JPH04138624A - Manufacture of oxide superconducting layer - Google Patents

Manufacture of oxide superconducting layer

Info

Publication number
JPH04138624A
JPH04138624A JP2261934A JP26193490A JPH04138624A JP H04138624 A JPH04138624 A JP H04138624A JP 2261934 A JP2261934 A JP 2261934A JP 26193490 A JP26193490 A JP 26193490A JP H04138624 A JPH04138624 A JP H04138624A
Authority
JP
Japan
Prior art keywords
silver
powder
dust layer
layer
tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2261934A
Other languages
Japanese (ja)
Inventor
Yoshinori Takada
高田 善典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2261934A priority Critical patent/JPH04138624A/en
Publication of JPH04138624A publication Critical patent/JPH04138624A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To improve strong toughness in reduction or the like of generation of a bending crack due to brittleness by forming a dust layer, contained with a silver component, on a heat resistant conductor by an electrocoating method sintered after a press process. CONSTITUTION:A bismuth system oxide and iodine-aceton dispersion liquid of silver iodide are placed in an electrocoating tank to arrange a platinum plate cathode in this electrocoating tank. Next, a silver tape is arranged in a central part of a platinum electrode and electrocoated to form a dust layer containing a silver component. Then, the silver tape, provided with this dust layer, is press-processed to compress the dust layer, and then a sintering process is performed to prepare a silver-contained integral silver tape. In this way, the dust layer can stably and efficiently be formed further in a uniform thickness on a heat resistant conductor of various forms containing a large area body and a round wire or the like, and also continuous manufacture is made possible.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電着方式で形成した酸化物超電導体からなる
銀成分含有の粉末層を焼結処理するようにした、強靭性
、超電導特性に優れる酸化物超電導層の製造方法に関す
る。
[Detailed Description of the Invention] Industrial Field of Application The present invention provides excellent toughness and superconducting properties by sintering a powder layer containing a silver component made of an oxide superconductor formed by electrodeposition. The present invention relates to a method for manufacturing an oxide superconducting layer.

従来の技術及び課題 酸化物超電導体と銀の粉末を含有するスラリーをドクタ
ーブレード法で展開し、それを焼結処理して銀含有の酸
化物超電導層を製造する方法が知られていた。酸化物超
電導層中への銀の添加は、脆さによる曲げクラックの発
生の軽減など、強靭性の向上に有効である。
BACKGROUND ART A known method is to develop a slurry containing an oxide superconductor and silver powder using a doctor blade method, and then sinter the slurry to produce a silver-containing oxide superconducting layer. Adding silver to the oxide superconducting layer is effective in improving toughness, such as reducing the occurrence of bending cracks due to brittleness.

しかしながら、ドクターブレード方式を適用した製造方
法では、均一厚の層形成に高度な技術を要することも手
伝って、大面積の酸化物超電導層の形成が困難な問題点
、丸線等の上に展開層を形成することか困難であるなど
、展開層の支持基材に対する制約が大きい問題点かあっ
た。
However, with the manufacturing method that applies the doctor blade method, it is difficult to form a large-area oxide superconducting layer, partly because it requires advanced technology to form a layer with a uniform thickness. There were problems such as difficulty in forming the layer, which placed great restrictions on the supporting base material for the spreading layer.

課題を解決するための手段 本発明は、電着方式を適用することにより銀含有の酸化
物超電導層の形成に成功して前記の課題を克服したもの
である。
Means for Solving the Problems The present invention overcomes the above problems by successfully forming a silver-containing oxide superconducting layer by applying an electrodeposition method.

すなわち本発明は、耐熱性導体の上に電着方式で、酸化
物超電導体からなる銀成分含有の粉末層を形成する工程
、電着形成した粉末層をプレス処理したのち焼結処理す
る工程を有することを特徴とする酸化物超電導層の製造
方法を提供するものである。
That is, the present invention includes a step of forming a powder layer containing a silver component made of an oxide superconductor by electrodeposition on a heat-resistant conductor, and a step of pressing the electrodeposited powder layer and then sintering it. A method for manufacturing an oxide superconducting layer is provided.

作用 電着方式で酸化物超電導体からなる銀成分含有の粉末層
を形成することが可能であり、それをブレス処理して大
面積体や丸線等を含む種々の形態の耐熱性導体上に、酸
化物超電導体からなる銀成分含有の粉末層を厚さの均一
性よく、シかも連続的に形成することかできる。その結
果、銀を含有することにより強靭性に優れる酸化物超電
導層を形成面積の制約なく製造することができる。
It is possible to form a silver component-containing powder layer made of oxide superconductor by active electrodeposition, and it can be applied to various forms of heat-resistant conductors, including large-area bodies and round wires, by press processing. A powder layer containing a silver component made of an oxide superconductor can be continuously formed with good thickness uniformity. As a result, an oxide superconducting layer having excellent toughness due to the inclusion of silver can be manufactured without restrictions on the formation area.

発明の構成要素の例示 本発明においては、電着方式により耐熱性導体の上に酸
化物超電導体からなる銀成分含有の粉末層を形成する。
Examples of Constituent Elements of the Invention In the present invention, a silver component-containing powder layer made of an oxide superconductor is formed on a heat-resistant conductor by electrodeposition.

かかる粉末層の形成は例えば、酸化物超電導体の粉末と
、銀粉ないし銀化合物を用いる方式、あるいは銀成分を
含有する酸化物超電導体のく仮焼)粉末を用いる方式な
どにより行うことができる。
Such a powder layer can be formed, for example, by a method using oxide superconductor powder and silver powder or a silver compound, or by a method using oxide superconductor powder containing a silver component.

用いる酸化物超電導体の粉末については特に限定はない
。例えばYBa2 Cu303やYIBa2Cu、00
の如きY系酸化物超電導体、Ba1−d k dBi0
3の如きBa系酸化物超電導体、Nd2−e Ce、。
There are no particular limitations on the oxide superconductor powder used. For example, YBa2 Cu303 and YIBa2Cu, 00
Y-based oxide superconductor such as Ba1-d k dBi0
Ba-based oxide superconductor such as No. 3, Nd2-e Ce,.

Cub、の如きNd系酸化物超電導体、B10−tPb
gSr2 Ca2C+、z○ゎやBi25r2Ca4−
+ CuO,の如きBi系酸化物超電導体、その化La
系酸化物超電導体、T1系酸化物超電導体、Pb系酸化
物超電導体等、また前記のY等の成分を他の希土類元素
で置換したもの、ないしBa等の成分を他のアルカリ土
類金属で置換したもの、あるいはピンニングセンター含
有のY系酸化物超電導体なとからなる粉末のいずれも用
いうる。
Nd-based oxide superconductor such as Cub, B10-tPb
gSr2 Ca2C+, z○ゎya Bi25r2Ca4-
+ Bi-based oxide superconductors such as CuO, and its derivatives La
oxide superconductors, T1-based oxide superconductors, Pb-based oxide superconductors, etc., and those in which the components such as Y are replaced with other rare earth elements, or those in which components such as Ba are replaced with other alkaline earth metals. It is possible to use a powder made of a Y-based oxide superconductor containing a pinning center, or a powder made of a Y-based oxide superconductor containing a pinning center.

一方、銀成分含有の酸化物超電導体の粉末は例えば、酸
化物超電導体の粉末と、銀粉ないし銀化合物を混合し、
その混合物を仮焼処理して粉砕する方式などにより得る
ことができる。
On the other hand, oxide superconductor powder containing a silver component is obtained by mixing oxide superconductor powder and silver powder or a silver compound, for example.
It can be obtained by calcining the mixture and pulverizing it.

前記したピンニングセンター含有系の酸化物超電導体は
、そのピンニングセンターによる磁束のピン止め効果に
より高い磁場下においても大きな臨界電流密度を示す利
点を有する。かかる酸化物超電導体の形成は、溶融方式
例えば、酸化物超電導体形成用の原料粉末、ないし酸化
物超電導体の粉末と酸化物超電導体でない粉末を適当な
組成で仮焼したのち加熱溶融させて急冷し、形成された
凝固物を粉砕後その粉末を成形体として半溶融温度で部
分溶融させて徐冷するMPMG法(Melt−Powd
ering−Melt−Growth )などにより行
うことができる。
The pinning center-containing oxide superconductor described above has the advantage of exhibiting a large critical current density even under a high magnetic field due to the pinning effect of the magnetic flux by the pinning center. Such an oxide superconductor can be formed by a melting method, for example, by calcining a raw material powder for forming an oxide superconductor, or an oxide superconductor powder and a non-oxide superconductor powder in an appropriate composition, and then heating and melting the powder. The MPMG method (Melt-Powd
ering-Melt-Growth), etc.

銀成分としては、銀粉、ないしヨウ化銀の如き電着処理
が可能な銀化合物が用いられる。銀成分は、酸化物超電
導体の粉末の仮焼工程で加えてもよい。
As the silver component, silver powder or a silver compound such as silver iodide that can be subjected to electrodeposition treatment is used. The silver component may be added during the calcination step of the oxide superconductor powder.

酸化物超電導体の粉末と銀粉ないし銀化合物、又は銀成
分含有の酸化物超電導体の粉末の耐熱性導体上への電着
処理は、電気泳動電着方式で行うことができる。その例
としては、アセトン等の分散媒中に粒径が0.1〜10
umの酸化物超電導体の粉末を分散させると共に、銀粉
ないし銀化合物を添加してなる分散液を入れた電着槽中
に対向電極の配置下、電着を受ける耐熱性導体を導入し
、その耐熱性導体と対向電極との間に電圧を印加した状
態で電着する方式などがあげられる。なお銀成分含有の
酸化物超電導体の粉末を用いる場合には、銀粉ないし銀
化合物の添加は省略しうる。電着処理に際して耐熱性導
体を陽極とするか、陰極とするかは当該酸化物超電導体
の粉末のチャージに応し決定され、クーロン力に基づい
て引力が作用する極とされる。印加電圧の大きさは適宜
に決定され通例、直流電圧で50〜1000 Vである
。電着形成する粉末層の厚さは任意であり、一般には5
00μm以下である。
Electrodeposition of the oxide superconductor powder and silver powder or silver compound, or the oxide superconductor powder containing a silver component onto the heat-resistant conductor can be performed by an electrophoretic electrodeposition method. For example, if the particle size is 0.1 to 10% in a dispersion medium such as acetone,
A heat-resistant conductor that undergoes electrodeposition is introduced into an electrodeposition tank containing a dispersion liquid containing um oxide superconductor powder and silver powder or a silver compound added thereto, with a counter electrode placed therein. Examples include a method of electrodeposition while applying a voltage between a heat-resistant conductor and a counter electrode. Note that when using an oxide superconductor powder containing a silver component, addition of silver powder or silver compound can be omitted. In the electrodeposition process, whether the heat-resistant conductor is used as an anode or a cathode is determined depending on the charge of the oxide superconductor powder, and is used as a pole on which attractive force acts based on Coulomb force. The magnitude of the applied voltage is appropriately determined and is usually 50 to 1000 V in terms of DC voltage. The thickness of the powder layer formed by electrodeposition is arbitrary, and is generally 5.
00 μm or less.

前記において、銀粉ないし銀化合物の使用量は酸化物超
電導体1モルあたり、銀成分のモル数に基づき1〜5モ
ルが一般的であるが、これに限定されない。
In the above, the amount of silver powder or silver compound used is generally 1 to 5 moles based on the number of moles of the silver component per mole of the oxide superconductor, but is not limited thereto.

なお前記の耐熱性導体は、形成された粉末層と共に焼結
処理に供されるので、その焼結温度に耐え、かつ粉末層
と反応しない材質のものが用いられる。一般には銀や銀
合金、ないしそれらと複合化した金属又はセラミック複
合材料などが用いられる。耐熱性導体の形態は、テープ
ないし板や線材など、任意である。
Since the heat-resistant conductor is subjected to a sintering process together with the formed powder layer, a material that can withstand the sintering temperature and does not react with the powder layer is used. Generally, silver, a silver alloy, or a metal or ceramic composite material made of silver or a silver alloy is used. The form of the heat-resistant conductor is arbitrary, such as a tape, a plate, or a wire.

耐熱性導体の上に電着形成した酸化物超電導体からなる
銀成分含有の粉末層は、焼結処理する前にプレス処理さ
れて高密度化される。プレス処理は、例えば機械プレス
方式や静水圧方式なと、適宜な方式により行ってよい。
The silver component-containing powder layer made of the oxide superconductor electrodeposited on the heat-resistant conductor is pressed and densified before being sintered. The pressing process may be performed by any suitable method, such as a mechanical press method or a hydrostatic pressure method.

プレス処理は、焼結処理により形成される酸化物超電導
層の緻密化によるヒビ割れの予防、ひいては強靭性や超
電導特性の向上に有効である。その場合、プレス処理に
よる電着粉末層の高密度化の程度は、酸化物超電導体の
結晶密度(理論値)の60%以上、就中70〜90%の
見掛は密度とすることが好ましい。一般的なプレス圧は
、0.5〜30t/cdである。
Pressing treatment is effective in preventing cracks due to densification of the oxide superconducting layer formed by sintering treatment, and in improving toughness and superconducting properties. In that case, the degree of densification of the electrodeposited powder layer by pressing is preferably 60% or more of the crystal density (theoretical value) of the oxide superconductor, especially an apparent density of 70 to 90%. . Typical press pressure is 0.5 to 30 t/cd.

プレス処理が施された粉末層は、焼結処理に供される。The pressed powder layer is subjected to a sintering process.

これにより、酸化物超電導体の粉末がバルク化して、銀
を含有する一体的な酸化物超電導層、就中、厚膜層が形
成される。その焼結条件は酸化物超電導体の種類等に応
し適宜に決定してよい。一般的な焼結温度は、800〜
1200℃の温度域であって耐熱性導体の融点未満の温
度である。また、焼結時間は通例200時間以下、就中
2〜150時間であるがこれに限定されない。
This bulks up the oxide superconductor powder and forms an integral silver-containing oxide superconductor layer, particularly a thick layer. The sintering conditions may be determined as appropriate depending on the type of oxide superconductor. Typical sintering temperature is 800~
The temperature range is 1200°C, which is lower than the melting point of the heat-resistant conductor. Further, the sintering time is usually 200 hours or less, particularly 2 to 150 hours, but is not limited thereto.

発明の効果 本発明によれば、電着方式で酸化物超電導体からなる銀
成分含有の粉末層を形成してプレス処理し、これにより
銀含有の酸化物超電導層を得るようにしたので、大面積
体や丸線等を含む種々の形態の耐熱性導体上に安定に、
かつ効率的に、しかも厚さの均一性よく酸化物超電導層
を形成することができ、連続製造も可能である。そして
その酸化物超電導層は銀の含有に基づいて強靭性、超電
導特性に優れている。
Effects of the Invention According to the present invention, a powder layer containing a silver component made of an oxide superconductor is formed by an electrodeposition method and then press-treated to obtain a silver-containing oxide superconducting layer. Stably on various forms of heat-resistant conductors, including square bodies and round wires, etc.
Moreover, the oxide superconducting layer can be formed efficiently and with good thickness uniformity, and continuous production is also possible. The oxide superconducting layer has excellent toughness and superconducting properties due to the silver content.

実施例I B+2−z Pbr 5r2Ca2 CLI30h(g
=0.6)からなる粒径0.1〜10μmの粉末10部
く重量部、以下同じ)と、ヨウ化銀5部を0.05%ヨ
ウ素−アセトン溶液1000部中に分散させて得た分散
液を電着槽に入れ、その電着槽中にシリンダー状の白金
板からなる陰極を配置したのち、厚さ0.1鴎の銀テー
プを前記白金電極の中央部に配置して500vの直流電
圧を印加し、銀テープ上に酸化物超電導体からなる銀成
分含有の粉末層を形成した。電着形成した粉末層の厚さ
は約60μmで、その見掛は密度は2.9g/ciてあ
った。
Example I B+2-z Pbr 5r2Ca2 CLI30h (g
= 0.6) with a particle size of 0.1 to 10 μm (the same applies hereinafter) and 5 parts of silver iodide were dispersed in 1000 parts of a 0.05% iodine-acetone solution. The dispersion was placed in an electrodeposition tank, and a cathode made of a cylindrical platinum plate was placed in the electrodeposition tank. A silver tape with a thickness of 0.1 mm was placed in the center of the platinum electrode, and a voltage of 500V was applied. A DC voltage was applied to form a powder layer containing a silver component made of an oxide superconductor on the silver tape. The thickness of the electrodeposited powder layer was approximately 60 μm, and its apparent density was 2.9 g/ci.

ついて、前記の粉末層付きの銀テープをプレス処理(5
t/coOL、て粉末層を圧縮したのち(見掛は密度4
.5g/cn?)、それを200℃/時間の速度で昇温
しで830〜840℃の温度で60時間焼結処理しヒビ
割れのない銀含有の一体的な酸化物超電導層を有する銀
テープを得た。なお、酸化物超電導層は銀を分散性よく
含有し、その含有率は33重量%であった。
Then, the silver tape with the powder layer was pressed (5
After compressing the powder layer using t/coOL (the apparent density is 4
.. 5g/cn? ), it was sintered at a temperature of 830-840° C. for 60 hours with heating at a rate of 200° C./hour to obtain a silver tape having an integral silver-containing oxide superconducting layer without cracks. Note that the oxide superconducting layer contained silver with good dispersibility, and the content was 33% by weight.

また、銀テープにおける酸化物超電導層の臨界温度は1
02にであり、臨界電流密度は250 OA / ct
(77K)であった。
In addition, the critical temperature of the oxide superconducting layer in the silver tape is 1
02 and the critical current density is 250 OA/ct
(77K).

さらに、前記の酸化物超電導層付き銀テープを直径60
11II11のパイプに巻付けたが、酸化物超電導層に
クラック、ないしヒビ割れの発生は認められなかった。
Furthermore, the silver tape with the oxide superconducting layer was added with a diameter of 60 mm.
No cracks or cracks were observed in the oxide superconducting layer when it was wrapped around a 11II11 pipe.

なお前記において臨界温度は、0 、1 A / ca
rの電流密度下、液体窒素で冷却しなから4端子法によ
り電気抵抗の温度による変化を測定し、電圧端子間の発
生電圧がOとなった時の温度である。また臨界電流密度
は、パワーリートと共に液体窒素で冷却しながら徐々に
電流値をあげて4端子法により電圧端子間の電圧の印加
電流による変化を測定し、X−Yレコーダーにおいて1
μV 、/’ Cmの電圧が出現したときの電流値を測
定し、それを酸化物超電導層の断面積で除して算出した
数値である(以下同じ)。
In addition, in the above, the critical temperature is 0, 1 A/ca
The change in electrical resistance due to temperature was measured by the four-terminal method under a current density of r, without cooling with liquid nitrogen, and this was the temperature when the voltage generated between the voltage terminals became O. In addition, the critical current density is determined by gradually increasing the current value while cooling with Power REIT in liquid nitrogen, and measuring the change in voltage between the voltage terminals due to the applied current using the four-terminal method.
The value is calculated by measuring the current value when a voltage of μV,/'Cm appears and dividing it by the cross-sectional area of the oxide superconducting layer (the same applies hereinafter).

比較例1 ヨウ化銀を用いずに実施例1に準じて、銀を含有しない
酸化物超電導層付きの銀テープを得た。
Comparative Example 1 A silver tape with an oxide superconducting layer containing no silver was obtained according to Example 1 without using silver iodide.

前記の銀テープにおける酸化物超電導層の臨界温度は9
9にであり、臨界電流密度は700A、/ci(77K
)であった。
The critical temperature of the oxide superconducting layer in the silver tape is 9
9, and the critical current density is 700A,/ci (77K
)Met.

また、かかる銀テープを直径60mmのパイプに巻付け
たところ、酸化物超電導層にクラック、ないしヒビ割れ
が発生した。
Furthermore, when such a silver tape was wrapped around a pipe having a diameter of 60 mm, cracks or cracks occurred in the oxide superconducting layer.

実施例2 Y20310部、BaCO334部、Cu021部、及
びAg2062部を混合し、この混合粉末を800 ’
Cで12時間仮焼して銀を含むY系酸化物超電導体の仮
焼体を得た。
Example 2 10 parts of Y20, 334 parts of BaCO, 21 parts of Cu, and 2062 parts of Ag were mixed, and this mixed powder was heated to 800'
C. for 12 hours to obtain a calcined body of Y-based oxide superconductor containing silver.

次に、前記の仮焼体を粉砕して粒径0.1〜10趨の粉
末を得、その粉末20部を0.05%ヨウ素−アセトン
溶液1000部中に分散させ、その分散液を電着槽に入
れて電着槽中にシリンダー状の白金板からなる陽極を配
置したのち、厚さ0.1mmの銀テープを白金電極の中
央部に配置して400Vの直流電圧を印加し、銀テープ
上に酸化物超電導体からなる銀成分含有の粉末層を形成
した。電着形成した粉末層の厚さは約50μ鋼で、その
見掛は密度は3.1g/ catてあった。
Next, the calcined body was pulverized to obtain a powder with a particle size ranging from 0.1 to 10, 20 parts of the powder was dispersed in 1000 parts of a 0.05% iodine-acetone solution, and the dispersion was electrolyzed. After placing an anode made of a cylindrical platinum plate in an electrodeposition bath, a 0.1 mm thick silver tape was placed in the center of the platinum electrode, and a DC voltage of 400 V was applied. A powder layer containing a silver component and made of an oxide superconductor was formed on the tape. The thickness of the electrodeposited powder layer was approximately 50μ steel, and its apparent density was 3.1 g/cat.

ついで、前記の粉末層付きの銀テープをプレス処理(2
t/c+J)して粉末層を圧縮したのち(見掛は密度4
.2g/cat) 、それを200℃/時間の速度で昇
温して900℃の温度で12時間焼結処理し、ヒビ割れ
のない銀含有の一体的な酸化物超電導層を有する銀テー
プを得た。なお、酸化物超電導層は銀を分散性よく含有
し、その含有率は30重量%てあった。
Next, the silver tape with the powder layer was pressed (2
t/c+J) to compress the powder layer (the apparent density is 4
.. 2g/cat), it was heated at a rate of 200°C/hour and sintered at a temperature of 900°C for 12 hours to obtain a silver tape with a crack-free silver-containing integral oxide superconducting layer. Ta. The oxide superconducting layer contained silver with good dispersibility, and its content was 30% by weight.

また銀テープにおける酸化物超電導層の臨界温度は89
にであり、臨界電流密度は1400 A / c! (
77K)であった。
In addition, the critical temperature of the oxide superconducting layer in the silver tape is 89
The critical current density is 1400 A/c! (
77K).

さらに、前記の酸化物超電導層付き銀テープを直径60
1m1のパイプに巻付けたか、酸化物超電導層にクラッ
ク、ないしヒヒ割れの発生は認められなかった。
Furthermore, the silver tape with the oxide superconducting layer was added with a diameter of 60 mm.
No cracks or cracks were observed in the oxide superconducting layer when it was wrapped around a 1 m1 pipe.

比較例2 酸化銀を用いずに実施例2に準じて、銀を含有しない酸
化物超電導層付きの銀テープを得た。
Comparative Example 2 A silver tape with an oxide superconducting layer containing no silver was obtained according to Example 2 without using silver oxide.

前記の銀テープにおける酸化物超電導層の臨界温度は8
8にであり、臨界電流密度は300A/cnf(77K
)であった。
The critical temperature of the oxide superconducting layer in the silver tape is 8
8, and the critical current density is 300A/cnf (77K
)Met.

また、かかる銀テープを直径60mn+のパイプに巻付
けたところ、酸化物超電導層にクラック、ないしヒビ割
れが発生した。
Further, when such a silver tape was wrapped around a pipe having a diameter of 60 mm+, cracks or crazing occurred in the oxide superconducting layer.

Claims (1)

【特許請求の範囲】[Claims] 1.耐熱性導体の上に電着方式で、酸化物超電導体から
なる銀成分含有の粉末層を形成する工程、電着形成した
粉末層をプレス処理したのち焼結処理する工程を有する
ことを特徴とする酸化物超電導層の製造方法。
1. It is characterized by comprising the steps of forming a powder layer containing a silver component made of an oxide superconductor by electrodeposition on a heat-resistant conductor, and pressing the electrodeposited powder layer and then sintering it. A method for manufacturing an oxide superconducting layer.
JP2261934A 1990-09-28 1990-09-28 Manufacture of oxide superconducting layer Pending JPH04138624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2261934A JPH04138624A (en) 1990-09-28 1990-09-28 Manufacture of oxide superconducting layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2261934A JPH04138624A (en) 1990-09-28 1990-09-28 Manufacture of oxide superconducting layer

Publications (1)

Publication Number Publication Date
JPH04138624A true JPH04138624A (en) 1992-05-13

Family

ID=17368723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2261934A Pending JPH04138624A (en) 1990-09-28 1990-09-28 Manufacture of oxide superconducting layer

Country Status (1)

Country Link
JP (1) JPH04138624A (en)

Similar Documents

Publication Publication Date Title
US4952557A (en) Formation of superconducting articles by electrodeposition
JPH04138624A (en) Manufacture of oxide superconducting layer
EP0316143A2 (en) Formation of superconducting articles by electrodeposition
EP0273876A1 (en) Spot welding electrode and method for making it
JP2727565B2 (en) Superconductor manufacturing method
JPH0375103A (en) Production of superconductive layer
DE19964478B4 (en) Process for metallically coating high temperature superconductors comprises galvanically applying copper and a metallic copper sample as anode, and partially covering between the anode and the high temperature superconductor
JPS63285155A (en) Oxide type superconductive material and production thereof
JP2595274B2 (en) Method of forming oxide-based superconductor layer
JP2966442B2 (en) Bi-based oxide superconductor and method for producing wire thereof
JP2901243B2 (en) Method for producing oxide-based superconducting wire
CN110707205B (en) Method for improving Te-based thermoelectric joint performance
JP2703802B2 (en) Manufacturing method of oxide superconducting wire
KR920005095B1 (en) Preparing method of super conductive material
JPH04138619A (en) Superconductor
JP2549697B2 (en) Method for producing oxide-based superconducting wire
JPH01304609A (en) Superconductive wire rod with high critical current density
JPH04108662A (en) Production of oxide superconducting layer
JP3174312B2 (en) Superconducting magnet manufacturing method
JPS63276820A (en) Manufacture of oxide superconductor
JP2699077B2 (en) Manufacturing method of ceramic superconductor coil
JPH02192620A (en) Manufacture of oxide superconductive wire material
JPS63313416A (en) Superconductive wire rod and its manufacture
JPH038754A (en) Oxide superconductor composition and production thereof
JPH03265523A (en) Bismuth-containing oxide superconductor and production thereof