JPH0413844B2 - - Google Patents

Info

Publication number
JPH0413844B2
JPH0413844B2 JP32803987A JP32803987A JPH0413844B2 JP H0413844 B2 JPH0413844 B2 JP H0413844B2 JP 32803987 A JP32803987 A JP 32803987A JP 32803987 A JP32803987 A JP 32803987A JP H0413844 B2 JPH0413844 B2 JP H0413844B2
Authority
JP
Japan
Prior art keywords
self
output
excitation
excitation current
excitation coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP32803987A
Other languages
Japanese (ja)
Other versions
JPH01169906A (en
Inventor
Nagakatsu Ito
Masashi Endo
Masashi Yanagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CKD Controls Ltd
Original Assignee
CKD Controls Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CKD Controls Ltd filed Critical CKD Controls Ltd
Priority to JP32803987A priority Critical patent/JPH01169906A/en
Publication of JPH01169906A publication Critical patent/JPH01169906A/en
Publication of JPH0413844B2 publication Critical patent/JPH0413844B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electromagnets (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は自己保持ソレノイドに関し、特に乾電
池等の小容量電源で駆動される自己保持ソレノイ
ドの励磁電流制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a self-holding solenoid, and more particularly to an excitation current control device for a self-holding solenoid driven by a small-capacity power source such as a dry battery.

〔従来の技術〕[Conventional technology]

一般に自己保持ソレノイドはコイルに励磁電流
を流して可動鉄心を吸着し、吸着後は永久磁石で
可動鉄心を吸着保持するので省電力化に適してい
る。
In general, a self-holding solenoid attracts the movable iron core by passing an exciting current through the coil, and after the attraction, the movable iron core is attracted and held by a permanent magnet, so it is suitable for power saving.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来の自己保持ソレノイドの励磁電流
制御回路は励磁電流を可動鉄心の吸着完了時に切
ることができず無駄に電力を消費している。
However, the excitation current control circuit for the conventional self-holding solenoid cannot cut off the excitation current when the movable iron core is completely attracted, resulting in wasteful power consumption.

この為、可動鉄心の吸着動作完了時点を検出す
る種々の方式が提案されている。即ち、リミツト
スイツチ方式、タイマー方式、電流検出方式、電
気量設定方式及びリードスイツチ方式等が知られ
ている。
For this reason, various methods have been proposed for detecting the point in time when the adsorption operation of the movable iron core is completed. Namely, limit switch methods, timer methods, current detection methods, electric quantity setting methods, reed switch methods, and the like are known.

しかし、リミツトスイツチ方式は安価であるが
接点が必要なために耐久性が悪く、形状が大きく
なる欠点がある。また、タイマー方式は吸着動作
が完了しなくても励磁電流が切れる欠点がある。
また、電流検出方式は判定回路が複雑で高価とな
り、更に動作途中での電源変動があると吸着動作
未完了でも励磁電流が切れる欠点がある。また、
電気量検出方式は負荷変動(サージ負荷)がある
と吸着動作未完了でも励磁電流が切れる欠点があ
る。また、リードスイツチ方式は接点が必要で耐
久性が悪く、更に設定位置調整が難しく、入力電
源変動を大きくとれない欠点がある。
However, although the limit switch method is inexpensive, it requires a contact point, so it has poor durability and has the drawbacks of being bulky. Furthermore, the timer method has the disadvantage that the excitation current is cut off even before the suction operation is completed.
In addition, the current detection method requires a complicated and expensive determination circuit, and further has the drawback that if the power supply fluctuates during operation, the excitation current may be cut off even if the suction operation is not completed. Also,
The electric quantity detection method has the disadvantage that if there is a load fluctuation (surge load), the excitation current is cut off even if the suction operation is not completed. In addition, the reed switch system requires contacts and is poor in durability, and furthermore, it is difficult to adjust the setting position and has the disadvantage that it cannot handle large fluctuations in the input power supply.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこの点を改良するもので、回路構成が
煩雑とならず、耐久性の良く、しかも吸着動作完
了時点を正確に検出して励磁電流の電源を切るこ
とができる自己保持ソレノイドを提供することを
目的とする。
The present invention improves this point, and provides a self-holding solenoid that does not have a complicated circuit configuration, has good durability, and can accurately detect the point at which the suction operation is completed and turn off the excitation current. The purpose is to

本発明は、自己保持用永久磁石からの漏れ磁束
と励磁コイルからの漏れ磁束とが互いに逆向きに
干渉し合う位置に磁気感知素子を配置し、この磁
気感知素子の出力を励磁電流制御回路に接続した
ことを特徴とする。
In the present invention, a magnetic sensing element is arranged at a position where leakage magnetic flux from a self-holding permanent magnet and leakage magnetic flux from an excitation coil interfere with each other in opposite directions, and the output of this magnetic sensing element is sent to an excitation current control circuit. It is characterized by being connected.

〔作用〕[Effect]

実験的に証明されている可動鉄心が安定吸着状
態になる時には自己保持用永久磁石の漏れ磁束と
励磁電流による励磁コイルからの漏れ磁束とが互
いに打ち消し合うことに着目し、前記磁気感知素
子の出力が零となる時点を検出し、この検出出力
に基づいて可動鉄心が該永久磁石で自己保持され
るように励磁電流制御回路を制御する。
Focusing on the fact that when the movable iron core enters a stable adsorption state, which has been experimentally proven, the leakage magnetic flux of the self-holding permanent magnet and the leakage magnetic flux from the excitation coil caused by the excitation current cancel each other out, and the output of the magnetic sensing element is determined by The point in time when becomes zero is detected, and the excitation current control circuit is controlled based on this detection output so that the movable core is self-held by the permanent magnet.

〔実施例〕〔Example〕

以下本発明を図面に基づいて説明する。 The present invention will be explained below based on the drawings.

第1図a及びbは本発明の原理を示す実験デー
タである。
Figures 1a and 1b are experimental data illustrating the principle of the invention.

即ち、第1図a及びbは第2図に示す様に自己
保持ソレノイド1の自己保持用の永久磁石2の漏
れ磁束と励磁コイル3の漏れ磁束が互に逆向きに
干渉し合う位置に磁気センサ5を配置して得られ
た実験データである。第1図aは励磁コイル3の
励磁電流の実験データを示し、第1図bはこの時
の前記磁気センサ5の出力波形の実験データを示
す。
That is, as shown in FIG. 2, in FIGS. 1a and 1b, magnetic flux is generated at a position where the leakage magnetic flux of the self-holding permanent magnet 2 of the self-holding solenoid 1 and the leakage magnetic flux of the excitation coil 3 interfere with each other in opposite directions. This is experimental data obtained by arranging the sensor 5. FIG. 1a shows experimental data on the excitation current of the exciting coil 3, and FIG. 1b shows experimental data on the output waveform of the magnetic sensor 5 at this time.

第1図a中の励磁電流イについて説明する。こ
の励磁電流波形自体は公知の波形であり、ピーク
の多少手前で可動鉄心6の吸引が開始され、これ
に伴つて励磁コイル3のL成分のリアクタンスが
増加し励磁電流イはその後減少し、励磁電流イが
最小になつた時に前記可動鉄心6の吸着が終了
し、その後励磁電流イは増加する。
Excitation current A in FIG. 1a will be explained. This exciting current waveform itself is a known waveform, and attraction of the movable iron core 6 starts a little before the peak, and along with this, the reactance of the L component of the exciting coil 3 increases, and the exciting current A then decreases, and the exciting current A decreases. The adsorption of the movable iron core 6 ends when the current I becomes the minimum, and then the excitation current I increases.

この時の磁気センサ5の出力は第1図bにイ′
で示す様な波形となる。即ち、前記磁気センサ5
は、永久磁石2の固定鉄心7と継鉄8の磁路に生
じる漏れ磁束φmと及び励磁コイル3の固定鉄心
7、可動鉄心6、継鉄8の磁路に生じる漏れ磁束
φcとを検出する。この場合に磁束φmは一定であ
るが磁束φcは励磁電流イの変化により変化する
ので、前記可動鉄心6の吸着時から微少時間の経
過後(第1図a及びb中、α点として示す)に前
記磁気センサ5の出力イ′は零となり反転する。
すなわち、可動鉄心6が吸着され、反発力に打ち
勝ち吸着が安定した時(前記α点)に磁気センサ
5の出力は反転する。
The output of the magnetic sensor 5 at this time is shown in Figure 1b.
The waveform will be as shown in . That is, the magnetic sensor 5
detects the leakage magnetic flux φm generated in the magnetic path between the fixed iron core 7 and the yoke 8 of the permanent magnet 2, and the leakage magnetic flux φc generated in the magnetic path between the fixed iron core 7, the movable iron core 6, and the yoke 8 of the excitation coil 3. . In this case, the magnetic flux φm is constant, but the magnetic flux φc changes due to changes in the excitation current A, so after a short period of time has elapsed since the movable core 6 was attracted (shown as point α in FIGS. 1 a and b) At this time, the output A' of the magnetic sensor 5 becomes zero and is reversed.
That is, when the movable iron core 6 is attracted and the repulsive force is overcome and the attraction becomes stable (above point α), the output of the magnetic sensor 5 is reversed.

ここで、第1図aには他の励磁電流ロ,ハにつ
いても実験データが示されているが同様な磁気セ
ンサ出力ロ′及びハ′が得られβ点、γ点で磁気セ
ンサ出力はそれぞれ反転する。
Here, in Fig. 1a, experimental data is shown for other excitation currents B and C, and similar magnetic sensor outputs B' and C' are obtained, and the magnetic sensor outputs at points β and γ are respectively Invert.

本発明はこの点に着目するもので、磁気センサ
5の出力が反転する時点を検出し、この検出出力
に基づいて励磁電流制御回路を制御するものであ
る。
The present invention focuses on this point, and detects the point in time when the output of the magnetic sensor 5 is reversed, and controls the excitation current control circuit based on this detected output.

以下に、本発明の一実施例を図面に基づいて説
明する。
An embodiment of the present invention will be described below based on the drawings.

第3図は本発明の一実施例の要部構成図であ
る。電源11は励磁電流制御回路12を介して前
記自己保持ソレノイド1の励磁コイル3に接続さ
れている。即ち、前記励磁電流制御回路12には
可変抵抗R0、抵抗R1,R2,R3、コンデンサCお
よびオペアンプ13から成るタイマ回路15が設
けられ、このオペアンプ13の出力はアンド回路
16に接続されている。また、第3図中5はホー
ル素子等の前記磁気センサを示し、この磁気セン
サ5の出力はオペアンプ17の+端子に接続され
ている。また、このオペアンプ17の−端子には
前記電源11が可変抵抗R5および抵抗R6により
分圧されて接続されている。このオペアンプ17
の出力は前記アンド回路16に接続されている。
FIG. 3 is a diagram showing the main part of an embodiment of the present invention. A power source 11 is connected to the excitation coil 3 of the self-holding solenoid 1 via an excitation current control circuit 12. That is, the excitation current control circuit 12 is provided with a timer circuit 15 consisting of a variable resistor R 0 , resistors R 1 , R 2 , R 3 , a capacitor C, and an operational amplifier 13 , and the output of the operational amplifier 13 is connected to an AND circuit 16 . has been done. Further, 5 in FIG. 3 indicates the magnetic sensor such as a Hall element, and the output of this magnetic sensor 5 is connected to the + terminal of the operational amplifier 17. Further, the voltage of the power source 11 is divided and connected to the negative terminal of the operational amplifier 17 by a variable resistor R 5 and a resistor R 6 . This operational amplifier 17
The output of is connected to the AND circuit 16.

このアンド回路16の出力はトランジスタ18
のベース端子に抵抗R7を介して接続されている。
このトランジスタ18のコレクタ端子には前記自
己保持ソレノイドの励磁コイル3が接続され、エ
ミツタ端子は接地されている。前記自己保持ソレ
ノイドの励磁コイル3にはダイオード19が並列
に接続されている。また、第3図中、20はワン
シヨツト型スイツチ回路を示し、励磁コイル3は
省略されている。
The output of this AND circuit 16 is the transistor 18
is connected through a resistor R7 to the base terminal of.
The excitation coil 3 of the self-holding solenoid is connected to the collector terminal of this transistor 18, and the emitter terminal is grounded. A diode 19 is connected in parallel to the excitation coil 3 of the self-holding solenoid. Further, in FIG. 3, reference numeral 20 indicates a one-shot type switch circuit, and the excitation coil 3 is omitted.

第4図は、第3図に×印で示した各点の動作波
形図を示す。
FIG. 4 shows an operating waveform diagram at each point indicated by an x mark in FIG. 3.

〔動作〕〔motion〕

この様に構成した本発明一実施例の特徴ある動
作を説明する。
The characteristic operation of one embodiment of the present invention configured in this way will be explained.

ワンシヨツト型スイツチ回路20が閉路される
と電源電圧Eが印加され(第4図a)、これによ
りタイマ回路15から所定の時間だけ出力(第4
図b)が送出される。これにより、前記自己保持
ソレノイドに励磁電流(第4図f)が流れ、前記
磁気センサ5は第1図で説明した様な出力(第4
図c)を送出する。この出力dが反転前であれ
ば、前記オペアンプ17は出力を送出し続けトラ
ンジスタ18もON状態となる。
When the one-shot switch circuit 20 is closed, the power supply voltage E is applied (FIG. 4a), which causes the timer circuit 15 to output for a predetermined time (the fourth
Figure b) is sent out. As a result, an excitation current (FIG. 4f) flows through the self-holding solenoid, and the magnetic sensor 5 outputs the output (FIG. 4f) as explained in FIG.
Figure c) is sent. If the output d is not inverted, the operational amplifier 17 continues to output and the transistor 18 is also turned on.

この状態で、本発明の特徴である動作が行われ
る。即ち、前記永久磁石の漏れ磁束と励磁コイル
の漏れ磁束が相殺され前記磁気センサ5がこれを
検出しその出力が零となると、オペアンプ17の
出力も零となり、アンド回路16が閉じられ、ト
ランジスタ18がOFF状態となり、励磁コイル
3への励磁電流が切られる。この状態では、可動
鉄心6は永久磁石2のみにより自己保持される。
この後は、励磁電流fはダイオード19を介して
減衰する。
In this state, the operation that is a feature of the present invention is performed. That is, when the leakage flux of the permanent magnet and the leakage flux of the excitation coil cancel each other out and the magnetic sensor 5 detects this and its output becomes zero, the output of the operational amplifier 17 also becomes zero, the AND circuit 16 is closed, and the transistor 18 is turned off, and the excitation current to the excitation coil 3 is cut off. In this state, the movable iron core 6 is self-held only by the permanent magnet 2.
After this, the excitation current f is attenuated via the diode 19.

ここで、前記タイマ回路15は可動鉄心6が吸
着されない場合に前記励磁電流制御回路12を
OFF状態にして、自己保持ソレノイドを保護す
るための保護回路である。
Here, the timer circuit 15 controls the excitation current control circuit 12 when the movable iron core 6 is not attracted.
This is a protection circuit that protects the self-holding solenoid by turning it off.

また、上記実施例は漏れ磁束が互いに相殺され
る時点(例えば、第1図のα点)を磁気センサで
検出する場合を示したが、漏れ磁束の反転状態、
即ち、第1図bにα1点およびα2点で示すα点の前
後の部分の磁束をそれぞれ検出しても良い。
Furthermore, in the above embodiment, the magnetic sensor detects the point at which the leakage fluxes cancel each other out (for example, point α in FIG. 1), but when the leakage fluxes are reversed,
That is, the magnetic fluxes in the portions before and after point α shown as point α 1 and point α 2 in FIG. 1b may be detected respectively.

〔効果〕〔effect〕

以上説明したように本発明によれば、自己保持
用永久磁石からの漏れ磁束と励磁コイルからの漏
れ磁束とが互に逆向きに干渉し合う位置に磁気感
知素子を配置し、この磁気感知素子の出力を励磁
電流制御回路に接続する様に構成した。
As explained above, according to the present invention, the magnetic sensing element is arranged at a position where the leakage magnetic flux from the self-holding permanent magnet and the leakage magnetic flux from the excitation coil interfere with each other in opposite directions, and the magnetic sensing element The output was connected to the excitation current control circuit.

したがつて、可動鉄心が安定吸着状態になる自
己保持用永久磁石の漏れ磁束と励磁電流による励
磁コイルからの漏れ磁束とが互いに打ち消し合う
時点を磁気感知素子の出力から正確に検出するこ
とができ、この検出出力に基づいて無駄に電源電
力を消費することなく可動鉄心を永久磁石で自己
保持されることができる優れた効果を有する。
Therefore, it is possible to accurately detect from the output of the magnetic sensing element the point in time when the leakage magnetic flux of the self-holding permanent magnet and the leakage magnetic flux from the excitation coil due to the excitation current cancel each other out, when the movable core reaches a stable adsorption state. Based on this detection output, the movable core can be self-held by a permanent magnet without wasting power.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aおよびbは本発明の原理を説明するた
めの実験データを示す図。第2図は磁気センサの
配置位置の説明図。第3図は本発明一実施例の要
部回路構成図。第4図は第3図の動作波形図。 1……自己保持ソレノイド、2……永久磁石、
3……励磁コイル、5……磁気センサ、6……可
動鉄心、7……固定鉄心、8……継鉄、11……
電源、12……励磁電流制御回路、13,17…
…オペアンプ、15……タイマ回路、16……ア
ンド回路、18……トランジスタ、19……ダイ
オード、20……ワンシヨツト型スイツチ回路。
FIGS. 1a and 1b are diagrams showing experimental data for explaining the principle of the present invention. FIG. 2 is an explanatory diagram of the arrangement position of the magnetic sensor. FIG. 3 is a diagram showing the main circuit configuration of an embodiment of the present invention. FIG. 4 is an operation waveform diagram of FIG. 3. 1... Self-holding solenoid, 2... Permanent magnet,
3... Excitation coil, 5... Magnetic sensor, 6... Movable iron core, 7... Fixed iron core, 8... Yoke, 11...
Power supply, 12... Excitation current control circuit, 13, 17...
... operational amplifier, 15 ... timer circuit, 16 ... AND circuit, 18 ... transistor, 19 ... diode, 20 ... one shot type switch circuit.

Claims (1)

【特許請求の範囲】 1 可動鉄心と、 励磁コイルと、 前記励磁コイルに励磁電流を与える手段と、 前記可動鉄心を自己保持するための永久磁石と
を備えた自己保持ソレノイド回路において、 前記永久磁石からの漏れ磁束と励磁コイルから
の漏れ磁束とが互いに逆向きに干渉し合う位置に
配置された磁気感知素子と、 前記磁気感知素子の出力が反転する時点を検出
し、この検出出力に基づいて前記励磁コイルへの
前記励磁電流の供給を制御する励磁電流制御回路
と、 を備えたことを特徴とする自己保持ソレノイド回
路。
[Scope of Claims] 1. A self-holding solenoid circuit comprising a movable iron core, an excitation coil, means for applying an excitation current to the excitation coil, and a permanent magnet for self-holding the movable iron core, wherein the permanent magnet a magnetic sensing element arranged at a position where leakage magnetic flux from the excitation coil and leakage magnetic flux from the excitation coil interfere with each other in opposite directions; and detecting a point in time when the output of the magnetic sensing element is reversed, and based on this detection output. A self-holding solenoid circuit comprising: an excitation current control circuit that controls supply of the excitation current to the excitation coil.
JP32803987A 1987-12-24 1987-12-24 Self-maintaining solenoid circuit Granted JPH01169906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32803987A JPH01169906A (en) 1987-12-24 1987-12-24 Self-maintaining solenoid circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32803987A JPH01169906A (en) 1987-12-24 1987-12-24 Self-maintaining solenoid circuit

Publications (2)

Publication Number Publication Date
JPH01169906A JPH01169906A (en) 1989-07-05
JPH0413844B2 true JPH0413844B2 (en) 1992-03-11

Family

ID=18205831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32803987A Granted JPH01169906A (en) 1987-12-24 1987-12-24 Self-maintaining solenoid circuit

Country Status (1)

Country Link
JP (1) JPH01169906A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059729A (en) * 2005-08-26 2007-03-08 Terasaki Electric Co Ltd Electromagnet controller
WO2024024033A1 (en) * 2022-07-28 2024-02-01 株式会社オートネットワーク技術研究所 Solenoid control device

Also Published As

Publication number Publication date
JPH01169906A (en) 1989-07-05

Similar Documents

Publication Publication Date Title
JPH0118530B2 (en)
KR910021548A (en) Electromagnetic clutch actuator
JPH0413844B2 (en)
JPH0345269B2 (en)
JPH0227528Y2 (en)
FI96253C (en) Trigger for electrical switch
JPS6161409A (en) Driving circuit for solenoid
DE69738708D1 (en) SINGLE PHASE ELECTROMAGNETIC ROTATING ACTUATOR WITH MAGNETIC SPRING AND ELECTRIC VALVE WITH SUCH A SENSOR
JPH031261Y2 (en)
JPH0442616Y2 (en)
JPS62175Y2 (en)
JPH047801B2 (en)
JPS5928578Y2 (en) Electromagnetic switch that can be used as a transformer
JPH07263225A (en) Electromagnet unit for operation
JPH0219933Y2 (en)
JPS6122844B2 (en)
JPS647225Y2 (en)
JPH01161701A (en) Solenoid with position sensor
JPS6022398Y2 (en) volume control device
JPH0240540Y2 (en)
JPH0661043A (en) Apparatus for driving electromagnetic
JPH0528674A (en) Device for shifting and positioning load at first and second position
ATE185218T1 (en) ELECTRONIC SWITCHING SOLENOID CONTROL FOR HOLDING A CONTACTOR
JPH05291031A (en) Dc electromagnet device
DE3689468D1 (en) Electric remote switches.