JPH041377Y2 - - Google Patents

Info

Publication number
JPH041377Y2
JPH041377Y2 JP1984031539U JP3153984U JPH041377Y2 JP H041377 Y2 JPH041377 Y2 JP H041377Y2 JP 1984031539 U JP1984031539 U JP 1984031539U JP 3153984 U JP3153984 U JP 3153984U JP H041377 Y2 JPH041377 Y2 JP H041377Y2
Authority
JP
Japan
Prior art keywords
outer cylinder
axial direction
bearing plate
rollers
jib
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984031539U
Other languages
Japanese (ja)
Other versions
JPS60143924U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1984031539U priority Critical patent/JPS60143924U/en
Publication of JPS60143924U publication Critical patent/JPS60143924U/en
Application granted granted Critical
Publication of JPH041377Y2 publication Critical patent/JPH041377Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/068Ball or roller bearings in which the rolling bodies circulate partly without carrying load with the bearing body fully encircling the guide rail or track
    • F16C29/0692Ball or roller bearings in which the rolling bodies circulate partly without carrying load with the bearing body fully encircling the guide rail or track the bearing body encircles a guide rail or track of non-circular cross-section, e.g. with grooves or protrusions, i.e. the linear bearing is suited to transmit torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/0602Details of the bearing body or carriage or parts thereof, e.g. methods for manufacturing or assembly
    • F16C29/0609Details of the bearing body or carriage or parts thereof, e.g. methods for manufacturing or assembly of the ends of the bearing body or carriage where the rolling elements change direction, e.g. end caps

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bearings For Parts Moving Linearly (AREA)

Description

【考案の詳細な説明】 本考案は、軸方向にのみ進退自在な、ころを用
いるローラスプライン軸受の改良に関するもので
あり、精度が高く、回転方向にがたのない組立容
易で、予圧調整可能なローラスプライン軸受を提
供することを目的とする。
[Detailed description of the invention] This invention relates to the improvement of a roller spline bearing using rollers that can move forward and backward only in the axial direction.It is highly accurate, has no play in the rotational direction, is easy to assemble, and has adjustable preload. The purpose of the present invention is to provide a roller spline bearing with a high level of performance.

従来のローラスプライン軸受としては、例えば
USP2,983,120号に伸縮継手に用いられる例が
示されており、第13図〜第16図に示す如く、
軸30の突起部31が、ガイド42内で、該突起
部31を囲繞する多数のころ32を介して継手部
33の外筒41内面の溝34内を軸方向に進退可
能とされ、又は第17図に示す如く、外筒35の
内筒面36に突設された突起部37が、該突起部
37を囲繞する多数のころ38を介して軸39に
凹設されている溝40内を軸方向に進退可能とさ
れるものであり、ころ32又は38はそれぞれ突
起部31又は37の周囲を無限循環しうるもので
あるが、前記軸30又は38、外筒35又は41
のいずれが回転駆動時の原動、加速側になるか、
制動、減速側になるかにより、或いは回転方向如
何により、突起部31又は37の両側のいずれか
の側のころ32又は38の群が回転負荷を担持す
ることになるものであり、以下の如き実用上の問
題があつた。即ち、軸30又は39、ころ32又
は38および外筒35又は41の間に間隙がある
ことが前提とされているため、ローラスプライン
としての精度が低く、回転振動の発生による寿命
短縮化をもたらし、ころ32又は38の保持器が
ないため、軸30又は38と外筒35又は41と
の組立、取外の際にころ32又は38が脱落し易
く、組立、取外が困難であり、ころ32又は38
と、軸30又は39および外筒35又は41との
間の間隙を取除くための予圧を印加することがで
きず、また、ころ32又は38が当接転動する軌
道面特に外筒35又は41側の軌道面の研削加工
ができなかつたため、軌道面の粗さ、平行度平面
度等の軌道面精度が悪く、スプライン軸受として
精度の高い用途に用いることができる性能のもの
ではなかつた。
For example, conventional roller spline bearings include
An example of use in an expansion joint is shown in USP 2,983,120, and as shown in Figures 13 to 16,
The protrusion 31 of the shaft 30 is movable in the axial direction within the groove 34 on the inner surface of the outer cylinder 41 of the joint part 33 via a large number of rollers 32 surrounding the protrusion 31 within the guide 42. As shown in FIG. 17, a protrusion 37 protruding from the inner cylinder surface 36 of the outer cylinder 35 slides into a groove 40 recessed in the shaft 39 via a large number of rollers 38 surrounding the protrusion 37. The rollers 32 or 38 can be moved back and forth in the axial direction, and the rollers 32 or 38 can endlessly circulate around the protrusion 31 or 37, respectively.
Which is the driving force or acceleration side during rotational drive?
The group of rollers 32 or 38 on either side of the protrusion 31 or 37 will carry the rotational load depending on whether it is on the braking or deceleration side or the direction of rotation. There was a practical problem. That is, since it is assumed that there is a gap between the shaft 30 or 39, the rollers 32 or 38, and the outer cylinder 35 or 41, the accuracy as a roller spline is low, and the life span is shortened due to the occurrence of rotational vibration. Since there is no retainer for the rollers 32 or 38, the rollers 32 or 38 tend to fall off when assembling or removing the shaft 30 or 38 and the outer cylinder 35 or 41, making it difficult to assemble or remove the rollers. 32 or 38
In addition, it is not possible to apply preload to remove the gap between the shaft 30 or 39 and the outer cylinder 35 or 41, and the raceway surface on which the rollers 32 or 38 contact and roll, especially the outer cylinder 35 or 41. Since the raceway surface on the 41 side could not be ground, the raceway surface accuracy such as raceway surface roughness, parallelism and flatness was poor, and the performance could not be used for high precision applications as a spline bearing.

本考案は、ころを用いるローラスプライン軸受
において、外筒の内面に設けられるころの転動し
うる軌道面は、前記外筒とは別体に該外筒の内筒
面に軸方向に嵌挿されるベアリングプレートの内
面に形成され、該ベアリングプレートの背面と外
筒との間にはテーパジブが、軸方向に進退可能に
嵌挿され、該テーパジブを軸方向に進退せしめう
る予圧調整ボルトが前記外筒の両端に固着されて
いる側板を介して取付けられており、前記テーパ
ジブの進退により軸側および外筒側の両軌道面と
ころとの間の予圧を調整可能とされている構成と
することにより前述の諸欠点のない、精度の高い
且つ予圧調整可能なローラスプライン軸受を提供
するものであり、その構成について以下図面によ
り説明する。
In a roller spline bearing using rollers, the raceway surface on which the rollers can roll provided on the inner surface of an outer cylinder is fitted in the inner cylinder surface of the outer cylinder separately from the outer cylinder in the axial direction. A tapered jib is formed on the inner surface of the bearing plate, and a tapered jib is fitted between the back surface of the bearing plate and the outer cylinder so as to be movable in the axial direction. It is attached via side plates fixed to both ends of the cylinder, and the preload between the raceway surfaces on the shaft side and the outer cylinder side can be adjusted by moving the tapered jib back and forth. The object of the present invention is to provide a roller spline bearing with high precision and adjustable preload, which does not have the above-mentioned drawbacks, and its configuration will be explained below with reference to the drawings.

第1図に示される第1の実施例においては、ロ
ーラスプライン軸受1は、外筒2と該外筒2に進
退自在に嵌挿される軸3とよりなり、前記外筒2
の進退方向両端には側板4,4が取付けられ、前
記軸3の外周面には、軸軌道面5が軸心方向に形
成されている。第2図に示す如く、本実施例にお
いては、軸軌道面5は4本形成されている。外筒
2の内筒面6に設けられる外筒軌道面7は、前記
外筒2と別体のベアリングプレート8の内面に設
けられ、該ベアリングプレート8は、桿状体であ
り、前記外筒2の内筒面6に凹設された嵌挿溝9
内に軸方向に嵌挿されている。
In a first embodiment shown in FIG. 1, a roller spline bearing 1 includes an outer cylinder 2 and a shaft 3 fitted into the outer cylinder 2 so as to be freely retractable.
Side plates 4, 4 are attached to both ends of the shaft 3 in the forward and backward direction, and a shaft raceway surface 5 is formed on the outer peripheral surface of the shaft 3 in the axial direction. As shown in FIG. 2, in this embodiment, four shaft raceway surfaces 5 are formed. The outer cylinder raceway surface 7 provided on the inner cylinder surface 6 of the outer cylinder 2 is provided on the inner surface of a bearing plate 8 that is separate from the outer cylinder 2. The bearing plate 8 is a rod-shaped body and A fitting groove 9 recessed in the inner cylinder surface 6 of the
It is inserted in the axial direction.

本実施例では、前記軸軌道面5と対峙する外筒
軌道面7との間に介装されるころ10は、径と高
さが略同一で、回転軸心断面が正方形状であり、
第3図、第6図に示す如く、隣接するころ10が
相互に回転軸心を90°異にして配列されるクロス
ローラ配列とされており、従つて該ころ10の当
接、転動しうる前記相対峙する両軌道面5および
7は直角V字溝とされている。
In this embodiment, the rollers 10 interposed between the shaft raceway surface 5 and the opposing outer cylinder raceway surface 7 have substantially the same diameter and height, and have a square cross-section at the center of rotation;
As shown in FIGS. 3 and 6, a cross roller arrangement is used in which adjacent rollers 10 are arranged with their rotational axes 90 degrees apart from each other, so that the rollers 10 do not come into contact or roll. Both raceway surfaces 5 and 7 facing each other are formed into right-angled V-shaped grooves.

前記ころ10は、前記軸軌道面5および外筒軌
道面7との間に形成される負荷域11、該負荷域
11と平行に外筒2内に穿設されている断面正方
形状のリターン孔12、および前記負荷域11な
らびにリターン孔12の間をころ10が円滑に方
向転換しうるように両側板4内に設けられている
方向転換路13,13により形成される循環路内
を循環可能とされている。
The roller 10 has a load area 11 formed between the shaft raceway surface 5 and the outer cylinder raceway surface 7, and a return hole with a square cross section that is bored in the outer cylinder 2 parallel to the load area 11. 12, and the roller 10 can circulate in a circulation path formed by direction change paths 13, 13 provided in both side plates 4 so that the roller 10 can change direction smoothly between the load area 11 and the return hole 12. It is said that

本実施例においては、循環路は4系統設けられ
ている。
In this embodiment, four circulation paths are provided.

前記各ベアリングプレート8の内面と反対側で
ある背面には、外筒の2の嵌挿溝9底との間に、
第3図に示す如く、軸方向に僅に傾斜する略直方
杆状体のテーパジブ14が、前記嵌挿溝9内で軸
方向(図中左右方向)に進退可能に嵌挿されてい
る。
On the back surface opposite to the inner surface of each bearing plate 8, between the bottom of the two fitting grooves 9 of the outer cylinder,
As shown in FIG. 3, a tapered jib 14 having a substantially rectangular rod shape slightly inclined in the axial direction is fitted into the fitting groove 9 so as to be movable forward and backward in the axial direction (horizontal direction in the figure).

前記テーパジブ14には、第2図、第3図に示
す如く、一方の端面(第3図中左端)に軸方向に
予圧調整をボルト用ねじ穴15が穿設され、側板
4に螺着部分29において螺込み装着されている
予圧調整ボルト16の先端が前記予圧調整ボルト
用ねじ穴15に螺着されている。従つて前記予圧
調整ボルト16を回動することにより前記テーパ
ジブ14はその内外両側面がそれぞれ全面にわた
り前記ベアリングプレート8の背面および前記嵌
挿溝9底に摺接しつつ軸方向に進退可能とされて
いる。前記予圧調整ボルト16は公知の差動ねじ
とされ、例えば、第3図において、予圧調整ボル
ト16の側板4との螺着部分29のねじのピツチ
を1mmとし、予圧調整ボルト16のテーパジブ1
4との螺着部分である予圧調整ボルト用ねじ穴1
5のピツチを0.5mmとした場合、予圧調整ボルト
16を反時計方向へ1回転させると公知の差動ね
じの原理からテーパジブ14が0.5mm左側へ移動
し、同図中テーパジブ14の厚さが左側より右側
へ厚くなるようにテーパされている場合、ベアリ
ングプレート8が下へ押されるため、軸道溝内の
ころに予圧を与えることができる。
As shown in FIGS. 2 and 3, the taper jib 14 is provided with a threaded hole 15 for a bolt in the axial direction for preload adjustment on one end surface (the left end in FIG. 3), and a screw hole 15 is provided on the side plate 4. The tip of the preload adjustment bolt 16 screwed in at 29 is screwed into the preload adjustment bolt screw hole 15. Therefore, by rotating the preload adjustment bolt 16, the tapered jib 14 can move forward and backward in the axial direction while its inner and outer surfaces are in sliding contact with the back surface of the bearing plate 8 and the bottom of the fitting groove 9. There is. The preload adjustment bolt 16 is a known differential screw. For example, in FIG.
Screw hole 1 for preload adjustment bolt, which is the threaded part with 4
5 is set to 0.5 mm, when the preload adjustment bolt 16 is rotated one turn counterclockwise, the taper jib 14 moves to the left by 0.5 mm based on the principle of a known differential screw, and the thickness of the taper jib 14 in the figure is If the bearing plate 8 is tapered so that it becomes thicker from the left side to the right side, the bearing plate 8 is pushed downward, so that a preload can be applied to the rollers in the axial groove.

また、本実施例においては、第2図〜第6図に
示す如く、外筒2の内筒面6および該内筒面6と
同内径の側板4の内周面18の全面に、薄い内筒
状の保持器17が嵌着されている。該保持器17
には、外筒2が軸3に組付けられた場合に、負荷
域11内を転動するころ10に摺接することがな
く、且つ前記外筒2が軸3から取外された際ころ
10が逸脱することがないように、外筒2に嵌着
されるとき、各外筒軌道面7と対峙する位置に、
長孔19が軸方向に穿設されている。該長孔19
の幅は、ころ10の軸心断面正方形の対角線長よ
り小とされ、また前記長孔19の両端は、第4図
〜第6図に示す如く、前記保持器17の嵌着の
際、側板4の内周面18に突設されている突出部
20に係止される係止孔を兼ねている。
In addition, in this embodiment, as shown in FIGS. 2 to 6, a thin inner wall is provided on the entire inner surface 6 of the outer cylinder 2 and the inner peripheral surface 18 of the side plate 4 having the same inner diameter as the inner cylinder surface 6. A cylindrical retainer 17 is fitted. The retainer 17
In this case, when the outer cylinder 2 is assembled to the shaft 3, it does not come into sliding contact with the rollers 10 rolling in the load area 11, and when the outer cylinder 2 is removed from the shaft 3, the rollers 10 When fitted into the outer cylinder 2, in a position facing each outer cylinder raceway surface 7, so that the outer cylinder does not deviate,
A long hole 19 is bored in the axial direction. The long hole 19
The width of the hole 19 is smaller than the diagonal length of the square axial cross section of the roller 10, and both ends of the elongated hole 19 are connected to the side plate when the retainer 17 is fitted, as shown in FIGS. 4 to 6. It also serves as a locking hole into which a protrusion 20 protrudingly provided on the inner circumferential surface 18 of No. 4 is locked.

前記保持器17は、プラスチツク材等の弾力の
ある筒状薄板で形成され、前記組立に際し、弾性
変形せしめつつ、内筒面6内に挿入し、前記長孔
19端を突出部20に嵌着せしめる。この位置で
保持器17は外筒2の軸方向にも、円周方向にも
位置決め固定される。尚前記長孔19の長手方向
の端縁は、第2図に示す如く、外方に拡がる開口
角度が90°とされ、ローラスプライン軸受として
作動される際負荷域11にあるころ10と摺接し
ない形状とされている。
The retainer 17 is formed of a resilient cylindrical thin plate made of plastic or the like, and is inserted into the inner cylindrical surface 6 while being elastically deformed during assembly, and the end of the elongated hole 19 is fitted into the protrusion 20. urge At this position, the retainer 17 is positioned and fixed both in the axial direction of the outer cylinder 2 and in the circumferential direction. As shown in FIG. 2, the longitudinal edge of the elongated hole 19 has an outward opening angle of 90°, and slides into contact with the rollers 10 in the load area 11 when operated as a roller spline bearing. It is said that the shape does not.

第7図に示される第2の実施例においては、負
荷域リターン孔および両方向転換路よりなる循環
路は6系統設けられており、他の構成は、前述の
第1の実施例と同じである。
In the second embodiment shown in FIG. 7, six circulation paths each consisting of a load area return hole and a two-way switching path are provided, and the other configurations are the same as in the first embodiment described above. .

前記循環路は軸受の大小、負荷の相違等により
適宜の数の系統を設けることができる。
An appropriate number of circulation paths can be provided depending on the size of the bearings, differences in loads, etc.

前述の第1、および第2の両実施例においては
保持器17又は17aが設けられ、ベアリングプ
レート8の外筒軌道面7に当接しているころ10
が外筒2又は2aを軸3又は3aから取外した
際、逸脱しないようにされている。
In both the first and second embodiments described above, the retainer 17 or 17a is provided, and the rollers 10 are in contact with the outer cylinder raceway surface 7 of the bearing plate 8.
When the outer cylinder 2 or 2a is removed from the shaft 3 or 3a, it is prevented from deviating from the outer cylinder 2 or 2a.

第8図、第9図に示すベアリングプレートの別
の実施例においては、前記保持器17,17aを
別設する代りに、ベアリングプレート8bの直角
V字溝である外筒軌道面7bの両開口端縁に隣接
する前記外筒軌道面7bと垂直方向に内端面23
が形成された保持端21,21が突設されたベア
リングプレート8bであり、該ベアリングプレー
ト8bを用いることにより、前述の第1、第2の
実施例においても、保持器17,17aを用いな
いローラスプライン軸受とすることが可能であ
る。
In another embodiment of the bearing plate shown in FIGS. 8 and 9, instead of separately providing the cages 17 and 17a, both openings in the outer cylinder raceway surface 7b, which are right-angled V-shaped grooves of the bearing plate 8b, are provided. The inner end surface 23 is perpendicular to the outer cylinder raceway surface 7b adjacent to the end edge.
is a bearing plate 8b having protruding holding ends 21, 21 formed therein, and by using the bearing plate 8b, retainers 17, 17a are not used in the first and second embodiments described above. It is possible to use a roller spline bearing.

前記保持端21の存在により、第8図に示す如
く、負荷域にあるころ10は、外筒2,2aを軸
3,3aから取外した場合にも、外筒2から逸脱
することがない。
Due to the presence of the holding end 21, as shown in FIG. 8, the rollers 10 in the load range do not deviate from the outer cylinder 2 even when the outer cylinders 2, 2a are removed from the shafts 3, 3a.

第8図に示す如き形状のベアリングプレート8
bは、第9図に示す如く、ころ10の軸心正方形
断面の一辺より幅狭の砥石22を図示の方向から
用いることにより、正確な、精度の高い形状の外
筒軌道面7bおよび保持端21の内端面23の研
削仕上を施すことが可能である。
Bearing plate 8 shaped as shown in Fig. 8
As shown in FIG. 9, by using a grindstone 22 whose width is narrower than one side of the axial square cross section of the roller 10 from the direction shown in the figure, the outer cylinder raceway surface 7b and the holding end are formed in an accurate and highly precise shape. It is possible to perform a grinding finish on the inner end surface 23 of 21.

第10図に示す第3の実施例においては、前述
の第1、第2の各実施例と異りクロスローラでは
なく、隣接して転動するころ10はいずれも回転
軸を同一方向としている。軸3cの円周面には凸
軌条24,24が突設され、該凸軌条24の両側
に直角V字溝である軸軌道面5cが形成され、該
軸軌道面5cの直角V字溝面の1面が凸軌条24
の軌道側面25とされている。負荷域11cは前
記軸軌道面5cとベアリングプレート8cの直角
V字溝である外筒軌道面7cとにより形成されて
いるが、ベアリングプレート8cには、前記軌道
側面25と垂直方向に予圧を調整しうるよう、軸
方向に進退しうるテーパジブ14cが、前記ベア
リングプレート8cの軌道側面25と反対の背面
に、該軌道側面25と平行した位置に設けられて
いる。
In the third embodiment shown in FIG. 10, unlike the first and second embodiments described above, the rollers 10 that roll adjacently have their rotation axes in the same direction, instead of using cross rollers. . Convex tracks 24, 24 are protrudingly provided on the circumferential surface of the shaft 3c, and a shaft raceway surface 5c, which is a right-angled V-shaped groove, is formed on both sides of the convex raceway 24, and a right-angled V-shaped groove surface of the shaft raceway surface 5c. One side is a convex rail 24
The track side surface 25 of The load area 11c is formed by the shaft raceway surface 5c and the outer cylinder raceway surface 7c, which is a right-angled V-shaped groove of the bearing plate 8c. A tapered jib 14c that can move forward and backward in the axial direction is provided on the back surface of the bearing plate 8c opposite to the raceway side surface 25 in a position parallel to the raceway side surface 25.

従つてベアリングプレート8cおよびテーパジ
ブ14cは凸軌条24の両側に対称位置に設けら
れ、負荷域11c、リターン孔12および、前記
負荷域11cとリターン孔12中を転動するころ
10が円滑に方向転換しうる両方向転換路よりな
る循環路は必ず凸軌条24に対称に偶数系統設け
られている。図示例では凸軌条24は3本で、循
環路は6系統設けられている。
Therefore, the bearing plate 8c and the tapered jib 14c are provided at symmetrical positions on both sides of the convex rail 24, so that the load area 11c, the return hole 12, and the rollers 10 rolling in the load area 11c and the return hole 12 can change direction smoothly. An even number of circulation paths consisting of possible bidirectional change paths are always provided symmetrically to the convex rail 24. In the illustrated example, there are three convex rails 24 and six circulation paths are provided.

尚第11図に示す参考例においては、前述の第
3の実施例においてテーパジブ14cを欠いた構
成のものが示されているがこの場合前記テーパジ
ブ14cを欠いた位置にリターン孔12を設ける
ことができ、負荷域11、リターン孔12および
両方向転換路のいずれもが、転動するころ10の
回転軸を平行に保持しうる位置に設けることがで
きるが、予圧をころと軌道面との間に印加するた
めベアリングプレートを凸軌道24の軌道側面2
5方向へ進退することができず、予圧を必要とす
る場合は径の大きなころを組込む他はない。
Note that the reference example shown in FIG. 11 shows a configuration in which the taper jib 14c is omitted in the third embodiment described above, but in this case, the return hole 12 may be provided at the position where the taper jib 14c is missing. The load area 11, the return hole 12, and the bidirectional change path can all be provided at positions where the rotational axes of the rolling rollers 10 can be held in parallel, but preload cannot be applied between the rollers and the raceway surface. In order to apply the bearing plate to the raceway side 2 of the convex raceway 24
If it cannot move forward and backward in five directions and requires preload, the only option is to incorporate rollers with a larger diameter.

第12図に示す如く、外筒2の加工は、所定位
置にベアリングプレートの嵌挿溝下孔26および
リターン孔下孔27を穴あけ加工を行い、次いで
所要の角度で直角溝のブローチ加工を行い、中心
孔28の中ぐり加工を行うことによりベアリング
プレートの嵌挿溝9、リターン孔12および内筒
面6の加工が達成される。第2図、第7図、第1
0図、第11図に示されるリターン孔12は、い
ずれも、前述の如く、先ず、ころ10の正方形の
軸心断面の対角線長より小であるリターン孔下孔
の穴あけ加工が行れた後、次いで、ころ10の正
方形の軸心断面の4隅がそれぞれ支承されるよう
に直角溝のブローチ加工が行われて形成される。
リターン孔12の穿設加工としては、前記リター
ン孔下孔の直径は、第2図、第7図、第10図、
第11図に示す如く、ころ10の前記正方形断面
の一辺の長さより大であることが望ましい。リタ
ーン孔12はころ10の無負荷域にあるため、リ
ターン孔12内を転動するころ10は前記正方形
断面の4隅がそれぞれ直角溝により支承されてい
れば充分であり、また、リターン孔12としての
穿設加工が極めて容易となり且つ転動するころ1
0とリターン孔下孔との間の間隙が潤滑材の保持
空間となり、異物の排除空間ともなるため、ロー
ラスプライン軸受としての寿命、精度の維持向上
に役立つ。本考案は、実用新案登録請求の範囲に
記載された構成とすることにより、ころを用いる
ローラスプライン軸受であつて、外筒の内筒面に
凹設された嵌挿溝内に、別体のベアリングプレー
トが嵌挿され、該ベアリングプレートの背面に嵌
挿されているテーパジブを軸方向に螺着されてい
る単一の予圧調整ボルトの回動により軸方向に摺
接進退することにより、前記ベアリングプレート
が全長にわたり一様に前記テーパジブの摺接面と
直角方向に進退せしめられ、負圧域を転動するこ
ろの予圧を全長にわたり一様に調整することが可
能となり、軸の回動方向に対してがたの全くな
い、剛性の高いローラスプライン軸受を得ること
ができ、軸の回動方向の負荷の変動に対しても軸
と外筒間の相対変位の発生が極めて少くなり、精
度の高い結合が可能となり、予圧調整ボルトが軸
方向に螺着されているためローラスプライン軸受
全体を軸方向にコンパクトに形成することがで
き、また、外筒軌道面が外筒と別体のベアリング
プレートに形成されているため、外筒軌道面の研
削加工が可能となり、軌道面として必要な条件、
即ち面の粗さ、硬度、寸法精度等を充分確保する
ことが可能となり、ローラスプライン軸受の精度
の向上と共に寿命の長大化をもたらすという諸効
果を奏することができたものである。
As shown in FIG. 12, the outer cylinder 2 is processed by drilling the bearing plate insertion groove pilot hole 26 and return hole pilot hole 27 at predetermined positions, and then broaching a right-angled groove at the required angle. By boring the center hole 28, the bearing plate fitting groove 9, return hole 12, and inner cylindrical surface 6 are completed. Figure 2, Figure 7, Figure 1
The return holes 12 shown in FIG. 0 and FIG. Then, a right-angled groove is broached so that each of the four corners of the square axial center section of the roller 10 is supported.
As for drilling the return hole 12, the diameter of the return hole pilot hole is as shown in FIGS. 2, 7, 10,
As shown in FIG. 11, it is preferable that the length is greater than the length of one side of the square cross section of the roller 10. Since the return hole 12 is located in the no-load area of the roller 10, it is sufficient that the roller 10 rolling in the return hole 12 is supported by each of the four corners of the square cross section by right-angled grooves. Drilling process is extremely easy and rolling rollers 1
The gap between the roller spline bearing and the lower return hole becomes a space for holding lubricant and a space for removing foreign matter, which helps maintain and improve the life and accuracy of the roller spline bearing. The present invention is a roller spline bearing that uses rollers, and has a configuration described in the claims of the utility model registration. A bearing plate is inserted into the bearing plate, and the taper jib fitted into the back surface of the bearing plate is slid forward and backward in the axial direction by the rotation of a single preload adjustment bolt screwed in the axial direction. The plate is moved uniformly over its entire length in the direction perpendicular to the sliding surface of the tapered jib, making it possible to uniformly adjust the preload on the rollers rolling in the negative pressure area over the entire length, and in the direction of rotation of the shaft. On the other hand, it is possible to obtain a highly rigid roller spline bearing that has no backlash at all, and even when the load changes in the direction of rotation of the shaft, the occurrence of relative displacement between the shaft and the outer cylinder is extremely small, resulting in improved accuracy. A high degree of coupling is possible, and since the preload adjustment bolt is threaded in the axial direction, the entire roller spline bearing can be formed compactly in the axial direction.In addition, the outer cylinder raceway surface is a separate bearing plate from the outer cylinder. This makes it possible to grind the outer cylinder raceway surface and meet the necessary conditions for the raceway surface.
In other words, it has become possible to ensure sufficient surface roughness, hardness, dimensional accuracy, etc., and the various effects of improving the accuracy of the roller spline bearing and extending its life have been achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1の実施例の側面図、第2図は右半
分に第1図中−線断面を示す同上立面図、第
3図は同上軸心部分断面を示す外筒の側面図、第
4図は同上保持器部分拡大内面図、第5図は同上
側板突出部部分拡大内面図、第6図は同上保持器
組立部分拡大内面図、第7図は第2の実施例の側
板取付面断面図、第8図はベアリングプレートの
別の実施例の立面図、第9図は同上軌道面加工説
明図、第10図は第3の実施例の側板取付面断面
図、第11図は参考例の側板取付面断面図、第1
2図は外筒加工説明図、第13図は従来例の軸心
断面を含む側面図、第14図は第13図中
−線断面図、第15図は同上ガイド斜視
図、第16図は同上ころ配列斜視図、第17図は
別の従来例の断面図である。 1……ローラスプライン軸受、2,2a……外
筒、3,3a,3c……軸、4……側板、5,5
c……軸軌道面、6……内筒面、7,7b,7c
……外筒軌道面、8,8b,8c……ベアリング
プレート、9……嵌挿溝、10……ころ、14,
14c……テーパジブ、16……予圧調整ボル
ト、25……軌道側面。
Fig. 1 is a side view of the first embodiment, Fig. 2 is an elevational view of the same showing a cross section taken along the line - in Fig. 1 in the right half, and Fig. 3 is a side view of the outer cylinder showing a partial cross section of the axial center of the above. , FIG. 4 is an enlarged internal view of a portion of the cage, FIG. 5 is an enlarged internal view of a protruding portion of the upper side plate, FIG. 6 is an enlarged internal view of a portion of the cage assembly, and FIG. 7 is a side plate of the second embodiment. 8 is an elevational view of another embodiment of the bearing plate, FIG. 9 is an explanatory diagram of the same raceway surface processing as above, FIG. 10 is a sectional view of the side plate mounting surface of the third embodiment, and FIG. The figure is a cross-sectional view of the side plate mounting surface of a reference example.
Fig. 2 is an explanatory diagram of the outer cylinder processing, Fig. 13 is a side view including an axial cross section of the conventional example, Fig. 14 is a sectional view taken along the line - - in Fig. 13, Fig. 15 is a perspective view of the same guide, and Fig. 16 is FIG. 17 is a perspective view of the roller arrangement as above, and a sectional view of another conventional example. 1... Roller spline bearing, 2, 2a... Outer cylinder, 3, 3a, 3c... Shaft, 4... Side plate, 5, 5
c...Shaft raceway surface, 6...Inner cylinder surface, 7, 7b, 7c
... Outer cylinder raceway surface, 8, 8b, 8c ... Bearing plate, 9 ... Fitting groove, 10 ... Roller, 14,
14c...Taper jib, 16...Preload adjustment bolt, 25...Race side.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 軸方向にのみ進退自在な、ころを用いるローラ
スプライン軸受において、外筒の内面に設けられ
る前記ころの転動しうる外筒軌道面は、前記外筒
と別体に該外筒の内筒面に凹設された嵌挿溝内に
軸方向に嵌挿されるベアリングプレートの内面に
形成され、該ベアリングプレートの背面と外筒の
嵌挿溝底との間には軸方向に僅に傾斜する略直方
杆状体のテーパジブが前記嵌挿溝内で軸方向に進
退可能に嵌挿され、前記テーパジブはその内外側
面がそれぞれ全面にわたり前記ベアリングプレー
トの背面および前記嵌挿溝底に摺接可能とされ、
前記テーパジブの一端には該テーパジブを軸方向
に進退せしめうる単一の予圧調整ボルトが前記外
筒の両端に固着されている側板を介して軸方向に
螺着されており、前記単一の予圧調整ボルトの回
動による前記テーパジブの軸方向への摺接進退に
より前記ベアリングプレートが全長にわたり一様
に摺接面と直角方向へ進退可能とされ、軸側およ
び外筒側の両軌道面ところとの間の予圧を前記ベ
アリングプレートの全長にわたり一様に調整可能
とされていることを特徴とするローラスプライン
軸受。
In a roller spline bearing using rollers that can move forward and backward only in the axial direction, the outer cylinder raceway surface on which the rollers can roll, which is provided on the inner surface of the outer cylinder, is separate from the outer cylinder and has an inner cylinder surface of the outer cylinder. A groove is formed on the inner surface of a bearing plate that is fitted in the axial direction into a fitting groove formed in the outer cylinder, and a groove that is slightly inclined in the axial direction is formed between the back surface of the bearing plate and the bottom of the fitting groove of the outer cylinder. A rectangular rod-shaped tapered jib is fitted in the fitting groove so as to be movable in the axial direction, and the tapered jib is capable of slidingly contacting the back surface of the bearing plate and the bottom of the fitting groove over the entire surface of the tapered jib. ,
A single preload adjustment bolt that can move the taper jib forward and backward in the axial direction is screwed into one end of the taper jib in the axial direction through side plates fixed to both ends of the outer cylinder, and the single preload adjustment bolt By sliding the taper jib in the axial direction by rotating the adjustment bolt, the bearing plate can move forward and backward uniformly over its entire length in the direction perpendicular to the sliding surface, and the bearing plate is able to move forward and backward in the direction perpendicular to the sliding surface on both the shaft side and the outer cylinder side. A roller spline bearing characterized in that a preload between the bearing plates can be uniformly adjusted over the entire length of the bearing plate.
JP1984031539U 1984-03-05 1984-03-05 roller spline bearing Granted JPS60143924U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1984031539U JPS60143924U (en) 1984-03-05 1984-03-05 roller spline bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1984031539U JPS60143924U (en) 1984-03-05 1984-03-05 roller spline bearing

Publications (2)

Publication Number Publication Date
JPS60143924U JPS60143924U (en) 1985-09-24
JPH041377Y2 true JPH041377Y2 (en) 1992-01-17

Family

ID=30532243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1984031539U Granted JPS60143924U (en) 1984-03-05 1984-03-05 roller spline bearing

Country Status (1)

Country Link
JP (1) JPS60143924U (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4526430B2 (en) * 2004-04-22 2010-08-18 Thk株式会社 Bearing bush and compound motion apparatus using the same
JP2006275096A (en) * 2005-03-28 2006-10-12 Sony Corp Linear motion rolling guide device and lens device
TW200643502A (en) * 2005-03-31 2006-12-16 Sony Corp Housing tube device and imaging device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5569318A (en) * 1978-11-16 1980-05-24 Shiyutaaru Kuugeruharuteru Gmb Shaft supporting device transmitting torque and being to able to move in axial direction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5569318A (en) * 1978-11-16 1980-05-24 Shiyutaaru Kuugeruharuteru Gmb Shaft supporting device transmitting torque and being to able to move in axial direction

Also Published As

Publication number Publication date
JPS60143924U (en) 1985-09-24

Similar Documents

Publication Publication Date Title
JP4470194B2 (en) Linear actuator
US4427240A (en) Endless linear ball bearing
US3790233A (en) Antifriction slide assembly
WO1990010159A1 (en) Bearing for straight slide and method of setting thereof
GB2049838A (en) Linear ball bearing
JPS6343607B2 (en)
JPH0425618A (en) Linear guiding device
JPS628427Y2 (en)
JPS5943218A (en) Roller bearing movably supporting part in longitudinal direction
JPH0599225A (en) Guide unit for direct driven type roller
US4579395A (en) Roller bearing and feed table for linear sliding motion
JPH041377Y2 (en)
JPH0330614U (en)
USRE36005E (en) Antifriction slide assemblies
JPS62200016A (en) Rectilinear motion ball bearing with built-in ball screw
JPS59219517A (en) Roller bearing unit for linear slide motion
GB2130659A (en) Method of grinding bearing surfaces on a bearing body
JPH0215336B2 (en)
GB2166812A (en) Linear slide rolling bearings
US3563616A (en) Linear motion bearings
JPS626983Y2 (en)
JP3219170B2 (en) Linear guide bearing
JPH02150508A (en) Straight rolling guide unit
JP3572621B2 (en) Rolling guide unit
KR840008482A (en) Straight Slide Bearings and Straight Slide Table Units