JPH04137462A - Manufacture of lead storage battery plate - Google Patents

Manufacture of lead storage battery plate

Info

Publication number
JPH04137462A
JPH04137462A JP2260092A JP26009290A JPH04137462A JP H04137462 A JPH04137462 A JP H04137462A JP 2260092 A JP2260092 A JP 2260092A JP 26009290 A JP26009290 A JP 26009290A JP H04137462 A JPH04137462 A JP H04137462A
Authority
JP
Japan
Prior art keywords
energization
lead
unformed
acid
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2260092A
Other languages
Japanese (ja)
Other versions
JP2541355B2 (en
Inventor
Arihiko Takemasa
有彦 武政
Kensuke Hironaka
健介 弘中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2260092A priority Critical patent/JP2541355B2/en
Publication of JPH04137462A publication Critical patent/JPH04137462A/en
Application granted granted Critical
Publication of JP2541355B2 publication Critical patent/JP2541355B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a lead storage battery having high electric capacity, not being in need of a processing vessel being exclusive for acid dipping by manufacturing a lead storage battery plate by forming an active material layer in the first energizing process and a stopping energizing process and the second energizing process. CONSTITUTION:In the first energizing process an unformed plate is energized until concentration of sulfuric acid solution becomes as much concentration as being necessary for acid dipping and the energizing is stopped. In the stopping energizing process after that, the unformed plate is left in the sulfuric acid solution under a stopping energizing condition until the acid dipping is completed. And in the last second energizing process, after the stopping energizing process the unformed plate is energized until unformed active material is formed. That is, as alpha-type lead dioxide is made by the second energizing process, a dense active material layer is formed near the boundary face of a grid body, and the left as over-discharged characteristic of a lead storage battery is improved by the effect of the acid dipping. Thereby the acid dipping can be performed without needing an exclusive processing vessel for the acid dipping, and further charging time can be shortened.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は鉛蓄電池用極板の製造方法に関するものであり
、特に未化成の活物質層を化成する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing an electrode plate for a lead-acid battery, and particularly to a method for chemically forming an unformed active material layer.

[従来の技術] 従来の鉛蓄電池用極板の製造方法では、未化成の活物質
層を化成した後に、化成終了後の極板を所定の濃度の希
硫酸中に一定時間浸漬する酸浸漬と呼ばれる処理を行っ
ている。この酸浸漬を行うと、化成された活物質(二酸
化鉛)と集電用基体としての格子体の鉛(P b)とが
硫酸と反応して、格子体と活物質との界面に硫酸鉛(P
bSO4)が生成される。そしてこの極板を充電すると
、生成された硫酸鉛はα型二酸化鉛に変化する。α型二
酸化鉛は、緻密な構造で、比較的不活性であるため、酸
浸漬を行った極板を用いた鉛蓄電池が過放電放置されて
も格子体へ硫酸イオンが拡散するのを阻害することがで
きる。したがって、格子体の鉛が不導体である硫酸鉛に
なるのを抑制することができ、鉛蓄電池の過放電放置性
能は向上する。
[Prior art] In the conventional method for manufacturing electrode plates for lead-acid batteries, after chemically forming an unformed active material layer, the electrode plate after chemical formation is immersed in dilute sulfuric acid of a predetermined concentration for a certain period of time. The called process is being performed. When this acid immersion is performed, the chemically formed active material (lead dioxide) and the lead (Pb) of the lattice body as a current collecting base react with sulfuric acid, and lead sulfate is formed at the interface between the lattice body and the active material. (P
bSO4) is generated. When this electrode plate is charged, the generated lead sulfate changes to α-type lead dioxide. Alpha-type lead dioxide has a dense structure and is relatively inert, so it inhibits the diffusion of sulfate ions into the lattice even if a lead-acid battery with acid-soaked plates is left over-discharged. be able to. Therefore, it is possible to prevent the lead in the grid from becoming lead sulfate, which is a nonconductor, and the overdischarge performance of the lead acid battery is improved.

[発明が解決しようとする課題] 化或は専用の化成処理槽を用いて行なう場合と、電池の
電槽内に極板群を収納配置した状態で化成を行なう電槽
化成とがある。そして酸浸漬は、化成を開始する場合に
必要とされる濃度よりも低い濃度の希硫酸を必要とする
。したがって化成に専用の化成処理槽を用いる場合には
、化成処理槽の外に酸浸漬のための希硫酸を溜めた希硫
酸槽を必要とする上、酸浸漬中に生成された硫酸鉛をα
型二酸化鉛に変化させるために再充電を必要とするため
に、大きな設備と長い処理時間を必要とする問題がある
上、初期容量が出にくいという問題も生じる。
[Problems to be Solved by the Invention] There are cases in which chemical conversion is carried out using a dedicated chemical conversion treatment tank, and there is a case in which chemical conversion is carried out using a dedicated chemical conversion treatment tank, and there is a case in which chemical conversion is carried out with the electrode plate group housed in the battery case. And acid soaking requires a lower concentration of dilute sulfuric acid than is needed to initiate the formation. Therefore, when using a dedicated chemical conversion treatment tank for chemical conversion, a dilute sulfuric acid tank containing dilute sulfuric acid for acid immersion is required outside the chemical conversion treatment tank, and lead sulfate generated during acid immersion is
Since it requires recharging in order to change to type lead dioxide, there is a problem that it requires large equipment and long processing time, and there is also the problem that it is difficult to reach the initial capacity.

また後者の電槽化成では、化成完了後の電槽内の硫酸濃
度が、酸浸漬に必要とされる希硫酸の濃度よりも高くな
る。そのため化成した電槽を電槽中に放置しておくだけ
では、格子体と活物質との間の界面では腐食反応が進み
にくく酸浸漬にかなりの時間を要するために、電池の製
造工程において過放電放置性能を改善するために酸浸漬
を導入することは難しかった。
In addition, in the latter case, the concentration of sulfuric acid in the container after completion of the formation is higher than the concentration of dilute sulfuric acid required for acid immersion. Therefore, if the chemically formed battery case is simply left in the battery case, the corrosion reaction will not proceed at the interface between the lattice body and the active material, and acid immersion will take a considerable amount of time. It was difficult to introduce acid immersion to improve discharge performance.

[課題を解決するための手段] 本発明は、化成工程の途中に酸浸漬を導入して上記課題
を解決する。そのため本発明では、集電用基体に未化成
の活物質層を備えた未化成極板を硫酸溶液中に浸漬し、
該極板に通電を行って未化成の活物質層を化成すること
により鉛蓄電池用極板を製造する方法において、第1の
通電工程と、通電停止工程と、第2の通電工程とを具備
する。
[Means for Solving the Problems] The present invention solves the above problems by introducing acid immersion during the chemical conversion process. Therefore, in the present invention, an unformed electrode plate having an unformed active material layer on a current collecting base is immersed in a sulfuric acid solution,
A method for manufacturing a lead-acid battery plate by energizing the plate to chemically form an unformed active material layer, comprising a first energizing step, a energizing stop step, and a second energizing step. do.

第1の通電工程では、硫酸溶液の濃度が酸浸漬に必要な
濃度になるまで未化成極板に通電を行って通電を停止す
る。その後の通電停止工程では、酸浸漬が完了するまで
の時間通電を停止した状態で未化成極板を硫酸溶液中に
放置する。そして最後の第2の通電工程では、通電停止
工程の後に未化成の活物質が化成されるまで未化成極板
に通電を行う。
In the first energization step, the unformed electrode plate is energized until the concentration of the sulfuric acid solution reaches the concentration required for acid immersion, and then the energization is stopped. In the subsequent energization stop step, the unformed electrode plate is left in the sulfuric acid solution with the energization stopped for a period of time until the acid immersion is completed. In the final second energization step, after the energization stop step, the unformed electrode plate is energized until the unformed active material is chemically formed.

請求項2の発明では、請求項1の発明の第1の通電工程
で、未化成の活物質が理論電気量の10〜20%課電さ
れるまで通電を行い、通電停止工程における通電停止時
間を20時間以上とする。
In the invention of claim 2, in the first energization step of the invention of claim 1, the unformed active material is energized until 10 to 20% of the theoretical amount of electricity is applied, and the energization stop time in the energization stop step is 20 hours or more.

[作用] 第1の通電工程は硫酸溶液の濃度を酸浸漬に必要な濃度
まで低下させる。化成中、未化成の活物質層の活物質化
は集電用基体としての格子体の周囲側から進行していく
。そのため第1の通電工程が終了した時点では、正極板
の未化成の活物質層と格子体との界面付近においては二
酸化鉛化が進行している。なお格子体から離れたところ
(極板の表面部分)ではまだ活物質化はなされておらず
、未化成の活物質層と電解液中の硫酸分とが反応して、
未化成の活物質層の一部に硫酸鉛化が進行し、硫酸溶液
の比重が低下する。本発明では、第1の通電工程により
、硫酸溶液の比重が酸浸漬に必要な濃度範囲に入った時
点で通電を停止して、酸浸漬が完了するまでこの極板を
硫酸溶液中に放置しく通電停止工程)、化成工程の途中
において酸浸漬を行なう。この通電停止工程において酸
浸漬を行なう。酸浸漬中においては、極板の表面側の未
化成な活物質は電解液中の硫酸と反応して硫酸鉛となっ
て、活物質層は体積膨張を起こす。そして通電停止工程
の後に、第2の通電工程を行なって化成を再開すると、
陽極では二酸化鉛が生成し、負極では鉛が生成して、共
に体積収縮を起こす。
[Operation] The first energization step reduces the concentration of the sulfuric acid solution to the concentration required for acid immersion. During formation, conversion of the unformed active material layer into an active material progresses from the periphery of the lattice body serving as a current collecting base. Therefore, at the time when the first energization step is completed, lead dioxide conversion has progressed near the interface between the unformed active material layer of the positive electrode plate and the lattice body. Note that the area away from the lattice body (the surface area of the electrode plate) has not yet been converted into an active material, and the unformed active material layer reacts with the sulfuric acid content in the electrolyte.
Sulfate formation progresses in a part of the unformed active material layer, and the specific gravity of the sulfuric acid solution decreases. In the present invention, in the first energization process, when the specific gravity of the sulfuric acid solution falls within the concentration range required for acid immersion, the energization is stopped and the electrode plate is left in the sulfuric acid solution until the acid immersion is completed. (Electrification stop step), acid immersion is performed in the middle of the chemical conversion step. In this energization stop step, acid immersion is performed. During acid immersion, the unformed active material on the surface side of the electrode plate reacts with sulfuric acid in the electrolyte to become lead sulfate, causing volumetric expansion of the active material layer. After the energization stop step, a second energization step is performed to restart the chemical formation.
Lead dioxide is produced at the anode, and lead is produced at the anode, both of which cause volumetric contraction.

膨張後に収縮が生じると、活物質層に放電に必要な細孔
(多孔度)が充分に得られ、放電容量が高くなる。
When contraction occurs after expansion, sufficient pores (porosity) necessary for discharge are obtained in the active material layer, and the discharge capacity increases.

第1の通電工程中に生成された格子体との界面付近の二
酸化鉛は、通電停止工程中の酸浸漬により硫酸鉛になり
、この硫酸鉛は第2の通電工程によってα型二酸化鉛に
なるため、格子体との界面付近には緻密な活物質層が形
成されて前述した酸浸漬の効果により鉛蓄電池の過放電
放置性能が向上する。このように請求項1の発明によれ
ば酸浸漬専用の処理槽を必要とせず電容量の高い鉛蓄電
池を得るための極板を製造できる。しかも化成処理の途
中で酸浸漬処理を行うので、化成のための充電によって
酸浸漬で形成された硫酸鉛を二酸化鉛とすることができ
、従来のように酸浸漬後に化成のための充電とは別に再
充電を行う必要がなく、充電時間を短くすることができ
る。
The lead dioxide generated near the interface with the grid body during the first energization process becomes lead sulfate through acid immersion during the energization stop process, and this lead sulfate becomes α-type lead dioxide during the second energization process. Therefore, a dense active material layer is formed near the interface with the lattice body, and the overdischarge performance of the lead-acid battery is improved due to the effect of acid immersion described above. As described above, according to the first aspect of the invention, an electrode plate for obtaining a lead-acid battery with a high capacity can be manufactured without requiring a treatment bath exclusively for acid immersion. Moreover, since the acid immersion treatment is performed during the chemical conversion treatment, the lead sulfate formed by the acid immersion can be converted into lead dioxide by the charging for the chemical conversion, which is different from the conventional charging for the chemical formation after the acid immersion. There is no need to perform separate recharging, and the charging time can be shortened.

また、請求項2の発明のように、第1の通電工程で未化
成の活物質が理論電気量の10〜20%課電されるまで
通電を行ない、通電停止工程における通電停止時間を2
0時間以上にすると、より一層過放電放置性能及び放電
容量の高い鉛蓄電池を得れらる。
Further, as in the invention of claim 2, in the first energization step, the unformed active material is energized until 10 to 20% of the theoretical amount of electricity is applied, and the energization stop time in the energization stop step is 2.
When the time is 0 hours or more, a lead-acid battery with even higher over-discharge storage performance and higher discharge capacity can be obtained.

[実施例] 本発明の一実施例を図面を参照して詳細に説明する。[Example] An embodiment of the present invention will be described in detail with reference to the drawings.

実施例では、まず適宜の形状の格子体に活物質ペースト
を塗布してこれを乾燥させて未化成の活物質層を備えた
未化成極板を製造する。そして未化成極板を硫酸溶液を
蓄えた化成処理槽に浸漬し、未化成の活物質層が理論電
気量の10〜20%課電されるまで、即ち未化成の活物
質層の10〜20%が活物質化されるまで通電を行って
、化成処理槽中の硫酸溶液の濃度は、酸浸漬に必要な濃
度まで低下させる。次に通電を停止し、この化成処理槽
に極板を20時間以上浸漬して通電停止工程を行う。そ
の後極板への通電を再開して、未化成の活物質層が化成
する。
In the example, first, an active material paste is applied to a grid of an appropriate shape and dried to produce an unformed electrode plate having an unformed active material layer. Then, the unformed electrode plate is immersed in a chemical conversion tank containing a sulfuric acid solution until the unformed active material layer is charged with 10 to 20% of the theoretical amount of electricity, that is, 10 to 20% of the unformed active material layer. The concentration of the sulfuric acid solution in the chemical conversion treatment tank is reduced to the concentration required for acid immersion by applying electricity until % is converted into an active material. Next, the energization is stopped, and the electrode plate is immersed in this chemical conversion treatment bath for 20 hours or more to perform the energization stopping step. Thereafter, power supply to the electrode plate is restarted, and the unformed active material layer is chemically formed.

(実施例1) 本発明の方法により製造した鉛蓄電池用極板と通電時間
及び通電停止時間を本発明とは異ならせて作った極板と
を用いて2Ah−12Vタイプの密閉形鉛蓄電池を製造
して、各種の試験を行って本発明の製造方法により製造
した極板を用いた電池の過放電放置特性を調べてみた。
(Example 1) A 2Ah-12V type sealed lead-acid battery was manufactured using a lead-acid battery plate manufactured by the method of the present invention and a plate whose energization time and energization-stop time were made different from those of the present invention. After manufacturing, various tests were conducted to investigate the overdischarge characteristics of a battery using the electrode plate manufactured by the manufacturing method of the present invention.

試験は下記の要領で行った。The test was conducted as follows.

先ず、各試験用密閉形鉛蓄電池に10Ωの抵抗を接続し
、24時間定抵抗放電による過放電を行った後抵抗をは
ずし、25℃中で7日間放置した。
First, a 10Ω resistor was connected to each test sealed lead-acid battery, over-discharged by constant resistance discharge for 24 hours, the resistor was removed, and the battery was left at 25° C. for 7 days.

次に、2.45v/セルで定電圧充電を行い各密閉形鉛
蓄電池の電流が100mAに達するまでの充電時間を測
定して過放電放置性能を調べた。
Next, constant voltage charging was performed at 2.45 V/cell, and the charging time until the current of each sealed lead acid battery reached 100 mA was measured to examine overdischarge performance.

第1図は、通電停止工程における通電停止時間を20時
間とし、第1の通電工程で課電される課電量を0〜40
0%の範囲で変えた極板を用いた各鉛蓄電池を、上記の
過放電条件で放置した後に充電を行った電池についての
、第1の通電工程で課電された課電量と電流が100m
Aに達するまでの充電時間との関係を示した図である。
In Figure 1, the energization stop time in the energization stop step is 20 hours, and the amount of electricity applied in the first energization step is 0 to 40 hours.
Each lead-acid battery using electrode plates changed in the range of 0% was left under the above overdischarge conditions and then charged, and the charge amount and current applied in the first energization process were 100 m
It is a figure which showed the relationship with the charging time until it reaches A.

本図の横軸には課電量が示され、縦軸には充電時間が示
されている。本図によると、過放電放置をした場合でも
、第1の通電工程で課電される課電量を10%以上とし
た鉛蓄電池を充電する場合が、100mAに到達するま
での時間が最も短くなり、充電性が良いことが判る。
The horizontal axis of this figure shows the amount of charge, and the vertical axis shows the charging time. According to this figure, even if left over-discharged, the time it takes to reach 100 mA is the shortest when charging a lead-acid battery with the amount of charge applied in the first energization step being 10% or more. , it can be seen that the charging performance is good.

第2図は第1の通電工程で課電する課電量を10%とし
て、通電停止工程における通電停止時間を0〜100時
間の範囲で変えた極板を用いた各鉛蓄電池を過放電放置
した電池についての、通電停止時間と電流が100mA
に達するまでの充電時間との関係を示した図である。本
図の横軸には通電停止時間が示され、縦軸には充電時間
が示されている。本図より通電停止時間を20時間以上
とした電池の充電性が最も良くなっていることが判る。
Figure 2 shows that each lead-acid battery using a plate was left to over-discharge, with the amount of electricity applied in the first energization step being 10%, and the energization stop time in the energization stop step being varied in the range of 0 to 100 hours. Regarding the battery, the energization stop time and current are 100mA
It is a figure which showed the relationship with the charging time until reaching. The horizontal axis of this figure shows the energization stop time, and the vertical axis shows the charging time. From this figure, it can be seen that the battery whose energization stop time is 20 hours or more has the best chargeability.

第3図は、通電停止工程における通電停止時間を20時
間として第1の通電工程で課電する課電量を0〜400
%の範囲で変えた極板を用いた各鉛蓄電池の放電容量を
測定結果を示している。第3図において、横軸は課電量
を示し、縦軸は課電量が30%の鉛蓄電池の放電容量を
100とした場合の各鉛蓄電池の放電容量比を示してい
る。本図より第1の通電工程の課電量が20%を越える
と、放電容量が急激に低下し課電量が30%を越えた場
合には徐々に放電容量が低下することが判る。従って課
電量を20%以下にしたほうが、鉛蓄電池の放電性能が
良くなることが判る。
Fig. 3 shows the amount of electricity applied in the first energization step from 0 to 400, assuming that the energization stop time in the energization stop step is 20 hours.
It shows the results of measuring the discharge capacity of each lead-acid battery using electrode plates changed in a range of %. In FIG. 3, the horizontal axis shows the charge amount, and the vertical axis shows the discharge capacity ratio of each lead-acid battery when the discharge capacity of a lead-acid battery with a charge charge of 30% is 100. From this figure, it can be seen that when the amount of electricity applied in the first energization step exceeds 20%, the discharge capacity decreases rapidly, and when the amount of electricity applied exceeds 30%, the discharge capacity gradually decreases. Therefore, it can be seen that the discharge performance of the lead-acid battery improves when the amount of charge is set to 20% or less.

第1図ないし第3図より、第1の通電工程の課電量を1
0〜20%とし、通電停止時間を20時間以上とした鉛
蓄電池では過放電放置後の充電性能及び放電性能が良い
ことが判る。
From Figures 1 to 3, the amount of electricity applied in the first energization step is 1.
It can be seen that lead-acid batteries with a charge ratio of 0 to 20% and a energization stop time of 20 hours or more have good charging performance and discharging performance after being left over-discharged.

(実施例2) 実施例2として電槽化成による鉛蓄電池用極板を下記の
方法で製造した。
(Example 2) As Example 2, an electrode plate for a lead-acid battery was manufactured by the method described below.

先ず最初に集電用基体をなす格子体に未化成の活物質層
を形成して未化成極板を作り、この未化成極板をガラス
細繊維からなるセパレータを介して組合わせて極板群を
作り、これを電槽に挿入し、次に電槽に希硫酸を入れた
。注入した希硫酸は、電槽化成後の硫酸比重が、通常電
池に使われている硫酸比重になるような比重の硫酸を使
用した。
First, an unchemically formed active material layer is formed on a lattice body that forms a current collecting substrate to create an unformed electrode plate, and the unformed electrode plate is assembled through a separator made of fine glass fibers to form an electrode plate group. I made this, inserted it into a battery, and then poured dilute sulfuric acid into the battery. The dilute sulfuric acid injected had a specific gravity such that the specific gravity of the sulfuric acid after forming the battery was the same as that of sulfuric acid normally used in batteries.

希硫酸注入後に、実施例1と同様にして化成の途中に酸
浸漬処理を入れて電槽化成を行った。なお試験条件は実
施例1の試験条件と同じであった。
After injecting dilute sulfuric acid, the container was chemically formed in the same manner as in Example 1 by inserting an acid immersion treatment during the chemical formation. Note that the test conditions were the same as those of Example 1.

次に本発明により製造した鉛蓄電池用極板と通電時間及
び通電停止時間を本発明とは異ならせて作った極板とを
備えた2Ah−12Vタイプの密閉形鉛蓄電池を製造し
て、各種試験を行い本発明の方法により製造した極板を
用いた電池の過放電放置特性を調べてみた。試験方法は
実施例1で行った方法と同様の方法で行った。
Next, a 2Ah-12V type sealed lead-acid battery was manufactured, which was equipped with a lead-acid battery plate manufactured according to the present invention and a plate whose conduction time and de-energization time were different from those of the present invention. Tests were conducted to examine the overdischarge characteristics of batteries using electrode plates manufactured by the method of the present invention. The test method was the same as that used in Example 1.

第4図は通電停止工程における通電停止時間が20時間
で第1の通電工程で課電される課電量をO〜約400%
の範囲で変えて製造した極板を用いた各鉛蓄電池を、実
施例1と同じ条件で過放電放置した後に充電を行った場
合の、第1の通電工程における課電量と充電電流が10
0mAに到達するまでの時間との関係を示した図である
。本図の横軸には課電量が示され、縦軸には充電時間が
示されている。本図より第1の通電工程で課電される課
電量が10〜20%の鉛蓄電池を充電したときの100
mAに到達する時間が最も短く、過放電放置をした場合
でも充電性が優れていることが判る。
Figure 4 shows the amount of electricity charged in the first energization process when the energization stop time in the energization stop process is 20 hours to approximately 400%.
When each lead-acid battery using electrode plates manufactured with different electrodes within the range of
It is a figure showing the relationship with the time until it reaches 0 mA. The horizontal axis of this figure shows the amount of charge, and the vertical axis shows the charging time. From this figure, when charging a lead-acid battery with a charge amount of 10% to 20% in the first energization step, 100
It can be seen that the time to reach mA is the shortest, and the charging performance is excellent even when left over-discharged.

第5図は第1の通電工程で課電される課電量を10%と
して通電停止工程における通電停止時間を0〜100時
間の範囲で変えた極板を用いた各鉛蓄電池の該通電停止
時間と上記実験の充電時間との関係を示した図である。
Figure 5 shows the energization stop time of each lead-acid battery using a plate in which the energization stop time in the energization stop step was varied in the range of 0 to 100 hours, with the amount of electricity applied in the first energization step being 10%. FIG. 3 is a diagram showing the relationship between the charging time and the charging time in the above experiment.

本図の横軸には通電停止時間が示され、縦軸には充電時
間が示されている。本図より通電停止時間を20時間以
上とした電池では、過放電放置をした場合でも充電性が
優れていることが判る。
The horizontal axis of this figure shows the energization stop time, and the vertical axis shows the charging time. From this figure, it can be seen that batteries with a energization stop time of 20 hours or more have excellent chargeability even when left over-discharged.

次に通電停止工程における通電停止時間を20時間とし
第1の通電工程で課電される課電量をO〜約400%の
範囲で変えた極板を用いた各鉛蓄電池の放電容量を測定
した。第6図は横軸に課電量を示し、縦軸に課電量が3
0%の鉛蓄電池の放電容量を100とした場合の各鉛蓄
電池の放電容量比を示している。本図より第1の通電工
程の課電量が20%以下の鉛蓄電池では、放電性能が良
いことが判る。
Next, the discharge capacity of each lead-acid battery was measured using electrode plates in which the energization stop time in the energization stop step was 20 hours, and the amount of electricity applied in the first energization step was varied in the range of 0 to about 400%. . Figure 6 shows the amount of charge on the horizontal axis and the amount of charge 3 on the vertical axis.
The discharge capacity ratio of each lead-acid battery is shown when the discharge capacity of a 0% lead-acid battery is set to 100. From this figure, it can be seen that lead-acid batteries with a charge amount of 20% or less in the first energization step have good discharge performance.

このように電槽化成による鉛蓄電池用極板の製造に本発
明の方法を用いても鉛蓄電池の過放電放置性能を向上さ
せられることが判る。
As described above, it can be seen that even when the method of the present invention is used to manufacture electrode plates for lead-acid batteries through container formation, the over-discharge performance of lead-acid batteries can be improved.

[発明の効果] 請求項1の発明によれば、酸浸漬のための専用の処理槽
を必要とせずに酸浸漬を行えしかも充電時間を短くでき
る。また、電槽化成によっても酸浸漬を行うことができ
、過放電放置性能及び放電容量の高い鉛蓄電池を作るの
必要な鉛蓄電池用極板を簡単に製造することができる。
[Effects of the Invention] According to the invention of claim 1, acid immersion can be performed without requiring a dedicated treatment tank for acid immersion, and the charging time can be shortened. In addition, acid immersion can also be performed by container formation, and the electrode plates for lead-acid batteries, which are necessary for producing lead-acid batteries with high overdischarge performance and high discharge capacity, can be easily manufactured.

また請求項2の発明によれば、第1の通電工程で未化成
の活物質が理論電気量の10〜20%課電されるまで通
電を行ない、通電停止工程における通電停止時間を20
時間以上とすることにより、過放電放置性能及び放電容
量の高い鉛蓄電池を作るのに必要な鉛蓄電池用極板を製
造すことができる。
According to the invention of claim 2, in the first energization step, the unformed active material is energized until 10 to 20% of the theoretical amount of electricity is applied, and the energization stop time in the energization stop step is 20%.
By making it more than 1 hour, it is possible to manufacture a lead acid battery plate necessary for producing a lead acid battery with high overdischarge storage performance and high discharge capacity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1の通電工程で課電される課電量と、該課電
量で製造された極板を用いた鉛蓄電池の過放電放置性能
との関係を表わした図であり、第2図は通電停止工程に
おける通電停止時間と該通電停止時間で製造された極板
を用いた鉛蓄電池の過放電放置性能との関係を表わした
図であり、第3図は第1の通電工程で課電される課電量
と該課電量で製造された極板を用いた鉛蓄電池の放電容
量との関係を表わした図であり、第4図は第1の通電工
程で課電される課電量と電槽化成によって該課電量で製
造された極板を用いた鉛蓄電池の過放電放置性能との関
係を表わした図であり、第5図は通電停止工程における
通電停止時間と電槽化成によって該通電停止時間で製造
された極板を用いた鉛蓄電池の過放、電装置性能との関
係を表わした図であり、第6図は第1の通電工程で課電
される課電量と電槽化成によって該課電量で製造された
極板を用いた鉛蓄電池の放電容量との関係を表わした図
である。 代理人  弁理士  松 本 英 俊 ;。 と。 (外1名)′すゝ 第 図 第 図 体止部61 (h) 第 図 第 図 課電1(%) 第 図 第 図 諌電麺(%)
Figure 1 is a diagram showing the relationship between the amount of electricity applied in the first energization step and the overdischarge performance of a lead-acid battery using a plate manufactured with the amount of electricity applied, and Figure 2 is a diagram showing the relationship between the energization stop time in the energization stop process and the overdischarge storage performance of a lead-acid battery using a plate manufactured during the energization stop time. FIG. 4 is a diagram showing the relationship between the amount of electricity applied and the discharge capacity of a lead-acid battery using a plate manufactured with the amount of electricity applied, and FIG. 4 shows the amount of electricity applied in the first energization process and This is a diagram showing the relationship between the over-discharge and storage performance of lead-acid batteries using electrode plates manufactured with the specified charge amount by the container chemical process, and Figure 5 shows the relationship between the energization stop time in the energization stop process and the charge applied by the container chemical process. This is a diagram showing the relationship between overdischarge of a lead-acid battery using electrode plates manufactured during the energization stop time and the performance of the electrical device. It is a figure showing the relationship with the discharge capacity of a lead-acid battery using the electrode plate manufactured by chemical formation with the said charge amount. Agent: Hidetoshi Matsumoto, patent attorney. and. (1 other person) 'su ゝ fig. fig.

Claims (2)

【特許請求の範囲】[Claims] (1)集電用基体に未化成の活物質層を備えた未化成極
板を硫酸溶液中に浸漬し、該未化成極板に通電を行って
前記未化成の活物質層を化成することにより鉛蓄電池用
極板を製造する方法において、前記硫酸溶液の濃度が酸
浸漬に必要な濃度になるまで前記未化成極板に通電を行
って通電を停止する第1の通電工程と、 酸浸漬が完了するまでの時間通電を停止した状態で前記
未化成極板を前記硫酸溶液中に放置する通電停止工程と
、 前記通電停止工程の後に前記未化成の活物質が化成され
るまで前記未化成極板に通電を行う第2の通電工程とか
らなる鉛蓄電池用極板の製造方法。
(1) An unformed electrode plate having an unformed active material layer on a current collecting substrate is immersed in a sulfuric acid solution, and electricity is applied to the unformed electrode plate to chemically form the unformed active material layer. A first energization step of energizing the unformed electrode plate until the concentration of the sulfuric acid solution reaches the concentration required for acid immersion and then stopping the energization, and acid immersion. a energization stopping step of leaving the unformed electrode plate in the sulfuric acid solution with the energization stopped for a period of time until the energization is completed; A method for manufacturing a lead-acid battery plate, which comprises a second energization step of energizing the plate.
(2)前記第1の通電工程では、前記未化成の活物質が
理論電気量の10〜20%課電されるまで通電が行われ
、 前記通電停止工程における通電停止時間が20時間以上
であることを特徴とする請求項1に記載の鉛蓄電池用極
板の製造方法。
(2) In the first energization step, energization is performed until the unformed active material is charged with 10 to 20% of the theoretical amount of electricity, and the energization stop time in the energization stop step is 20 hours or more. The method for manufacturing a lead-acid battery electrode plate according to claim 1.
JP2260092A 1990-09-28 1990-09-28 Method for manufacturing electrode plate for lead acid battery Expired - Fee Related JP2541355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2260092A JP2541355B2 (en) 1990-09-28 1990-09-28 Method for manufacturing electrode plate for lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2260092A JP2541355B2 (en) 1990-09-28 1990-09-28 Method for manufacturing electrode plate for lead acid battery

Publications (2)

Publication Number Publication Date
JPH04137462A true JPH04137462A (en) 1992-05-12
JP2541355B2 JP2541355B2 (en) 1996-10-09

Family

ID=17343188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2260092A Expired - Fee Related JP2541355B2 (en) 1990-09-28 1990-09-28 Method for manufacturing electrode plate for lead acid battery

Country Status (1)

Country Link
JP (1) JP2541355B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53109134A (en) * 1977-01-20 1978-09-22 Lucas Industries Ltd Method of manufacturing lead acid storage battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53109134A (en) * 1977-01-20 1978-09-22 Lucas Industries Ltd Method of manufacturing lead acid storage battery

Also Published As

Publication number Publication date
JP2541355B2 (en) 1996-10-09

Similar Documents

Publication Publication Date Title
US3607408A (en) Dry-charged lead acid storage battery having partially recharged electrodes and method
JPH04137462A (en) Manufacture of lead storage battery plate
JP4178442B2 (en) Control valve type lead acid battery manufacturing method
JP4081698B2 (en) Lead-acid battery charging method
JPS607069A (en) Manufacture of sealed lead-acid battery
JPH1064530A (en) Manufacture of electrode plate for lead-acid battery
JPH04345756A (en) Manufacture of lead storage battery electrode
JPH11312533A (en) Manufacture of sealed lead-acid battery
JP3111475B2 (en) Manufacturing method of sealed lead-acid battery
JPH01302661A (en) Lead acid battery and its manufacture
JPS6216506B2 (en)
JPS58115775A (en) Lead-acid battery
JPS607059A (en) Manufacture of positive plate for sealed lead storage battery
JPH05151987A (en) Manufacture of sealed type lead acid battery
JPS62145664A (en) Manufacture of sealed lead storage battery
JPS59198670A (en) Sealed lead storage battery
JP2787058B2 (en) Method for manufacturing electrode plate for lead-acid battery
JP2003168471A (en) Forming method in battery box of control valve type lead-acid battery
JP2008091189A (en) Sealed lead acid storage battery
JPH05325950A (en) Manufacture of lead-acid battery of negative electrode absorbing sealed type
JPS58209863A (en) Lead-acid battery
JPH0443564A (en) Manufacture of positive plate for sealed lead storage battery
JPH09306505A (en) Current collector for lead-acid battery, its manufacture, and electrode plate using it
JP2006066253A (en) Lead-acid storage battery
JP2004199913A (en) Manufacturing method for control valve type lead storage battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees