2〕 次に、本発明の他の実施例を第3図によって説明する。[Example 2] Next, another embodiment of the present invention will be described with reference to FIG.

自然エネルギ07により水素製造プラント0牛で製造さ
れた水素041と、炭素固定化装置011でメタノール
06から分離された炭素02を炭素ガス化プラント03
で水素041を加熱源として用いてガス化したガス03
1(H2,CO)を用いて、メタノール合成プラント0
5でメタノール06を合成し、エネルギ消費地域へ輸送
して炭素固定化装置011へ供給する。炭素を分離した
水素燃料0には発電プラン)01で消費され、電力09
を発生する。この場合メタノールは直接燃料として使用
されず、発電プラントの炭素固定化装置で炭素と水素に
分離され、水素は発電プラントの燃料として用いられ、
炭素は再度メタノール合成用原料として使用される。こ
の場合メタノール1モルに対して2モルの水素が輸送で
き、アンモニアの1モルに対し1,5モルの水素より多
くの水素が輸送できる。
Hydrogen production plant 0 Hydrogen 041 produced using natural energy 07 and carbon 02 separated from methanol 06 in carbon fixation equipment 011 are converted into carbon gasification plant 03
Gas 03 gasified using hydrogen 041 as a heating source
1 (H2, CO), methanol synthesis plant 0
5, methanol 06 is synthesized, transported to an energy consumption area, and supplied to a carbon fixation device 011. Hydrogen fuel from which carbon has been separated 0 is consumed in the power generation plan) 01, and electricity 09
occurs. In this case, methanol is not used directly as a fuel, but is separated into carbon and hydrogen in the carbon fixation device of the power plant, and hydrogen is used as a fuel in the power plant.
The carbon is again used as a raw material for methanol synthesis. In this case, 2 moles of hydrogen can be transported per mole of methanol, and more hydrogen can be transported than 1.5 moles of hydrogen per mole of ammonia.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のフローを示す概略図、第2
図は本発明の一実施例の燃料中炭素発熱量割合と最大取
込み自然エネルギの関係を示す図表、第3図は本発明の
他の実施例のフローを示す概略系統図である。
FIG. 1 is a schematic diagram showing the flow of one embodiment of the present invention, and FIG.
The figure is a chart showing the relationship between the carbon calorific value ratio in fuel and the maximum natural energy intake in one embodiment of the present invention, and FIG. 3 is a schematic system diagram showing the flow of another embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] エネルギ消費地域で炭素を含む化合物あるいは化石燃料
の燃焼時または燃焼前に分離した炭素をエネルギの豊富
な地域へ輸送し、該地域で製造された水素と、前記炭素
をガス化して製造したガス化とを反応させてメタノール
を合成し、該メタノールをエネルギ消費地域へ輸送する
ことを特徴とするエネルギの輸送方法。
Gasification produced by transporting carbon-containing compounds or carbon separated during or before combustion of fossil fuels to an energy-rich region in an energy-consuming region, and producing hydrogen produced in the region and gasifying the carbon. 1. A method for transporting energy, comprising: synthesizing methanol by reacting with the methanol; and transporting the methanol to an energy consuming area.
JP25711890A 1990-09-28 1990-09-28 Method for transproting energy Pending JPH04139141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25711890A JPH04139141A (en) 1990-09-28 1990-09-28 Method for transproting energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25711890A JPH04139141A (en) 1990-09-28 1990-09-28 Method for transproting energy

Publications (1)

Publication Number Publication Date
JPH04139141A true JPH04139141A (en) 1992-05-13

Family

ID=17301983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25711890A Pending JPH04139141A (en) 1990-09-28 1990-09-28 Method for transproting energy

Country Status (1)

Country Link
JP (1) JPH04139141A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7150099B1 (en) * 2021-06-07 2022-10-07 本田技研工業株式会社 fuel production system
CN115505428A (en) * 2021-06-07 2022-12-23 本田技研工业株式会社 Fuel preparation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7150099B1 (en) * 2021-06-07 2022-10-07 本田技研工業株式会社 fuel production system
CN115505428A (en) * 2021-06-07 2022-12-23 本田技研工业株式会社 Fuel preparation system
JP2022190704A (en) * 2021-06-07 2022-12-27 本田技研工業株式会社 fuel production system

Similar Documents

Publication Publication Date Title
JP5686803B2 (en) Method for gasifying carbon-containing materials including methane pyrolysis and carbon dioxide conversion reaction
US6571747B1 (en) Method and device for producing energy or methanol
HK1078842A1 (en) Production of synthetic transportation fuels from carbonaceous materials using self-sustained hydro-gasification
KR101609809B1 (en) Method and device for biomass gasification by cycling of carbon dioxide without oxygen
US20100018217A1 (en) Co-production of power and hydrocarbons
KR20100135676A (en) Methods of recycling carbon dioxide to the gasification system
KR20160030559A (en) Methanation method and power plant comprising co_2 methanation of power plant flue gas
JP2013544946A (en) Gasification method that reduces carbon dioxide emissions
JP4938920B2 (en) Biomass gasification furnace and biomass gasification system
CN109181776B (en) Coal-based poly-generation system and method for integrated fuel cell power generation
CN110951508A (en) Device and process for preparing methane by coal chemical-looping catalytic gasification based on calcium oxide
JP2002527539A (en) Method for converting hydrogen to alternative natural gas
CN103045308B (en) Power generation method and system based on step conversion of hydrocarbon components of coal
US20160152528A1 (en) Method and system for acetylene (c2h2) or ethylene (c2h4) production
AU2014395432B2 (en) Hydrocarbon-production-apparatus and method for producing hydrocarbons with renewable electric energy
JP4030846B2 (en) Methanol production method and apparatus
CN103189481B (en) The method of preparation synthetic natural gas
JP2001279266A (en) Method for carrying out gasification of coal and system for synthesizing methanol
CN100596293C (en) Stage associating process for producing methanol and ammonia using coal and coke oven gas as material
RU99104647A (en) DEVICE FOR PRODUCING CARBON USING BIOMASS
CN203096004U (en) Power generation system based on classification and transformation of hydrocarbon components of coal
JPH04139141A (en) Method for transproting energy
GB2134601A (en) Electric power generating plant with energy storage
KR101448522B1 (en) Apparatus for manufacturing composition gas using a coal gasification system and Method thereof
JPH0899921A (en) Device for producing methanol