JPH04137480A - Infrared heater - Google Patents

Infrared heater

Info

Publication number
JPH04137480A
JPH04137480A JP25914590A JP25914590A JPH04137480A JP H04137480 A JPH04137480 A JP H04137480A JP 25914590 A JP25914590 A JP 25914590A JP 25914590 A JP25914590 A JP 25914590A JP H04137480 A JPH04137480 A JP H04137480A
Authority
JP
Japan
Prior art keywords
sealed container
infrared
surface roughness
wavelength
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25914590A
Other languages
Japanese (ja)
Inventor
Atsushi Saida
斉田 淳
Toshihiko Ishigami
敏彦 石神
Masahiko Yotsuyanagi
四ッ柳 真彦
Toshio Hiruta
寿男 蛭田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP25914590A priority Critical patent/JPH04137480A/en
Publication of JPH04137480A publication Critical patent/JPH04137480A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)

Abstract

PURPOSE:To prevent such nonconformity as generation of dispersion of infrared radioactivity between respective heaters or a drop of infrared radioactivity, etc., while the heaters are in use by finishing the surface roughness of the external face of a hermetically sealed container made of insulation ceramic at 1.8mum or less. CONSTITUTION:The external surface of a hermetically sealed container 10 is surface-treated to be finished smoothly so that its average surface roughness is 1.8mum or less. In the case of the surface work of such a hermetically sealed container 10, as an almina tube constituting the container 10 has its property of being eroded when it is dipped into a solution of borate, it is possible, to get a desired surface roughness by controlling the temperature of this solution of borate and the dipping time of the tube in the solution. That is, as the surface roughness of the external face of the container 10 is set smooth at 1.8mum or less, it becomes difficult for foul or contaminant or dust to attach to the surface of the container 10. There is therefore, no chance to lower the penetrability of infrared and a chance to prevent such nonconformity as generation of dispersion of infrared radioactivity between respective heaters or a drop of infrared radioactivity while the heaters are in use.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、絶縁性セラミックからなる密封容器内に発熱
体を収容した赤外線ヒータに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an infrared heater in which a heating element is housed in a sealed container made of insulating ceramic.

(従来の技術) 例えば、食品の乾燥や塗装など工業用各種部品の乾燥に
赤外線ヒータが使用されている。
(Prior Art) Infrared heaters are used, for example, to dry food, paint, and various other industrial parts.

このような分野で使用される赤外線ヒータは、従来、ア
ルミナなどの絶縁性セラミックから形成された円筒形密
封容器に発熱体を収容してあり、この発熱体は、例えば
アルミナやボ゛ロンナイトライドなどのような絶縁性セ
ラミックスよりなる円筒形の基体の表面に例えばグラフ
ァイトなどのようなカーボン系の導電膜からなる発熱ラ
インを螺旋形や蛇行形に配置して構成しである。
Infrared heaters used in such fields have conventionally housed a heating element in a cylindrical sealed container made of insulating ceramic such as alumina. It is constructed by arranging heating lines made of a carbon-based conductive film such as graphite in a spiral or meandering shape on the surface of a cylindrical base made of an insulating ceramic such as.

このような赤外線ヒータは、螺旋形や蛇行形の導電膜か
らなる発熱ラインに通電すればこの発熱ラインが発熱す
る。したがって、この発熱ラインから放射される赤外線
が密封容器を透過して外部の被加熱物を加熱する。
In such an infrared heater, when electricity is applied to a heating line made of a spiral or meandering conductive film, the heating line generates heat. Therefore, the infrared rays emitted from this heating line pass through the sealed container and heat the object to be heated outside.

(発明が解決しようとする課題) このような赤外線ヒータにおいては、発熱体の酸化を防
止する目的で、発熱体を密封容器に収容し、この密封容
器の内部を真空または不活性ガスの雰囲気に保っている
。このため、密封容器は赤外線を透過する耐熱性の材料
で形成しなければならず、従来ではアルミナなどのよう
な絶縁性セラミックで形成している。
(Problem to be Solved by the Invention) In such an infrared heater, in order to prevent the heating element from oxidizing, the heating element is housed in a sealed container, and the inside of this sealed container is kept in a vacuum or an inert gas atmosphere. I keep it. Therefore, the sealed container must be made of a heat-resistant material that transmits infrared rays, and conventionally, it is made of an insulating ceramic such as alumina.

しかしながら、絶縁性セラミックで密封容器を形成する
場合、アルミナ粉末を所定の型に加圧成形し、これを高
温度で焼き上げる方法が採用されるが、このような絶縁
性セラミックからなる密封容器の表面状態はブラスト加
工したように微細な凹凸面をなしており、表面粗さ(粗
度)は2.5□以上となっている。
However, when forming a sealed container with insulating ceramic, a method is adopted in which alumina powder is pressure-molded into a predetermined mold and then baked at high temperature. The surface has fine irregularities as if it had been blasted, and the surface roughness (roughness) is 2.5□ or more.

このような梨地面状の表面をもつ密封容器の場合、組立
や使用中に密封容器の外表面に汚れやごみ、はこりが付
着し易く、しかも−旦付着すると微細な凹凸面であるか
ら拭い取るのが難しい。
In the case of a sealed container with such a satin-like surface, dirt, dust, and flakes tend to adhere to the outer surface of the sealed container during assembly and use, and once they have adhered, it is difficult to wipe them off as the surface becomes minutely uneven. It's difficult to take.

このように表面に汚れやごみ、はこりか付着した場合、
赤外線の透過を阻害し、各ヒータ間で赤外線放射性能か
ばらついたり、時間経過に伴い赤外線放射力か著しく低
下した、上記ごみやほこりが加熱されて密封容器の表面
温度か高くなり、熱応力で密封容器が熱損傷を生じる場
合がある。
If dirt, dust, or debris adheres to the surface,
The above-mentioned dirt and dust are heated and the surface temperature of the sealed container becomes high, causing thermal stress that obstructs the transmission of infrared rays, causing variations in infrared radiation performance between heaters, and a significant decrease in infrared radiation power over time. Sealed containers may cause heat damage.

一方、食品の乾燥や塗装などの乾燥に使用されるこの種
の赤外線ヒータは、主として900〜2500 nmの
近赤外線領域の波長を利用しており、他領域の波長は光
や他の不要な熱として消費されている。
On the other hand, this type of infrared heater, which is used for drying food and paint, mainly uses wavelengths in the near-infrared region of 900 to 2,500 nm, and wavelengths in other regions are used as a source of light and other unnecessary heat. is consumed as.

しかし、最近は赤外線ヒータの高出力化が要求されてお
り、このためには900〜2500 no+の波長領域
の照射効率を高めることが必要であり、上記無駄に捨て
られていた他領域の波長エネルギーを有効に活用する研
究が進められている。
However, recently there has been a demand for higher output power for infrared heaters, and for this purpose it is necessary to increase the irradiation efficiency in the wavelength range of 900 to 2500 no+, and the energy of wavelengths in other wavelength ranges that were wasted as mentioned above must be increased. Research is underway to effectively utilize this.

その1つとして本発明者らは、外囲器としての気密容器
の外面に280 On11以上の遠赤外線領域の波長を
反射する波長選択反射膜を形成することを検討、研究し
ており、この波長選択反射膜としてはシリカSiO2と
チタニアT i O2の薄膜を交互に多数層積層して干
渉膜を形成することである。
As one of these, the present inventors have been considering and researching the formation of a wavelength-selective reflective film that reflects wavelengths in the far infrared region of 280 On11 or more on the outer surface of an airtight container as an envelope. As the selective reflection film, an interference film is formed by alternately stacking a large number of thin films of silica SiO2 and titania TiO2.

このような多層干渉膜は、発熱体から放射される波長う
ちの900〜250 OnIl以外の領域の遠赤外線エ
ネルギーを反射して発熱体に戻す作用かあり、この帰還
されたエネルギーで発熱体が加熱され、入力に対する発
熱体の放射効率を高めることができる利点がある。
Such a multilayer interference film has the effect of reflecting far-infrared energy in the wavelength range other than 900 to 250 OnIl emitted from the heating element and returning it to the heating element, and the heating element is heated by this returned energy. This has the advantage of increasing the radiation efficiency of the heating element relative to the input.

このような多層干渉膜からなる波長選択反射膜は、気密
容器の外面にSiO2の溶液とTiO2の溶液を交互に
、蒸着、スパッターリング、デイツプ法などで塗着して
いる。
A wavelength selective reflection film made of such a multilayer interference film is obtained by applying a SiO2 solution and a TiO2 solution alternately to the outer surface of an airtight container by vapor deposition, sputtering, a dip method, or the like.

しかしながら、前記した通り、密封容器の表面状態はブ
ラスト加工したように、表面粗度が2.5□以上となっ
ているため、上記波長選択反射膜の塗付成形に際して塗
付液の流れが不均一であり、膜厚に著しくばらつきを発
生し、所定の波長選択作用が発揮できないなどの不具合
かある。
However, as mentioned above, the surface of the sealed container has a surface roughness of 2.5□ or more, as if it had been blasted, so the flow of the coating liquid during coating and forming of the wavelength-selective reflective film is prevented. Although the film is uniform, there are problems such as significant variations in film thickness and failure to achieve a desired wavelength selection effect.

また、このような波長選択反射膜を塗着しても、外表面
の平滑さは解消されず、汚れやごみ、はこりが堆積し易
いものである。
Furthermore, even if such a wavelength-selective reflective film is applied, the smoothness of the outer surface cannot be improved, and dirt, dust, and flakes are likely to accumulate thereon.

したがって、本発明の課題は、密封容器の表面状態が粗
いため、表面に汚れやごみ、はこりが付着し易く、赤外
線の透過を阻害し、各ヒータ間で赤外線放射性能にばら
つきを生じたり、使用中に赤外線放射性能か低下するこ
とである。
Therefore, the problem of the present invention is that because the surface of the sealed container is rough, dirt, dust, and debris easily adhere to the surface, which obstructs the transmission of infrared rays and causes variations in infrared radiation performance between heaters. The infrared radiation performance deteriorates during use.

また他の課題は、表面に波長選択反射膜を形成する場合
、密封容器の表面状態が粗いためこの波長選択反射膜が
強固に付着しないばかりでなく、膜厚差が生じて所定の
波長選択反射機能が得られない点である。
Another problem is that when forming a wavelength-selective reflective film on the surface, not only does the wavelength-selective reflective film not adhere firmly due to the rough surface of the sealed container, but also differences in film thickness occur, making it difficult to achieve the desired wavelength-selective reflection. The point is that the function cannot be obtained.

本発明はこのような事情にもとづきなされたもので、そ
の第1の目的とするところは、密封容器の表面に汚れや
ごみ、はこりか付着し難くなり、赤外線の透過性能を高
レベルに維持し、各ヒータ間で赤外線放射性能にばらつ
きを生じたり、使用中に赤外線放射性能が低下するなど
の不具合を防止することができる赤外線ヒータを提供し
ようとするものである。
The present invention was developed based on these circumstances, and its first purpose is to make it difficult for dirt, dust, and debris to adhere to the surface of a sealed container, and to maintain a high level of infrared transmission performance. However, it is an object of the present invention to provide an infrared heater that can prevent problems such as variations in infrared radiation performance between heaters and a decrease in infrared radiation performance during use.

本発明の第2の目的とするところは、表面に波長選択反
射膜を形成する場合、波長選択反射膜が強固に付着し、
膜厚差を防止できて所定の波長選択反射機能が得られる
赤外線ヒータを提供しようとするものである。
A second object of the present invention is that when a wavelength selective reflective film is formed on the surface, the wavelength selective reflective film is firmly attached to the surface.
The present invention aims to provide an infrared heater that can prevent film thickness differences and provide a predetermined wavelength selective reflection function.

[発明の構成] (課題を解決するだめの手段) 本発明の1番目は、絶縁性セラミックからなる密封容器
の外面の表面粗度を1.8、以下に仕上げたことを特徴
とする。
[Structure of the Invention] (Means for Solving the Problems) The first aspect of the present invention is that the outer surface of the sealed container made of insulating ceramic is finished to a surface roughness of 1.8 or less.

本発明の2番目は、絶縁性セラミックからなる密封容器
の外面に波長選択反射膜を形成したものにおいて、上記
密封容器の外面の表面粗度を1.8μm以下に仕上げた
ことを特徴とする。
The second aspect of the present invention is a sealed container made of insulating ceramic, in which a wavelength-selective reflective film is formed on the outer surface of the container, characterized in that the outer surface of the sealed container has a surface roughness of 1.8 μm or less.

(作用) 本発明の1番目によれば、密封容器の外面の表面状態か
平滑になるので、この表面に汚れやごみ、はこりが付着
し難くなり、赤外線の透過性能を高レベルに維持し、各
ヒータ間で赤外線放射性能にばらつきを生じたり、使用
中に赤外線放射性能が低下するなどの不具合を防止する
ことかできる。
(Function) According to the first aspect of the present invention, the surface condition of the outer surface of the sealed container becomes smooth, making it difficult for dirt, dust, and debris to adhere to this surface, and maintaining a high level of infrared transmission performance. This makes it possible to prevent problems such as variations in infrared radiation performance between heaters and deterioration of infrared radiation performance during use.

また本発明の2番目によれば、密封容器の外表面が平滑
になるので、この表面に波長選択反射膜を形成する場合
、波長選択反射膜が強固に付着し、膜厚差の発生を防止
できて所定の波長選択反射機能が得られる。
Further, according to the second aspect of the present invention, the outer surface of the sealed container is smooth, so when a wavelength selective reflective film is formed on this surface, the wavelength selective reflective film will firmly adhere to this surface, preventing the occurrence of a difference in film thickness. As a result, a predetermined wavelength selective reflection function can be obtained.

(実施例) 以下本発明について、第1図ないし第3図に示す一実施
例にもとづき説明する。
(Example) The present invention will be described below based on an example shown in FIGS. 1 to 3.

図において10は密封容器であり、赤外線を透過する円
筒形のセラミックスにて形成されている。
In the figure, reference numeral 10 denotes a sealed container, which is made of cylindrical ceramic that transmits infrared rays.

本実施例では、密封容器10が外径26mm、内径24
 mm、管長220mmの透光性アルミナチューブで形
成されている。
In this embodiment, the sealed container 10 has an outer diameter of 26 mm and an inner diameter of 24 mm.
It is made of a translucent alumina tube with a tube length of 220 mm.

この円筒形密封容器10の両端部はキャップ11.11
により気密に閉塞されている。これらキャップ11.1
1も透光性アルミナにより形成されており、円筒形密封
容器10の端部にアルミナ、カルシア、マグネシアなど
を主成分とした半田ガラスにて気密に接合されている。
Both ends of this cylindrical sealed container 10 are capped with caps 11 and 11.
It is hermetically sealed. These caps 11.1
1 is also made of translucent alumina, and is hermetically bonded to the end of the cylindrical sealed container 10 with solder glass containing alumina, calcia, magnesia, etc. as a main component.

これらキャップ11.11の中央部には封止チューブ1
2.12か気密に接合されており、これら封止チューブ
12.12はニオビウムのよう な耐熱性導電金属により形成されている。
A sealing tube 1 is provided in the center of these caps 11 and 11.
2.12 are hermetically joined, and these sealing tubes 12.12 are made of a heat resistant conductive metal such as niobium.

このような密封容器10内部は、例えば1゜T orr
程度の高真空、またはアルゴン、キセノン、クリプトン
などの不活性ガスの雰囲気に保たれている。
The inside of such a sealed container 10 is, for example, 1° Torr.
It is maintained in a moderately high vacuum or in an atmosphere of an inert gas such as argon, xenon, or krypton.

この密封容器10内部には発熱体2oが収容されている
。この発熱体2oは、例えば絶縁性円筒形の基体21と
、この絶縁性基体21の外面に形成された導電膜からな
る発熱ライン22と、上記絶縁性基体21の端部に取り
付けられたホルダ兼用の受電端子24.24とで構成さ
れている。
A heating element 2o is housed inside this sealed container 10. The heating element 2o includes, for example, an insulating cylindrical base 21, a heating line 22 made of a conductive film formed on the outer surface of the insulating base 21, and a holder attached to the end of the insulating base 21. It is composed of power receiving terminals 24 and 24.

上記絶縁性基体21は、ボロンナイトライドなどのよう
な絶縁性セラミックスにより形成されており、例えば内
径12a+11.外径14av、肉厚1 ff1Ins
長さ20o+mの真円筒形になっている。このボロンナ
イトライドからなる絶縁性基体21は気相成長法によっ
て形成されている。
The insulating base 21 is made of an insulating ceramic such as boron nitride, and has an inner diameter of, for example, 12a+11. Outer diameter 14av, wall thickness 1ff1Ins
It has a true cylindrical shape with a length of 20o+m. The insulating substrate 21 made of boron nitride is formed by vapor phase growth.

このような絶縁性基体21の内面には導電膜からなる帯
形状の発熱ライン22が形成されている。
A band-shaped heating line 22 made of a conductive film is formed on the inner surface of such an insulating substrate 21 .

導電膜からなる発熱ライン22は、グラファイトなどの
ようなカーボン系材料からなり、上記絶縁性基体21の
外表面に気相成長法により形成されている。この発熱ラ
イン22は絶縁性基体21の外面に螺旋パターンまたは
蛇行パターンをなして形成されており、導電膜の膜厚が
80M、、、帯の幅Wは6■、隣接する帯間間隔gは1
.0mmに形成され、電気抵抗10オームとされている
The heating line 22 made of a conductive film is made of a carbon-based material such as graphite and is formed on the outer surface of the insulating substrate 21 by vapor phase growth. The heating line 22 is formed in a spiral or meandering pattern on the outer surface of the insulating substrate 21, and the thickness of the conductive film is 80M, the band width W is 6cm, and the interval g between adjacent bands is 1
.. It is formed to have a thickness of 0 mm and an electrical resistance of 10 ohms.

なお、このような導電膜からなる発熱ライン22も作気
相成長法により形成することができる。
Note that the heating line 22 made of such a conductive film can also be formed by a vapor phase growth method.

上記円筒形絶縁性基体21の両端には、ホルダー兼用の
受電端子24.24が接続されている。
Power receiving terminals 24 and 24, which also serve as holders, are connected to both ends of the cylindrical insulating base 21.

受電端子24.24はステンレスなどのような導電性金
属からなり、円筒形絶縁性基体21の両端に導電性接着
剤を介して接合されており、これら受電端子24.24
は上記発熱ライン22の両端と電気的に接続されている
The power receiving terminals 24.24 are made of conductive metal such as stainless steel, and are bonded to both ends of the cylindrical insulating base 21 via a conductive adhesive.
are electrically connected to both ends of the heat generating line 22.

これら各受電端子24.24には導電性のサポート25
.25が接続されており、これらサポート25.25は
前記密封容器10の端部に設けた封止チューブ12.1
2に接合されている。本実施例では導電性のサポート2
5.25か封止チューブ12.12を気密に貫通して外
部に導出されている。
Each of these power receiving terminals 24.24 has a conductive support 25.
.. 25 are connected, and these supports 25.25 are connected to the sealing tube 12.1 provided at the end of the sealed container 10.
It is joined to 2. In this example, conductive support 2
5.25 hermetically passes through the sealing tube 12.12 and is led out to the outside.

このため、発熱体20は気密容器10内に同心状に収容
されているものである。
Therefore, the heating element 20 is housed concentrically within the airtight container 10.

上記のように構成した気密容器10の外表面10aは表
面処理して平滑に仕上げられている。
The outer surface 10a of the airtight container 10 configured as described above has been surface-treated to have a smooth finish.

すなわち、透光性アルミナチューブで形成された気密容
器10の外表面は、そのままであると、第3図に示す拡
大断面の想像線にて示す通り、平均表面粗度が2.5μ
m程度である。これに対し本実施例では、第3図の実線
で示す通り、気密容器10の外表面10aを表面加工し
て、平均表面粗度を1.8.□以下にしである。
That is, if the outer surface of the airtight container 10 made of a translucent alumina tube is left as it is, the average surface roughness will be 2.5μ, as shown by the imaginary line in the enlarged cross section shown in FIG.
It is about m. In contrast, in this embodiment, as shown by the solid line in FIG. 3, the outer surface 10a of the airtight container 10 is surface-processed to have an average surface roughness of 1.8. □This is below.

このような気密容器10の表面加工は、この容器を構成
するアルミナチューブを硼酸塩の溶液に浸すと浸蝕され
る性質かあるので、この硼酸塩溶液の温度と浸漬時間を
コントロールして所望の表面粗度を得ることかできる。
The surface of the airtight container 10 has the property of being eroded when the alumina tube constituting the container is immersed in a borate solution, so the desired surface can be achieved by controlling the temperature and immersion time of the borate solution. Can you get the roughness?

このような構成の赤外線ヒータについて、作用を説明す
る。
The operation of the infrared heater having such a configuration will be explained.

導電性サポート25.25を電源に接続すると、受電端
子24.24を介して絶縁性基体2]の発熱ライン22
に電流か流れ、この発熱ライン22が発熱する。
When the conductive support 25.25 is connected to a power source, the heat generating line 22 of the insulating substrate 2 is connected via the power receiving terminal 24.24.
A current flows through the line 22, and this heating line 22 generates heat.

したがって、発熱ライン22が赤外線を放出するので、
この赤外線は密封容器10を透過して外部に放出される
Therefore, since the heating line 22 emits infrared rays,
This infrared rays pass through the sealed container 10 and are emitted to the outside.

このような実施例においては、密封容器10の外面10
aの表面粗度を1.8#。以下にして平滑にしたので、
密封容器10の表面に汚れやごみ、ホコリカ付着し難く
なる。このため、赤外線の透過性能を低下させることが
なくなり、各ヒータ間で赤外線放射性能にばらつきを生
じたり、使用中に赤外線放射性能が低下するなどの不具
合を防止することができる。
In such embodiments, the outer surface 10 of the sealed container 10
The surface roughness of a is 1.8#. I smoothed it as below, so
It becomes difficult for dirt, dust, and dust to adhere to the surface of the sealed container 10. Therefore, there is no reduction in infrared transmission performance, and it is possible to prevent problems such as variations in infrared radiation performance between heaters and a decrease in infrared radiation performance during use.

このうな作用について実験した結果を説明する。The results of experiments regarding this kind of effect will be explained.

上記実施例の大きさの定格出力2KW形赤外線ヒータに
ついて、密封容器10の表面粗度を0.7□、1,0−
11.5−11,8−12.0□および2.2μm@の
ちのをそれぞれ3本づつ製造した。これら赤外線ヒータ
を定格の10%増しで使用し、温度1150℃において
3時間ON−1時間OFFの通電繰返しテストをし、経
過0時間、100時間、300時間、500時間および
1000時間についてそれぞれ密封容器10の破損具合
、780〜2000nmの波長領域の放射パワーが使用
不可能まで低下するか否か、および各ヒータ間の放射ば
らつきを調べた。
Regarding the rated output 2KW type infrared heater having the size of the above example, the surface roughness of the sealed container 10 is 0.7□, 1.0-
Three pieces each of 11.5-11, 8-12.0□ and 2.2 μm@ were manufactured. These infrared heaters were used at 10% higher than the rated value, and a repeated energization test of 3 hours ON and 1 hour OFF was carried out at a temperature of 1150°C, and the tests were carried out in a sealed container at 0 hours, 100 hours, 300 hours, 500 hours, and 1000 hours. 10, whether the radiation power in the wavelength range of 780 to 2000 nm decreased to an unusable level, and the radiation variation among the heaters were investigated.

その結果を下記の表に示す。The results are shown in the table below.

以上の実験から、密封容器10の表面粗度は1.8M、
、以下に規制すれば良好な特性が得られることか確認さ
れる。
From the above experiments, the surface roughness of the sealed container 10 is 1.8M,
It is confirmed that good characteristics can be obtained if the following regulations are followed.

次に、本発明の第2の実施例について、第4図ないし第
7図にもとづき説明する。
Next, a second embodiment of the present invention will be described based on FIGS. 4 to 7.

本実施例は、密封容器10の外表面に波長選択反射膜3
0を形成した点が上記第1の実施例と異なる。
In this embodiment, a wavelength selective reflective film 3 is provided on the outer surface of the sealed container 10.
The difference from the first embodiment is that 0 is formed.

なお、第1の実施例と同一部材は同一番号を付してその
説明を省略する。
Incidentally, the same members as those in the first embodiment are given the same numbers and their explanations will be omitted.

透光性アルミナチューブからなる密封容器1゜の表面粗
度を1.8μ−以下に仕上げてあり、この平滑な表面1
0aには波長選択反射膜3oを形成しである。この波長
選択反射膜30は、900〜250 On11の波長域
を透過し、この領域以外の波長は反射するもので、例え
ば8102などのような高屈折率をもつ金属酸化膜と、
TiO2などからなる低屈折率の金属酸化膜とを交互に
積層し、合計12〜24層の多層膜を作ることにより得
られる。
The surface roughness of the sealed container 1° made of a translucent alumina tube is 1.8μ or less, and this smooth surface 1
A wavelength selective reflection film 3o is formed on 0a. This wavelength selective reflection film 30 transmits a wavelength range of 900 to 250 On11 and reflects wavelengths other than this range, and is made of a metal oxide film with a high refractive index such as 8102, for example.
It is obtained by alternately stacking low refractive index metal oxide films such as TiO2 to form a multilayer film with a total of 12 to 24 layers.

なお、このような多層膜30を形成する場合、前記した
ように気密容器1oを構成するアルミナチューブを硼酸
塩の溶液に浸すことによりその表面粗度を1.8□以下
となるように処理し、この後このアルミナチューブを真
空蒸着装置内に収容して真空雰囲気でこのアルミナチュ
ーブにその下方よりSiO2とTiO2を交互に加熱蒸
発させてSiO2膜とTiO2膜を作り、これを焼成す
ることにより得られる。
In addition, when forming such a multilayer film 30, as described above, the alumina tube constituting the airtight container 1o is treated to have a surface roughness of 1.8□ or less by immersing it in a borate solution. After that, this alumina tube is housed in a vacuum evaporation apparatus, and SiO2 and TiO2 are alternately heated and evaporated from below onto this alumina tube in a vacuum atmosphere to form a SiO2 film and a TiO2 film, which are then fired. It will be done.

また、SiO2の溶液とTiO2の溶液にアルミナチュ
ーブを交互に漬けることにより、上記と同様の多層膜3
0を形成することもできる。
In addition, by alternately immersing the alumina tube in a SiO2 solution and a TiO2 solution, a multilayer film similar to the above 3
0 can also be formed.

このような第2の実施例の構成の場合は、密封容器10
の外面10aに波長選択反射膜30を形成したので、発
熱体20から放射される900〜2500 nmの波長
域、つまり近赤外線は外部に透過し、これ以外の波長領
域のエネルギーは波長選択反射膜30により反射されて
発熱体20に戻される。したがって、発熱体20はこの
帰還エネルギーで再加熱されるので、入力に対する発熱
量が増し、放射効率が向上する。この結果、同一人力で
あるにも拘らず、波長選択反射膜30を設けないヒータ
に比べ900〜2500 nmの波長域、つまり近赤外
線の放射出力が向上する。
In the case of the configuration of the second embodiment, the sealed container 10
Since the wavelength selective reflective film 30 is formed on the outer surface 10a of the heating element 20, the wavelength range of 900 to 2500 nm, that is, near infrared rays, emitted from the heating element 20 is transmitted to the outside, and energy in other wavelength ranges is transmitted through the wavelength selective reflective film. 30 and returned to the heating element 20. Therefore, since the heating element 20 is reheated by this feedback energy, the amount of heat generated relative to the input increases, and the radiation efficiency improves. As a result, the radiation output in the wavelength range of 900 to 2500 nm, that is, near infrared rays, is improved compared to a heater not provided with the wavelength selective reflection film 30, despite the same amount of human effort.

しかも、本実施例の場合、絶縁性セラミックからなる密
封容器10の外面10aの表面粗度が1.8□以下に仕
上げられているので、予め平坦となっており、この表面
に形成される薄い波長選択反射膜30は密封容器10の
外面10aに膜厚差を生じることなく、均等にかつ確実
に付着させることができる。このため波長選択反射機能
のばらつきが防止される。
Moreover, in the case of this embodiment, the surface roughness of the outer surface 10a of the sealed container 10 made of insulating ceramic is finished to 1.8□ or less, so it is flat in advance, and a thin film formed on this surface is formed. The wavelength selective reflection film 30 can be evenly and reliably attached to the outer surface 10a of the sealed container 10 without causing a difference in film thickness. This prevents variations in the wavelength selective reflection function.

第2の実施例について、実験した結果を説明する。Regarding the second example, experimental results will be explained.

波長選択反射膜を設けない従来の赤外線ヒータと、本実
施例のように密封容器10の外面10aの表面粗度を1
.8M。以下に仕上げ、この表面10aに波長選択反射
膜30を設けた赤外線ヒータとの相対分光出力について
調べたところ、第7図の結果を得た。
A conventional infrared heater without a wavelength-selective reflective film and a surface roughness of the outer surface 10a of the sealed container 10 of 1 as in this embodiment.
.. 8M. When the relative spectral output with an infrared heater having the wavelength-selective reflective film 30 provided on the surface 10a was investigated, the results shown in FIG. 7 were obtained.

第7図から判る通り、実線で示した本実施例の赤外線ヒ
ータは、900〜250OnIgの波長域、つまり近赤
外線の出力か向上し、これに比べて約2800〜420
0 nmの出力か低下している。このことは2800 
nm以上の遠赤外線が波長選択反射膜30により発熱体
20に戻され、900〜2500 rvの近赤外線に変
換されたと解釈することができる。
As can be seen from FIG. 7, the infrared heater of this embodiment shown by the solid line has improved output in the wavelength range of 900 to 250 OnIg, that is, near infrared rays, and is approximately 2800 to 420 OnIg compared to this.
0 nm output has decreased. This means 2800
It can be interpreted that far infrared rays of nm or more are returned to the heating element 20 by the wavelength selective reflection film 30 and converted into near infrared rays of 900 to 2500 rv.

また、密封容器10の外面10aの表面粗度を1.8μ
m、、以下に仕上げであるので、ヒータのどこの場所も
波長選択反射膜30の膜厚差が生じなく、1000時間
の使用でも波長選択反射膜30の剥がれがなかった。
In addition, the surface roughness of the outer surface 10a of the sealed container 10 is set to 1.8μ.
Since the finishing was as follows, there was no difference in the thickness of the wavelength-selective reflective film 30 anywhere on the heater, and the wavelength-selective reflective film 30 did not peel off even after 1000 hours of use.

なお、本発明は、発熱体20の構成は上記実施例に限ら
ず、要するに電熱体であればニクロム線ヒータ、コイル
ヒータなどであってもよい。
In addition, in the present invention, the configuration of the heating element 20 is not limited to the above-mentioned embodiment, and in short, it may be a nichrome wire heater, a coil heater, etc. as long as it is an electric heating element.

したがって、絶縁性基体21も円筒形に限らず、平板形
であってもよい。
Therefore, the insulating base 21 is not limited to a cylindrical shape, but may also be a flat plate shape.

さらに、絶縁性基体21はボロンナイトランドによりす
ることに限らず、アルミナなどの絶縁性セラミック、そ
の他の耐熱性材料で成形したものであってもよい。
Further, the insulating substrate 21 is not limited to being made of boron nitrate, but may be made of insulating ceramic such as alumina or other heat-resistant material.

そして、絶縁性基体21に形成される発熱ライン22は
、導電膜で形成されることには限らない[発明の効果コ 以上説明したように本発明の1番目によれば、絶縁性セ
ラミックからなる密封容器の外面の表面粗度を1.8.
ffi以下に仕上げたので、この密封容器の外面の表面
状態か平滑になり、この表面に汚れやごみ、はこりが付
着し難くなり、赤外線の透過性能を高レベルに維持する
ことができる。また各ヒータ間で赤外線放射性能にばら
つきを生じたり、使用中に赤外線放射性能が低下するな
どの不具合を防止することができる。
The heating line 22 formed on the insulating base 21 is not limited to being formed of a conductive film [Effects of the Invention] As explained above, according to the first aspect of the present invention, the heating line 22 is formed of an insulating ceramic. The surface roughness of the outer surface of the sealed container is 1.8.
Since it is finished to less than ffi, the outer surface of the sealed container is smooth, making it difficult for dirt, dust, and flakes to adhere to the surface, and maintaining a high level of infrared transmission performance. Further, it is possible to prevent problems such as variations in infrared radiation performance between heaters and a decrease in infrared radiation performance during use.

また、本発明の2番目によれば、絶縁性セラミックから
なる密封容器の外面の表面粗度を1.81以下に仕上げ
、この平滑な表面に波長選択反射膜を形成するから、波
長選択反射膜か強固に付着し、膜厚差の発生を防止する
ことができ、所定の波長選択反射機能が得られる。
Further, according to the second aspect of the present invention, the surface roughness of the outer surface of the sealed container made of insulating ceramic is finished to 1.81 or less, and the wavelength selective reflective film is formed on this smooth surface. It is possible to firmly adhere to the film, prevent a difference in film thickness from occurring, and obtain a predetermined wavelength selective reflection function.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す赤外線ヒータの断
面図、第2図は第1図の■−■線の断面図、第3図は第
1図のm部の拡大した断面図、第4図は本発明の第2の
実施例を示す赤外線ヒータの断面図、第5図は第4図の
V−■線の断面図、第6図は第4図の■部の拡大した断
面図、第7図は分光分布の特性図である。 10・・・密封容器、10g・・・表面、11・・・キ
ャップ、12・・・封止チューブ、 20・・・発熱体、21・・・絶縁性基体、22・・・
発熱ライン、24・・・受電端子、 30・・・波長選択反射膜。 出願人代理人 弁理士 鈴江武彦
Fig. 1 is a cross-sectional view of an infrared heater showing a first embodiment of the present invention, Fig. 2 is a cross-sectional view taken along the line ■-■ in Fig. 1, and Fig. 3 is an enlarged cross-section of the m section in Fig. 1. 4 is a cross-sectional view of an infrared heater showing a second embodiment of the present invention, FIG. 5 is a cross-sectional view taken along line V-■ in FIG. 4, and FIG. 6 is an enlarged view of part ■ in FIG. The cross-sectional view shown in FIG. 7 is a characteristic diagram of the spectral distribution. DESCRIPTION OF SYMBOLS 10... Sealed container, 10g... Surface, 11... Cap, 12... Sealing tube, 20... Heating element, 21... Insulating base, 22...
Heat generation line, 24... Power receiving terminal, 30... Wavelength selective reflection film. Applicant's agent Patent attorney Takehiko Suzue

Claims (3)

【特許請求の範囲】[Claims] (1)絶縁性セラミックからなる密封容器内に発熱体を
収容した赤外線ヒータにおいて、上記密封容器の外面の
表面粗度を1.8μm以下に仕上げたことを特徴とする
赤外線ヒータ。
(1) An infrared heater in which a heating element is housed in a sealed container made of insulating ceramic, characterized in that the outer surface of the sealed container has a surface roughness of 1.8 μm or less.
(2)絶縁性セラミックからなる密封容器内に発熱体を
収容し、この密封容器の外面に所定の波長を反射する波
長選択反射膜を形成した赤外線ヒータにおいて、 上記密封容器の外面の表面粗度を1.8μm以下に仕上
げたことを特徴とすることを特徴とする赤外線ヒータ。
(2) In an infrared heater in which a heating element is housed in a sealed container made of insulating ceramic, and a wavelength-selective reflective film is formed on the outer surface of the sealed container to reflect a predetermined wavelength, the surface roughness of the outer surface of the sealed container is as follows: An infrared heater characterized in that the infrared heater is finished to a thickness of 1.8 μm or less.
(3)上記波長選択反射膜は、SiO_2とTiO_2
の薄膜を交互に多数層積層して形成したことを特徴とす
る第2の請求項に記載した赤外線ヒータ。
(3) The wavelength selective reflective film is composed of SiO_2 and TiO_2.
The infrared heater according to claim 2, characterized in that it is formed by laminating a large number of thin films alternately.
JP25914590A 1990-09-28 1990-09-28 Infrared heater Pending JPH04137480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25914590A JPH04137480A (en) 1990-09-28 1990-09-28 Infrared heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25914590A JPH04137480A (en) 1990-09-28 1990-09-28 Infrared heater

Publications (1)

Publication Number Publication Date
JPH04137480A true JPH04137480A (en) 1992-05-12

Family

ID=17329960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25914590A Pending JPH04137480A (en) 1990-09-28 1990-09-28 Infrared heater

Country Status (1)

Country Link
JP (1) JPH04137480A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040092271A (en) * 2003-04-25 2004-11-03 엘지전자 주식회사 Ceramic tube heater with fin for radiating heat and manufacturing method thereof
WO2018079386A1 (en) * 2016-10-24 2018-05-03 日本碍子株式会社 Infrared heater

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040092271A (en) * 2003-04-25 2004-11-03 엘지전자 주식회사 Ceramic tube heater with fin for radiating heat and manufacturing method thereof
WO2018079386A1 (en) * 2016-10-24 2018-05-03 日本碍子株式会社 Infrared heater
CN109845397A (en) * 2016-10-24 2019-06-04 日本碍子株式会社 Infrared heater
JPWO2018079386A1 (en) * 2016-10-24 2019-08-08 日本碍子株式会社 Infrared heater

Similar Documents

Publication Publication Date Title
EP0409554B2 (en) Optical interference coatings and lamps using same
US5889459A (en) Metal oxide film resistor
US6868230B2 (en) Vacuum insulated quartz tube heater assembly
US20230240366A1 (en) Heater and smoking set including same
US4426570A (en) Infrared radiative body and a method for making the same
GB2103830A (en) Optical tantalum pentoxide coatings for high temperature applications
CN101060729A (en) An infrared ray heating tube
JPH04137480A (en) Infrared heater
JP2000082574A (en) Carbon heating element and its manufacture
JP2628313B2 (en) Gas laser device
US3645784A (en) Vitreous enamel resistor
US6710520B1 (en) Stress relief mechanism for optical interference coatings
JPH0311072B2 (en)
JP4681051B2 (en) Reflector, manufacturing method thereof, heater unit and furnace using the same
JP2013044978A (en) Optical fiber structure for laser beam and method for manufacturing the same
JPH01117287A (en) Far infrared radiation heating body and manufacture thereof
Honda et al. Infrared Reflective Filter and Its Applications
CN102187254A (en) High refractive index materials for energy efficient lamps
JPH03280382A (en) Infrared heater
Rancourt et al. High temperature lamp coatings
JPH08227245A (en) Heater for heating and heat roller for fixing and fixing device
JPS6325466B2 (en)
CN117643173A (en) Infrared radiator having an emission layer applied to a reflector layer made of metal and use of the emission layer
WO2004003984A1 (en) Semiconductor producing apparatus
JPS63257195A (en) Far-infrared radiation heater and manufacture of the same