JPH04136897U - Current introduction terminal - Google Patents

Current introduction terminal

Info

Publication number
JPH04136897U
JPH04136897U JP4532791U JP4532791U JPH04136897U JP H04136897 U JPH04136897 U JP H04136897U JP 4532791 U JP4532791 U JP 4532791U JP 4532791 U JP4532791 U JP 4532791U JP H04136897 U JPH04136897 U JP H04136897U
Authority
JP
Japan
Prior art keywords
cooling water
conductor
heating coil
outer conductor
current introduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4532791U
Other languages
Japanese (ja)
Inventor
圭一 片山
光雄 加藤
一也 鶴崎
康良 竹岡
清 和泉
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to JP4532791U priority Critical patent/JPH04136897U/en
Publication of JPH04136897U publication Critical patent/JPH04136897U/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)

Abstract

(57)【要約】 【目的】 リアクタンスが小さく低損失な電流導入端子
を得る。 【構成】 内部導体5及び外部導体4は同軸構造となっ
ており、両導体5,4間はギャップ6及び絶縁物9によ
り絶縁されている。内部導体5の内側空間は冷却水通路
5aとなっており、冷却通路5a内を冷却水が通流す
る。外部導体4を構成する第1及び第2の外部導体4−
1,4−2間は冷却水通路4aとなっており、冷却通路
4a内を冷却水が通流する。電流導入端子11−1の電
源側には電源側接続端子3が接続され、加熱コイル側に
は加熱コイル側接続フランジ2が接続される。
(57) [Summary] [Purpose] To obtain a current introduction terminal with small reactance and low loss. [Structure] The inner conductor 5 and the outer conductor 4 have a coaxial structure, and the two conductors 5 and 4 are insulated by a gap 6 and an insulator 9. The inner space of the internal conductor 5 is a cooling water passage 5a, and cooling water flows through the inside of the cooling passage 5a. First and second external conductors 4- constituting the external conductor 4
1, 4-2 is a cooling water passage 4a, and cooling water flows through the inside of the cooling passage 4a. A power supply side connection terminal 3 is connected to the power supply side of the current introduction terminal 11-1, and a heating coil side connection flange 2 is connected to the heating coil side.

Description

【考案の詳細な説明】[Detailed explanation of the idea]

【0001】0001

【産業上の利用分野】[Industrial application field]

本考案は電流導入端子に関し、真空誘導加熱装置やガス雰囲気中の誘導加熱炉 に用いられるものである。 This invention relates to current introduction terminals, and is applicable to vacuum induction heating equipment and induction heating furnaces in gas atmospheres. It is used for.

【0002】0002

【従来の技術】[Conventional technology]

従来の真空誘導加熱装置の構成例を、図9及び図10に示す。るつぼ19内に 装入される被加熱物13は、加熱コイル12を流れる高周波電流14によって発 生する高周波交番磁界により誘導加熱される。加熱コイル12,るつぼ19、お よび被加熱物13は、真空槽17中に設置され、真空槽17の内部は真空排気装 置18により真空状態に保持される。真空槽17内に設置された加熱コイル12 に高周波電力を供給するために、真空シールを兼ねた電流導入端子11が、絶縁 物9とともに設けられ、高周波電源16に接続される。 An example of the configuration of a conventional vacuum induction heating device is shown in FIGS. 9 and 10. Inside crucible 19 The charged object 13 is heated by the high frequency current 14 flowing through the heating coil 12. The generated high-frequency alternating magnetic field generates induction heating. Heating coil 12, crucible 19, and the object to be heated 13 are installed in a vacuum chamber 17, and the inside of the vacuum chamber 17 is equipped with a vacuum exhaust system. The vacuum state is maintained by a vacuum chamber 18. Heating coil 12 installed in vacuum chamber 17 In order to supply high frequency power to the It is provided together with the device 9 and connected to the high frequency power source 16 .

【0003】 電流導入端子11及び加熱コイル12は、これに流れる高周波電流14により ジュール発熱するため、冷却を必要とし、通常、電流導入端子11及び加熱コイ ル12の両者とも、内部に冷却水通路が形成され冷却水の通水が可能な中空導体 が用いられ、冷却水給排水孔8,8′を介して同時に水冷される。0003 The current introduction terminal 11 and the heating coil 12 are heated by the high frequency current 14 flowing therethrough. Because Joule heat is generated, cooling is required, and the current introduction terminal 11 and heating coil are usually 12 are hollow conductors with cooling water passages formed inside and through which cooling water can flow. are used, and are simultaneously water-cooled through cooling water supply and drainage holes 8 and 8'.

【0004】0004

【考案が解決しようとする課題】[Problem that the idea aims to solve]

上記の従来の真空誘導加熱装置への電流導入端子には、次の問題があった。 The current introduction terminal for the conventional vacuum induction heating device described above has the following problems.

【0005】 (1) すなわち、平行往復導体による電流導入端子であり、かつ、各導体の電 流導入部において、真空シール処理の必要があることから、導体間ギャップを一 定距離確保する必要がある。 このため、電流導入端子のリアクタンスならびに抵抗が大きくなる。なお、リ アクタンスとは交流における無効抵抗分を表わし、「電流×リアクタンス」に相 当する電圧降下が生じる。平行配置の往復導体において、そのリアクタンスは周 波数に比例し、両導体間のギャップとともに大きくなる。[0005] (1) In other words, it is a current introduction terminal with parallel reciprocating conductors, and the current of each conductor is Since vacuum sealing is required at the flow introduction section, the gap between the conductors must be uniform. It is necessary to maintain a certain distance. Therefore, the reactance and resistance of the current introduction terminal become large. In addition, if Actance represents the reactive resistance component in alternating current, and is equivalent to "current x reactance". A corresponding voltage drop will occur. In a reciprocating conductor arranged in parallel, its reactance is It is proportional to the wave number and increases with the gap between both conductors.

【0006】 (2) 電流導入端子のリアクタンスが大きいため、ここでの電圧降下が大きく 、リアクタンスに比例した皮相電力がコイル加熱電力に加えて必要となる。[0006] (2) Because the reactance of the current introduction terminal is large, the voltage drop here is large. , an apparent power proportional to the reactance is required in addition to the coil heating power.

【0007】 (3) 電流導入端子の抵抗が大きいため、ここでのジュール発熱に伴う損失が 大きく、効率が低下する。 上記の欠点は、誘導加熱コイルのリアクタンス,抵抗が小さいほど、あるいは 周波数が大きいほど顕著となる。[0007] (3) Since the resistance of the current introduction terminal is large, the loss due to Joule heat generation here is Larger and less efficient. The disadvantages mentioned above are that the smaller the reactance and resistance of the induction heating coil, or The larger the frequency, the more noticeable it becomes.

【0008】 本考案は、上記従来技術に鑑み、損失の少ない電流導入端子を提供することを 目的とする。[0008] In view of the above-mentioned conventional technology, the present invention aims to provide a current introduction terminal with low loss. purpose.

【0009】[0009]

【課題を解決するための手段】[Means to solve the problem]

本考案は、上記課題を解決するため、次の手段を講ずる。すなわち、従来の電 流導入端子における平行往復導体では、著しいリアクタンスおよび抵抗の低下は 望めないことから、 往復導体を同軸構造とし、 外部導体と内部導体との間のギャップを小さくすることにより、リアクタン ス及び抵抗を減ずる。(従来方式の数分の1〜数十分の1)。 また、外部導体,内部導体ともその内部に冷却水を通水可能な構造とするこ により、コイルへの冷却水通路をも兼ねる。 このようにして高周波,大電流においても低損失の電流導入端子を提供する。 The present invention takes the following measures to solve the above problems. In other words, traditional With parallel reciprocating conductors at the flow introduction terminals, significant reactance and resistance decreases are Because I can't hope for it, The reciprocating conductor has a coaxial structure, By reducing the gap between the outer and inner conductors, the reactor reduce stress and resistance. (One to several tenths of the conventional method). In addition, both the outer conductor and the inner conductor must have a structure that allows cooling water to flow inside them. This also serves as a cooling water passage to the coil. In this way, a current introduction terminal with low loss even at high frequencies and large currents is provided.

【0010】0010

【作用】[Effect]

上記手段により、本考案による電流導入端子は、以下のように機能する。 (1) 往復導体を同軸構造とすることにより、真空シール部に関係なく両導体 間のギャップを小さくできることから、リアクタンスが小さくなる。 (2) 往復導体を同軸構造とした場合、これの抵抗は円周長に反比例し、従来 方式に較べ、同一の占有寸法では周長が大きいために抵抗が低減される。 With the above means, the current introduction terminal according to the present invention functions as follows. (1) By using a coaxial structure for the reciprocating conductors, both conductors can be connected regardless of the vacuum seal area. Since the gap between them can be made smaller, the reactance becomes smaller. (2) When the reciprocating conductor has a coaxial structure, its resistance is inversely proportional to the circumference length, which is different from the conventional Compared to the conventional method, the resistance is reduced because the circumferential length is larger for the same occupied dimensions.

【0011】[0011]

【実施例】【Example】

以下に本考案の実施例を図面に基づき詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

【0012】 本考案の実施例に係る電流導入端子11−1を、図1〜図6を基に説明する。 図1は断面図、図2は図1のII−II断面図、図3は平面図、図4は正面図、 図5は図3のV−V矢視図、図6は図3のVI−VI矢視図である。0012 A current introduction terminal 11-1 according to an embodiment of the present invention will be explained based on FIGS. 1 to 6. 1 is a sectional view, FIG. 2 is a sectional view taken along II-II in FIG. 1, FIG. 3 is a plan view, and FIG. 4 is a front view. 5 is a view along the line V-V in FIG. 3, and FIG. 6 is a view along the line VI-VI in FIG.

【0013】 これらの図に示すように内部導体5は円筒状をなし内部空間が冷却水通路5a となっている。外部導体4は円筒状の第1外部導体4−1と第2外部導体4−2 とで形成されており、内部導体5の外周部に円心状に配置されている。そして内 部導体5と第1外部導体4−1との間にはギャップ6を備えており、第1外部導 体4−1と第2外部導体4−2との空間が冷却水通路4aとなっている。冷却水 通路4a,5aには、冷却水給排水孔8,8′を介して冷却水7,7′が給排さ れる。一方、第2外部導体4−2には、真空槽接続フランジ1が固定されており 、この電流導入端子11−1は接続フランジ1を介して真空槽17に取り付けら れ、0リング10によりシールをする。[0013] As shown in these figures, the internal conductor 5 has a cylindrical shape, and the internal space is a cooling water passage 5a. It becomes. The outer conductor 4 includes a cylindrical first outer conductor 4-1 and a second outer conductor 4-2. and are arranged in a circular shape around the outer periphery of the internal conductor 5. and inside A gap 6 is provided between the outer conductor 5 and the first outer conductor 4-1. A space between the body 4-1 and the second outer conductor 4-2 serves as a cooling water passage 4a. Cooling water Cooling water 7, 7' is supplied to and discharged from the passages 4a, 5a via cooling water supply/drainage holes 8, 8'. It will be done. On the other hand, the vacuum chamber connection flange 1 is fixed to the second external conductor 4-2. , this current introduction terminal 11-1 is attached to the vacuum chamber 17 via the connection flange 1. and seal with O-ring 10.

【0014】 電源側接続端子3は、導体4,5の電源側に備えられており、第2外部導体4 −2に電気的に接続された接続端子3aと、第1外部導体4−1に電気的に接続 された接続端子3bと、絶縁物9と、0リング10a,10bを有している。接 続端子3a,3bは電源の出力端子に接続される。[0014] The power supply side connection terminal 3 is provided on the power supply side of the conductors 4 and 5, and is connected to the second external conductor 4. -2 electrically connected to the connecting terminal 3a and the first external conductor 4-1 electrically connected. It has a connecting terminal 3b, an insulator 9, and O-rings 10a and 10b. Contact The connection terminals 3a and 3b are connected to the output terminal of the power supply.

【0015】 加熱コイル側接続フランジ2は、導体4,5の加熱コイル側に備えられており 、2つの接続端子2a,2bを有している。接続端子2aは外部導体4と加熱コ イルの一端とを電気的に接続するとともに、コイルの冷却水通路の一端側と外部 導体4の冷却水通路4aとを連通する。接続端子2bは内部導体5と加熱コイル の他端とを電気的に接続するとともに、コイルの冷却水通路の他端側と内部導体 5の冷却水通路5aとを連通する。[0015] The heating coil side connection flange 2 is provided on the heating coil side of the conductors 4 and 5. , has two connection terminals 2a and 2b. The connection terminal 2a connects the outer conductor 4 and the heating coil. electrically connect one end of the coil cooling water passage to the outside. It communicates with the cooling water passage 4a of the conductor 4. The connection terminal 2b is connected to the internal conductor 5 and the heating coil. In addition to electrically connecting the other end of the coil, the other end of the cooling water passage of the coil and the internal conductor No. 5 cooling water passage 5a is communicated with the cooling water passage 5a.

【0016】 図7,図8は実施例に係る電流導入端子11−1を用いて、電源16と加熱コ イル12とを接続した状態を示す。なお13は被加熱物である。[0016] 7 and 8 show the power supply 16 and heating coil using the current introduction terminal 11-1 according to the embodiment. The state in which the file 12 is connected is shown. Note that 13 is an object to be heated.

【0017】 上述した構成となっている電流導入端子11−1の作用を次に説明する。 電源側接続端子3の接続端子3aを介して電源16から供給される高周波電流 14は、外部導体4(4−1,4−2)を通じて真空槽内に導かれ、加熱コイル 側接続フランジ2の接続端子2aを介して真空槽内の加熱コイル12へ供給され る。 上記加熱コイル12を貫流した高周波電流14は、加熱コイル側接続フランジ 2の接続端子2b→内部導体5→電源側接続端子3の接続端子3bを介して電源 16へ戻る。なお、上記においては便宜的に一方向の電流で示したが交流電流で あるから、電流方向は高周波の周期に応じて交番する。 本実施例では、リアクタンスが従来方式の27%に、損失が25%になった。[0017] The operation of the current introduction terminal 11-1 having the above-described configuration will be explained next. High frequency current supplied from the power supply 16 via the connection terminal 3a of the power supply side connection terminal 3 14 is led into the vacuum chamber through the outer conductor 4 (4-1, 4-2), and is connected to the heating coil. It is supplied to the heating coil 12 in the vacuum chamber via the connection terminal 2a of the side connection flange 2. Ru. The high frequency current 14 flowing through the heating coil 12 is transmitted to the heating coil side connection flange. 2 connection terminal 2b → internal conductor 5 → power supply side connection terminal 3 through connection terminal 3b Return to 16. Note that although the above is shown as a unidirectional current for convenience, it is an alternating current. Therefore, the current direction alternates according to the period of the high frequency. In this example, the reactance was 27% of the conventional method, and the loss was 25%.

【0018】 外部導体4(4−1,4−2)と内部導体5との間は、絶縁物9ならびにギャ ップ6により電気的に絶縁される。真空槽接続フランジ1および絶縁物9の部分 に装備される0リング10,10a,10bにより、真空槽と大気とは真空シー ルされる。また、冷却水給排水孔8,8′を介して供給される冷却水7,7′は 外部導体4(4−1,4−2)および内部導体5のそれぞれの内部に形成された 冷却水通路4a,5aを通り、加熱コイル側接続フランジ2(2a,2b)を介 して加熱コイルを冷却する。[0018] An insulator 9 and a gap are provided between the outer conductor 4 (4-1, 4-2) and the inner conductor 5. It is electrically insulated by the top 6. Vacuum chamber connection flange 1 and insulator 9 part O-rings 10, 10a, and 10b installed in the vacuum chamber create a vacuum seal between the vacuum chamber and the atmosphere. will be sent. In addition, the cooling water 7, 7' supplied through the cooling water supply and drainage holes 8, 8' is formed inside each of the outer conductor 4 (4-1, 4-2) and the inner conductor 5. Passes through the cooling water passages 4a, 5a and via the heating coil side connection flange 2 (2a, 2b). to cool the heating coil.

【0019】[0019]

【考案の効果】[Effect of the idea]

以上に説明したように本考案は、次の効果を奏する。 (1) 同軸型の往復導体構造となっているので、リアクタンスが極めて小さく 、皮相電力の低減ができる。実施例においては、リアクタンスが従来方式の27 %に、損失が25%となった。 (2) 同じく同軸型であるため、低損失の電流導入端子が実現でき加熱効果が 向上する。 (3) 外部導体,内部導体とも冷却水通水が可能な構造であることから、従来 と同様に加熱コイルへの冷却水通路として兼用できる。 As explained above, the present invention has the following effects. (1) Because it has a coaxial reciprocating conductor structure, reactance is extremely small. , the apparent power can be reduced. In the example, the reactance is 27 in the conventional method. %, the loss was 25%. (2) Since it is also a coaxial type, it can realize a low-loss current introduction terminal and has a heating effect. improves. (3) Since the structure allows cooling water to flow through both the external conductor and internal conductor, Similarly, it can also be used as a cooling water passage to the heating coil.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本考案の実施例に係る電流導入端子を示す断面
図である。
FIG. 1 is a sectional view showing a current introduction terminal according to an embodiment of the present invention.

【図2】図1のII−II断面を示す断面図である。FIG. 2 is a cross-sectional view taken along II-II in FIG. 1;

【図3】実施例の電流導入端子を示す平面図である。FIG. 3 is a plan view showing the current introduction terminal of the embodiment.

【図4】実施例の電流導入端子を示す正面図である。FIG. 4 is a front view showing the current introduction terminal of the embodiment.

【図5】図3のV−V矢視図である。FIG. 5 is a view taken along the line V-V in FIG. 3;

【図6】図3のVI−VI矢視図である。FIG. 6 is a view taken along the line VI-VI in FIG. 3;

【図7】実施例の使用状態を示す構成図である。FIG. 7 is a configuration diagram showing the usage state of the embodiment.

【図8】実施例の使用状態を示す構成図である。FIG. 8 is a configuration diagram showing the usage state of the embodiment.

【図9】従来技術を示す構成図である。FIG. 9 is a configuration diagram showing a prior art.

【図10】従来技術を示す構成図である。FIG. 10 is a configuration diagram showing a prior art.

【符号の説明】[Explanation of symbols]

1 真空槽接続フランジ 2 加熱コイル側接続フランジ 2a,2b 接続端子 3 電源側接続端子 3a,3b 接続端子 4,4−1,4−2 外部導体 4a 冷却水通路 5 内部導体 5a 冷却水通路 6 ギャップ 7,7′ 冷却水 8,8′ 冷却水給排水孔 9 絶縁物 10,10a,10b 0リング 11,11−1 電流導入端子 12 加熱コイル 13 被加熱物 14 高周波電流 1 Vacuum chamber connection flange 2 Heating coil side connection flange 2a, 2b connection terminal 3 Power supply side connection terminal 3a, 3b connection terminal 4, 4-1, 4-2 Outer conductor 4a Cooling water passage 5 Internal conductor 5a Cooling water passage 6 Gap 7,7' Cooling water 8, 8' Cooling water supply and drainage hole 9 Insulator 10, 10a, 10b 0 ring 11, 11-1 Current introduction terminal 12 Heating coil 13 Object to be heated 14 High frequency current

フロントページの続き (72)考案者 竹岡 康良 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)考案者 和泉 清 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内Continuation of front page (72) Creator Yasushi Takeoka 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries, Ltd. Hiroshima Research Center (72) Creator Kiyoshi Izumi 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries, Ltd. Hiroshima Research Center

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 加熱コイルを内部に備えた加熱装置の槽
に備えられており、槽外の電源と槽内の前記加熱コイル
との間で電流を伝送するとともに、槽外と内部に冷却水
通路が形成された前記加熱コイルとの間で冷却水を送る
機能をはたす電流導入端子において、円筒状をなし内部
空間が冷却水を通す冷却水通路となっている内部導体
と、ギャップを介して内部導体の外周側に同心状に配置
された円筒状の第1外部導体と、第1外部導体の外周側
に冷却水通路となる空間をとって同心状に配置された円
筒状の第2外部導体とでなる外部導体と、内部導体及び
外部導体の電源側に備えられており、内部導体と外部導
体を電源に電気的に接続する電源側接続端子と、内部導
体及び外部導体の加熱コイル側に備えられており、内部
導体と加熱コイルの一端ならびに外部導体と加熱コイル
の他端を電気的に接続するとともに、内部導体及び外部
導体の冷却水通路と加熱コイルの冷却水通路とをつなぐ
加熱コイル側接続フランジと、を具備することを特徴と
する電流導入端子。
Claim 1: A heating device equipped with a heating coil inside the tank, transmitting current between a power source outside the tank and the heating coil inside the tank, and cooling water inside and outside the tank. In a current introduction terminal that functions to send cooling water between the heating coil and the heating coil in which a passage is formed, an internal conductor having a cylindrical shape and an internal space serving as a cooling water passage through which the cooling water passes, and a gap A cylindrical first outer conductor is arranged concentrically on the outer periphery of the inner conductor, and a cylindrical second outer conductor is arranged concentrically with a space serving as a cooling water passage on the outer periphery of the first outer conductor. an outer conductor consisting of a conductor, a power supply side connection terminal provided on the power supply side of the inner conductor and outer conductor to electrically connect the inner conductor and outer conductor to the power supply, and a heating coil side of the inner conductor and outer conductor. It is equipped with a heating device that electrically connects the inner conductor and one end of the heating coil, and the outer conductor and the other end of the heating coil, and connects the cooling water passage of the inner conductor and outer conductor with the cooling water passage of the heating coil. A current introduction terminal comprising a coil side connection flange.
JP4532791U 1991-06-17 1991-06-17 Current introduction terminal Withdrawn JPH04136897U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4532791U JPH04136897U (en) 1991-06-17 1991-06-17 Current introduction terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4532791U JPH04136897U (en) 1991-06-17 1991-06-17 Current introduction terminal

Publications (1)

Publication Number Publication Date
JPH04136897U true JPH04136897U (en) 1992-12-21

Family

ID=31925224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4532791U Withdrawn JPH04136897U (en) 1991-06-17 1991-06-17 Current introduction terminal

Country Status (1)

Country Link
JP (1) JPH04136897U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016035811A (en) * 2014-08-01 2016-03-17 トクデン株式会社 Fluid heating apparatus
WO2020090326A1 (en) * 2018-10-31 2020-05-07 株式会社東芝 Current introduction terminal structure and electromagnet device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016035811A (en) * 2014-08-01 2016-03-17 トクデン株式会社 Fluid heating apparatus
WO2020090326A1 (en) * 2018-10-31 2020-05-07 株式会社東芝 Current introduction terminal structure and electromagnet device
JP2020072164A (en) * 2018-10-31 2020-05-07 株式会社東芝 Current introduction terminal structure and electromagnet device
KR20210025665A (en) * 2018-10-31 2021-03-09 가부시끼가이샤 도시바 Current introduction terminal structure and electromagnet device

Similar Documents

Publication Publication Date Title
US5880661A (en) Complex magnetic field generating device
CA2943862C (en) Electrical hollow conductor for an electromagnetic machine
EP0252719A1 (en) Electric fluid heater
JP2005505906A (en) Multi-coil induction plasma torch for solid-state power supply
JPS5866283A (en) Gaseous or liquidus medium heating device
CN104378906A (en) High-power RF coupler
CN100589912C (en) Temperature self-regulating soldering iron with removable tip
CN209691506U (en) A kind of electromagnetic spool device and magnetic separator
US2430640A (en) Induction heating system with alternately energized coaxial conductors
JPH04136897U (en) Current introduction terminal
JPS5921596A (en) Flat induction coil for crucible-free zone melting
JP2004047192A (en) Transformer discharge type plasma generating device by magnet-permeating core
CN105097388A (en) 1kW/915MHz continuous wave magnetron
JPH11257867A (en) Power supply system for vacuum furnace
RU2108649C1 (en) Method and device for feeding electrical equipment
JPH08148346A (en) High frequency transformer
CN210899097U (en) Structure for forming series resonance circuit by jointing transformer, capacitor and inductor
US4331854A (en) Low frequency induction heater
CN213237944U (en) Fluid food heating pipe
CN110213873A (en) A kind of water power coupling arrangement for arc plasma generator
CN110429918A (en) A kind of transformer, capacitor and inductance engage the structure to form series resonance
CN2521864Y (en) Surface induction heating long-service life inductor
GB1254889A (en) Forming method
US2031435A (en) Electrode arrangement for controlling electric arcs
CN2465290Y (en) High-efficient high and intermediate frequency transformer

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19950907