JPH0413681B2 - - Google Patents
Info
- Publication number
- JPH0413681B2 JPH0413681B2 JP59245238A JP24523884A JPH0413681B2 JP H0413681 B2 JPH0413681 B2 JP H0413681B2 JP 59245238 A JP59245238 A JP 59245238A JP 24523884 A JP24523884 A JP 24523884A JP H0413681 B2 JPH0413681 B2 JP H0413681B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- total reflection
- molybdenum
- reflection mirror
- tungsten
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000758 substrate Substances 0.000 claims description 58
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 32
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 24
- 229910052710 silicon Inorganic materials 0.000 claims description 24
- 239000010703 silicon Substances 0.000 claims description 24
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 22
- 229910052750 molybdenum Inorganic materials 0.000 claims description 22
- 239000011733 molybdenum Substances 0.000 claims description 22
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 21
- 229910052721 tungsten Inorganic materials 0.000 claims description 21
- 239000010937 tungsten Substances 0.000 claims description 21
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 16
- 239000001569 carbon dioxide Substances 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- 238000011156 evaluation Methods 0.000 description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- 229910052802 copper Inorganic materials 0.000 description 9
- 239000010949 copper Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 239000006061 abrasive grain Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910001096 P alloy Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Optical Elements Other Than Lenses (AREA)
- Laminated Bodies (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、炭酸ガスレーザ、特に大出力の炭酸
ガスレーザに用いる全反射鏡用基板に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a substrate for a total reflection mirror used in a carbon dioxide laser, particularly a high-output carbon dioxide laser.
従来の技術
炭酸ガスレーザは切断、溶接、焼き入れ等に広
く使用されている。炭酸ガスレーザにおいて、レ
ーザ共振器内、或は外部光学系中に用いられる全
反射鏡は、その出力、出力横モード、信頼性を左
右している。即ち、全反射鏡の反射率が高ければ
反射ロスが少ないため出力は増大し、吸収に伴う
発熱も少ないので、全反射鏡の変形、損傷が少な
く、メンテナンスの頻度の少ない、高信頼性の装
置となる。これは特に数KW〜20KWの大出力の
炭酸ガスレーザでは非常に重要な問題となる。そ
れは大出力のため全反射鏡の反射すべきパワーの
絶対量のみならず、パワー密度も高く、僅のロス
も全体の出力ロス、損傷、信頼性に大きく影響す
るからである。BACKGROUND OF THE INVENTION Carbon dioxide lasers are widely used for cutting, welding, hardening, etc. In a carbon dioxide laser, the total reflection mirror used inside the laser resonator or in the external optical system influences its output, output transverse mode, and reliability. In other words, if the reflectance of the total reflection mirror is high, the output will increase due to less reflection loss, and there will be less heat generation due to absorption, resulting in a highly reliable device with less deformation and damage to the total reflection mirror and less frequent maintenance. becomes. This is a very important problem, especially for carbon dioxide lasers with high outputs of several kilowatts to 20 kilowatts. This is because not only the absolute amount of power to be reflected by the total reflection mirror but also the power density is high due to the large output, and even a small loss greatly affects the overall output loss, damage, and reliability.
従来、小出力の炭酸ガスレーザ用の全反射鏡に
は、研摩の容易な点から銅基板等にニツケル、リ
ンの合金をメツキ処理し、その上を研摩した基
板、或はシリコン基板を研摩したもの等の上に反
射面として金を蒸着したもの、或は銀を蒸着し、
更に保護膜を蒸着したもの、または誘電体多層膜
よりなる高反射膜を蒸着したものなどが用いられ
てきた。 Conventionally, total reflection mirrors for low-output carbon dioxide lasers have been made by plating a copper substrate with an alloy of nickel and phosphorus and polishing it, or by polishing a silicon substrate, for ease of polishing. etc., with gold vapor-deposited as a reflective surface, or silver vapor-deposited,
Furthermore, those with a protective film deposited thereon, or those with a highly reflective film made of a dielectric multilayer film deposited thereon, have been used.
発明が解決しようとする問題点
しかしながら上記従来の全反射鏡基板は大出力
炭酸ガスレーザには、以下に述べる理由により安
定して使用することが困難である。Problems to be Solved by the Invention However, it is difficult to use the conventional total reflection mirror substrate described above stably in a high-output carbon dioxide laser for the reasons described below.
大出力炭酸ガスレーザ用全反射鏡基板として要
求されることは、第1に大出力レーザの照射に対
し、反射面で反射されずに表面に吸収されること
によつて発生した熱を速やかに拡散することであ
り、第2にはレーザ光を吸収することによつて生
ずる局所的な変化を出来るだけ小さくして、反射
面を正確な初期の形状に保つことである。前者は
熱伝導度(K)に関係し、後者は線膨張係数(α)に
関係する。従つて全反射鏡基板としての性能評価
指数(F.M.)は次の様に定義することができる。 The first requirement for a total reflection mirror substrate for a high-output carbon dioxide laser is to quickly diffuse the heat generated by the high-output laser irradiation by being absorbed by the surface without being reflected by the reflective surface. The second objective is to minimize local changes caused by absorption of laser light to maintain the reflective surface in its correct initial shape. The former is related to thermal conductivity (K), and the latter is related to linear expansion coefficient (α). Therefore, the performance evaluation index (FM) for a total reflection mirror substrate can be defined as follows.
F.M.≡K/α
各種の基板材料について性能評価指数F.M.を
計算し、銅を1とした指数で表示した結果を第2
図に示す。この図より明らかなようにシリコンが
性能評価指数F.M.が一番大きく、基板材料とし
て優れているように思われる。しかしながらシリ
コン基板上に高反射膜を形成してなる全反射鏡を
大出力レーザに安心して使用することは出来な
い。それはシリコンは炭酸ガスレーザ光を吸収し
て発熱する度合が大きいからである。即ち、シリ
コン基板上の反射膜がレーザ光損傷を受け、部分
的に基板のシリコンがレーザ光にさらされるとシ
リコン基板は局所的に発熱して基板が破壊してし
まうからである。 FM≡K/α The performance evaluation index FM is calculated for various substrate materials, and the results are expressed as an index with copper as 1.
As shown in the figure. As is clear from this figure, silicon has the highest performance evaluation index FM and appears to be an excellent substrate material. However, a total reflection mirror formed by forming a highly reflective film on a silicon substrate cannot be safely used for a high-output laser. This is because silicon absorbs carbon dioxide laser light and generates a large amount of heat. That is, if the reflective film on the silicon substrate is damaged by the laser beam and the silicon of the substrate is partially exposed to the laser beam, the silicon substrate will locally generate heat and the substrate will be destroyed.
銅基板にニツケル隣合金メツキした基板の場
合、性能評価指数F.M.が銅より小さく、発生熱
による変形が大きいので、大出力用には不適当で
ある。 In the case of a copper substrate plated with a nickel-adjacent alloy, the performance evaluation index FM is smaller than that of copper, and deformation due to generated heat is large, making it unsuitable for high output applications.
そこで性能評価指数F.M.が大きく、それ自身、
反射率の高いモリブデン(98.4%)、タングステ
ン(98.2%)が基板材料として現在最も優れてい
ることになる。更にモリブデン、タングステン等
の硬質金属は機械強度が高く、銅基板の場合のよ
うに取付け時の高い力によつて生ずる永久変形が
起り難いという利点も有している。しかしながら
モリブデンやタングステン基板は上記のような多
くの利点を有する反面、次のような欠点を有して
いる。 Therefore, the performance evaluation index FM is large, and itself,
Molybdenum (98.4%) and tungsten (98.2%), which have high reflectivity, are currently the best substrate materials. Furthermore, hard metals such as molybdenum and tungsten have high mechanical strength and have the advantage of being less likely to undergo permanent deformation caused by high forces during installation, as is the case with copper substrates. However, although molybdenum and tungsten substrates have many advantages as described above, they also have the following disadvantages.
モリブデン、タングステンの比重はそれぞれ
10.2g/c.c.、19.3g/c.c.と大きく、直径10cm、厚
み2cmの基板として構成した場合の重量はそれぞ
れ約1.6Kg、約3Kgと非常に重くなると同時に高
価である。同じ形状のシリコン基板であれば、約
0.37Kgで、モリブデンの約4分の1、タングステ
ンの約8分の1と軽量である。銅基板、或は銅に
ニツケル隣合金メツキした基板等は比重が8.96
g/c.c.であるので、モリブデンに近く重過ぎる。 The specific gravity of molybdenum and tungsten is
They are large at 10.2 g/cc and 19.3 g/cc, and when constructed as a substrate with a diameter of 10 cm and a thickness of 2 cm, the weights are approximately 1.6 kg and approximately 3 kg, respectively, making them extremely heavy and expensive. For silicon substrates of the same shape, approx.
At 0.37 kg, it is about 1/4th the weight of molybdenum and about 1/8th the weight of tungsten. The specific gravity of copper substrates or copper substrates plated with nickel-adjacent alloys is 8.96.
g/cc, it is too heavy and close to molybdenum.
従つてモリブデン、タングステンの利点を維持
し、且つ欠点である重さとコスト高を解決した全
反射鏡基板が望まれている。 Therefore, there is a need for a total reflection mirror substrate that maintains the advantages of molybdenum and tungsten while solving the disadvantages of weight and high cost.
そこで、本発明は、性能評価指数F.M.が大き
く、誤つてレーザ損傷を受けても破損されず、大
出力の炭酸ガスレーザに用いて軽量で安価な全反
射鏡基板を提供することを目的とするものであ
る。 SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a lightweight and inexpensive total reflection mirror substrate that has a large performance evaluation index FM, is not damaged even if it is accidentally damaged by a laser beam, and can be used in a high-output carbon dioxide laser. It is.
問題点を解決するための手段
そして上記問題点を解決する本発明の技術的な
手段はシリコン基板上にモリブデン、或はタング
ステン等の硬質金属板を一体に設け、この硬質金
属板の表面を研摩したことを特徴とするものであ
る。Means for Solving the Problems The technical means of the present invention for solving the above problems is to provide a hard metal plate such as molybdenum or tungsten on a silicon substrate, and to polish the surface of this hard metal plate. It is characterized by the fact that
作 用
上記のようにシリコン基板と、モリブデン、或
はタングステン等の硬質金属板を組合わせること
により互の欠点を補い、互の長所を相剰的に組合
わせることができる。即ち、シリコン基板の高い
熱伝導度、軽量化、機械強度の強さ、コストの有
利さと、モリブデン、或はタングステン等の硬質
金属板の優れた性能評価指数、高反射率等を兼ね
備えることができる。Function As described above, by combining a silicon substrate and a hard metal plate such as molybdenum or tungsten, it is possible to compensate for each other's shortcomings and to combine each other's strengths in a mutually beneficial manner. In other words, it can combine the high thermal conductivity, light weight, high mechanical strength, and cost advantages of a silicon substrate with the excellent performance evaluation index, high reflectance, etc. of a hard metal plate such as molybdenum or tungsten. .
実施例
以下、本発明の一実施例を図面に基いて詳細に
説明する。第1図において1は直径10cmで、厚み
が1.9cmの肉厚のシリコン基板、2は直径10cm、
厚みが0.1cmの肉薄のモリブデン、或はタングス
テンよりなる硬質金属板であり、シリコン基板1
上に硬質金属板2が耐熱無機接着剤(例えばアロ
ンセラミツクス〔東亜合成化学株式会社製〕)に
より接着されて一体となつている。硬質金属板2
の表面はダイヤモンド砥粒により機械的に研摩さ
れた後、更に化学的腐食作用を有する液体中にダ
イヤモンド砥粒を懸濁させた加工液によつて研摩
が行われて鏡面が形成され、全反射鏡基板3が形
成されている。Embodiment Hereinafter, an embodiment of the present invention will be described in detail based on the drawings. In Figure 1, 1 is a silicon substrate with a diameter of 10 cm and a thickness of 1.9 cm, 2 is a silicon substrate with a diameter of 10 cm,
It is a thin hard metal plate made of molybdenum or tungsten with a thickness of 0.1 cm, and the silicon substrate 1
A hard metal plate 2 is bonded thereon with a heat-resistant inorganic adhesive (for example, Aron Ceramics [manufactured by Toagosei Kagaku Co., Ltd.]) to form an integral structure. hard metal plate 2
The surface is mechanically polished with diamond abrasive grains, and then further polished with a processing fluid in which diamond abrasive grains are suspended in a chemically corrosive liquid to form a mirror surface. A mirror substrate 3 is formed.
このように構成された全反射鏡基板3上に金蒸
着膜を始めとした各種高反射率膜を形成すること
により全反射鏡を構成することが出来る。大出力
用としては金を10-7Torrの高真空中でイオンプ
レーテイング法により形成すると、反射率が99.1
%と高く、優れている。 A total reflection mirror can be constructed by forming various high reflectance films including a gold vapor deposited film on the total reflection mirror substrate 3 thus constructed. For high power applications, if gold is formed using the ion plating method in a high vacuum of 10 -7 Torr, the reflectance will be 99.1.
%, which is excellent.
なお、本発明の全反射鏡基板の形状は平面に限
らず、凹凸の球面、若しくは非球面であつてもよ
い。 Note that the shape of the total reflection mirror substrate of the present invention is not limited to a flat surface, but may be a spherical surface with an uneven surface or an aspheric surface.
上記本発明の全反射鏡基板3の性能評価指数F.
M.の計算値を第2図に示す。図より明らかなよ
うに殆どモリブデン、タングステンを単体で用い
た場合と変わらない高い値を示し、熱による変形
の少ない優れた基板であることが判る。またモリ
ブデン単体の基板の場合には重量が約1.6Kgであ
るが、本発明のシリコン基板1とモリブデンの板
2を組合わせた基板3の重量は約0.43Kgであり、
約4分の1に軽減することが出来る。またタング
ステン単体の基板の場合には重量が約3Kgである
が、本発明のシリコン基板1とタングステンの板
2を組合わせた基板3の重量は約0.5Kgであり、
約6分の1に軽減することが出来、非常に扱い易
くなる。 Performance evaluation index F of the total reflection mirror substrate 3 of the present invention.
Figure 2 shows the calculated value of M. As is clear from the figure, the values are almost as high as when molybdenum and tungsten are used alone, and it is clear that this is an excellent substrate with little deformation due to heat. Further, in the case of a substrate made of molybdenum alone, the weight is about 1.6 kg, but the weight of the substrate 3, which is a combination of the silicon substrate 1 and the molybdenum plate 2 of the present invention, is about 0.43 kg.
It can be reduced to about one-fourth. Further, in the case of a substrate made of tungsten alone, the weight is about 3 kg, but the weight of the substrate 3, which is a combination of the silicon substrate 1 and the tungsten plate 2 of the present invention, is about 0.5 kg.
It can be reduced to about one-sixth, making it extremely easy to handle.
コストの点からも高価なモリブデンやタングス
テン素材の使用量が20分の1となるため、その効
果は大きい。そして本発明の全反射鏡基板3の大
部分を占めるシリコン基板1はモリブデンやタン
グステン素材よりもはるかに安く、且つシリコン
材も高価な単結晶材を使用する必要がなく、安価
な多結晶材を使用することが出来るので、全体的
なコストを低下させることが出来る。 From a cost standpoint, the effect is significant because the amount of expensive molybdenum and tungsten materials used is reduced to one-twentieth. The silicon substrate 1, which occupies most of the total reflection mirror substrate 3 of the present invention, is much cheaper than molybdenum or tungsten materials, and there is no need to use an expensive single crystal silicon material, and an inexpensive polycrystalline material can be used instead. can be used, thereby reducing the overall cost.
本発明の全反射鏡基板3の大部分を占めるシリ
コン基板1はそれ自身、熱伝導度が0.33cal/
cm・K、Sと高く、モリブデン(0.32cal/cm・
K、S)、タングステン(0.4cal/cm・K、S)
と同程度の値を示し、炭酸ガスレーザ光によつて
発生する熱を逃がすのに最適な材料である。また
線膨張係数もモリブデン(5.0×10-6/℃)、タン
グステン(4.5×10-6/℃)の値より小さく(2.5
×10-6/℃)、熱変形を受け難く、優れている。
更に機械強度にも優れ、銅基板等のように取付け
時の強い力によつて生ずる永久変形が起きない。
即ち、本発明の全反射鏡基板3はシリコン基板1
の利点を全て利用し、シリコン基板1の唯一のの
欠点である炭酸ガスレーザ光吸収の問題点をその
表面にモリブデン、タングステン等の硬質金属板
で覆うことにより解決したものである。 The silicon substrate 1, which occupies most of the total reflection mirror substrate 3 of the present invention, has a thermal conductivity of 0.33 cal/
cm・K, S and high, molybdenum (0.32cal/cm・
K, S), tungsten (0.4cal/cm・K, S)
It shows a value similar to that of carbon dioxide, making it the perfect material for dissipating the heat generated by carbon dioxide laser light. The linear expansion coefficient is also smaller ( 2.5
×10 -6 /°C), is resistant to thermal deformation and is excellent.
Furthermore, it has excellent mechanical strength, and unlike copper substrates, permanent deformation caused by strong force during installation does not occur.
That is, the total reflection mirror substrate 3 of the present invention is a silicon substrate 1.
By making use of all the advantages of silicon substrate 1, the only drawback of silicon substrate 1, which is the problem of absorption of carbon dioxide laser light, is solved by covering its surface with a hard metal plate such as molybdenum or tungsten.
発明の効果
以上の説明より明らかなように本発明によれ
ば、シリコン基板上にモリブデン、或はタングス
テン等の硬質金属板を一体に設け、この硬質金属
板の表面を研摩しているので、シリコン基板の利
点と、モリブデン、或はタングステン等の利点を
兼ね備え、且つそれぞれの欠点を取除くことがで
きるものであり、以下にその効果を列挙する。Effects of the Invention As is clear from the above explanation, according to the present invention, a hard metal plate such as molybdenum or tungsten is integrally provided on a silicon substrate, and the surface of this hard metal plate is polished. It combines the advantages of a substrate with the advantages of molybdenum, tungsten, etc., and can eliminate the disadvantages of each, and the advantages are listed below.
(1) 性能評価指数F.M.が高く、大出力炭酸ガス
レーザ光照射に対して歪の発生量が少なく、信
頼性の高いレーザ発振を可能にする。(1) It has a high performance evaluation index FM, generates little distortion when irradiated with high-power carbon dioxide laser light, and enables highly reliable laser oscillation.
(2) 軽量であるので、全反射鏡製作時の取扱い、
或は出来上つた全反射鏡の取扱いが容易であ
る。(2) Since it is lightweight, it is easy to handle when manufacturing a total reflection mirror.
Alternatively, the completed total reflection mirror is easy to handle.
(3) 安価な高信頼性の全反射鏡を提供することが
出来るので、レーザシステム全体のコスト低下
を図ることができる。(3) Since an inexpensive and highly reliable total reflection mirror can be provided, the cost of the entire laser system can be reduced.
(4) 高反射膜が破損しても基板まで破壊しないの
で、システムとしての安全性に寄与する。(4) Even if the high-reflection film is damaged, the substrate will not be destroyed, contributing to the safety of the system.
(5) 機械的強度が高いので、取付け時の歪の問題
が銅等に比べて少なく、扱い易い。(5) Due to its high mechanical strength, there are fewer problems with distortion during installation than with copper, and it is easy to handle.
第1図は本発明の炭酸ガスレーザ用全反射鏡基
板の一実施例を示す断面図、第2図は各種基板材
料の性能評価指数を比較した説明図である。
1……シリコン基板、3……モリブデン、或は
タングステン等の硬質金属板、3……全反射鏡基
板。
FIG. 1 is a sectional view showing an embodiment of a total reflection mirror substrate for a carbon dioxide laser according to the present invention, and FIG. 2 is an explanatory diagram comparing performance evaluation indexes of various substrate materials. 1... Silicon substrate, 3... Hard metal plate such as molybdenum or tungsten, 3... Total reflection mirror substrate.
Claims (1)
テン等の硬質金属板を設け、この硬質金属板の表
面を研摩したことを特徴とする炭酸ガスレーザ用
全反射鏡基板。1. A total reflection mirror substrate for a carbon dioxide laser, characterized in that a hard metal plate such as molybdenum or tungsten is provided on a silicon substrate, and the surface of the hard metal plate is polished.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24523884A JPS61123801A (en) | 1984-11-20 | 1984-11-20 | Substrate for total reflecting mirror for carbon dioxide gas laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24523884A JPS61123801A (en) | 1984-11-20 | 1984-11-20 | Substrate for total reflecting mirror for carbon dioxide gas laser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61123801A JPS61123801A (en) | 1986-06-11 |
JPH0413681B2 true JPH0413681B2 (en) | 1992-03-10 |
Family
ID=17130711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24523884A Granted JPS61123801A (en) | 1984-11-20 | 1984-11-20 | Substrate for total reflecting mirror for carbon dioxide gas laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61123801A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2536491B2 (en) * | 1986-08-25 | 1996-09-18 | 三菱マテリアル株式会社 | Composite brazing member for reflector |
JPS63144304A (en) * | 1986-12-08 | 1988-06-16 | Toshiba Corp | Metallic mirror for laser and production thereof |
US5083139A (en) * | 1990-04-06 | 1992-01-21 | Sony Corporation | Thermal head formed of a flat cable encapsulated in a supporting body |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57114103A (en) * | 1981-01-06 | 1982-07-15 | Agency Of Ind Science & Technol | Manufacture of mirror for infrared laser |
JPS5861247A (en) * | 1981-10-07 | 1983-04-12 | Toshiba Corp | Laser light reflecting material and its manufacture |
-
1984
- 1984-11-20 JP JP24523884A patent/JPS61123801A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57114103A (en) * | 1981-01-06 | 1982-07-15 | Agency Of Ind Science & Technol | Manufacture of mirror for infrared laser |
JPS5861247A (en) * | 1981-10-07 | 1983-04-12 | Toshiba Corp | Laser light reflecting material and its manufacture |
Also Published As
Publication number | Publication date |
---|---|
JPS61123801A (en) | 1986-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4915494A (en) | Carbon-carbon mirror for space applications | |
US2519722A (en) | Metallic mirror and method of making same | |
US4214818A (en) | Hot pressed SiC-high power laser mirror | |
US4142006A (en) | Method of making a high power laser mirror | |
US5058123A (en) | Laser apparatus | |
EP0120240A2 (en) | Light-beam scanning apparatus | |
JPH0413681B2 (en) | ||
US4840442A (en) | Multidielectric mirror for carbon dioxide laser providing the mid infrared, in high reflectance with good protection against mechanical attack | |
US4772111A (en) | Optical mirror with c/c composite substrate and an intermediate layer of molydenum, tungsten, or niobium 40 to 100 μm thick | |
US4476161A (en) | Method of producing a buried long period grating | |
US3875532A (en) | Semiconductor laser device having a light focusing transmission | |
JPS5895301A (en) | Laser total reflector | |
JPH0894813A (en) | Light-weight reflection mirror | |
JPS60214578A (en) | Semiconductor light emitting device | |
JP3002212B2 (en) | Reflector | |
JPS58149002A (en) | Total reflection mirror for laser light | |
JP2536491B2 (en) | Composite brazing member for reflector | |
JPH03140901A (en) | Invariable mirror for high-output laser | |
US20230208091A1 (en) | Distributed gain polygon ring laser amplification | |
CN211826581U (en) | CVD diamond flat plate beam splitter structure | |
JPH01246504A (en) | Copper mirror coated with protective film | |
JPH0669567A (en) | Semiconductor laser-excited solid laser equipment | |
EP4203205A1 (en) | A laser amplification module for a solid-state laser system and a method for manufacturing thereof | |
JPH06300906A (en) | Mirror for high-output laser beam and synchrotron radiation light | |
JPS62237783A (en) | Reflecting mirror for laser |