JPH0413681B2 - - Google Patents

Info

Publication number
JPH0413681B2
JPH0413681B2 JP59245238A JP24523884A JPH0413681B2 JP H0413681 B2 JPH0413681 B2 JP H0413681B2 JP 59245238 A JP59245238 A JP 59245238A JP 24523884 A JP24523884 A JP 24523884A JP H0413681 B2 JPH0413681 B2 JP H0413681B2
Authority
JP
Japan
Prior art keywords
substrate
total reflection
molybdenum
reflection mirror
tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59245238A
Other languages
Japanese (ja)
Other versions
JPS61123801A (en
Inventor
Takeo Myata
Takuhiro Ono
Takashi Iwabuchi
Juji Hashidate
Koichi Kawada
Koji Shimatani
Kenichi Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24523884A priority Critical patent/JPS61123801A/en
Publication of JPS61123801A publication Critical patent/JPS61123801A/en
Publication of JPH0413681B2 publication Critical patent/JPH0413681B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、炭酸ガスレーザ、特に大出力の炭酸
ガスレーザに用いる全反射鏡用基板に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a substrate for a total reflection mirror used in a carbon dioxide laser, particularly a high-output carbon dioxide laser.

従来の技術 炭酸ガスレーザは切断、溶接、焼き入れ等に広
く使用されている。炭酸ガスレーザにおいて、レ
ーザ共振器内、或は外部光学系中に用いられる全
反射鏡は、その出力、出力横モード、信頼性を左
右している。即ち、全反射鏡の反射率が高ければ
反射ロスが少ないため出力は増大し、吸収に伴う
発熱も少ないので、全反射鏡の変形、損傷が少な
く、メンテナンスの頻度の少ない、高信頼性の装
置となる。これは特に数KW〜20KWの大出力の
炭酸ガスレーザでは非常に重要な問題となる。そ
れは大出力のため全反射鏡の反射すべきパワーの
絶対量のみならず、パワー密度も高く、僅のロス
も全体の出力ロス、損傷、信頼性に大きく影響す
るからである。
BACKGROUND OF THE INVENTION Carbon dioxide lasers are widely used for cutting, welding, hardening, etc. In a carbon dioxide laser, the total reflection mirror used inside the laser resonator or in the external optical system influences its output, output transverse mode, and reliability. In other words, if the reflectance of the total reflection mirror is high, the output will increase due to less reflection loss, and there will be less heat generation due to absorption, resulting in a highly reliable device with less deformation and damage to the total reflection mirror and less frequent maintenance. becomes. This is a very important problem, especially for carbon dioxide lasers with high outputs of several kilowatts to 20 kilowatts. This is because not only the absolute amount of power to be reflected by the total reflection mirror but also the power density is high due to the large output, and even a small loss greatly affects the overall output loss, damage, and reliability.

従来、小出力の炭酸ガスレーザ用の全反射鏡に
は、研摩の容易な点から銅基板等にニツケル、リ
ンの合金をメツキ処理し、その上を研摩した基
板、或はシリコン基板を研摩したもの等の上に反
射面として金を蒸着したもの、或は銀を蒸着し、
更に保護膜を蒸着したもの、または誘電体多層膜
よりなる高反射膜を蒸着したものなどが用いられ
てきた。
Conventionally, total reflection mirrors for low-output carbon dioxide lasers have been made by plating a copper substrate with an alloy of nickel and phosphorus and polishing it, or by polishing a silicon substrate, for ease of polishing. etc., with gold vapor-deposited as a reflective surface, or silver vapor-deposited,
Furthermore, those with a protective film deposited thereon, or those with a highly reflective film made of a dielectric multilayer film deposited thereon, have been used.

発明が解決しようとする問題点 しかしながら上記従来の全反射鏡基板は大出力
炭酸ガスレーザには、以下に述べる理由により安
定して使用することが困難である。
Problems to be Solved by the Invention However, it is difficult to use the conventional total reflection mirror substrate described above stably in a high-output carbon dioxide laser for the reasons described below.

大出力炭酸ガスレーザ用全反射鏡基板として要
求されることは、第1に大出力レーザの照射に対
し、反射面で反射されずに表面に吸収されること
によつて発生した熱を速やかに拡散することであ
り、第2にはレーザ光を吸収することによつて生
ずる局所的な変化を出来るだけ小さくして、反射
面を正確な初期の形状に保つことである。前者は
熱伝導度(K)に関係し、後者は線膨張係数(α)に
関係する。従つて全反射鏡基板としての性能評価
指数(F.M.)は次の様に定義することができる。
The first requirement for a total reflection mirror substrate for a high-output carbon dioxide laser is to quickly diffuse the heat generated by the high-output laser irradiation by being absorbed by the surface without being reflected by the reflective surface. The second objective is to minimize local changes caused by absorption of laser light to maintain the reflective surface in its correct initial shape. The former is related to thermal conductivity (K), and the latter is related to linear expansion coefficient (α). Therefore, the performance evaluation index (FM) for a total reflection mirror substrate can be defined as follows.

F.M.≡K/α 各種の基板材料について性能評価指数F.M.を
計算し、銅を1とした指数で表示した結果を第2
図に示す。この図より明らかなようにシリコンが
性能評価指数F.M.が一番大きく、基板材料とし
て優れているように思われる。しかしながらシリ
コン基板上に高反射膜を形成してなる全反射鏡を
大出力レーザに安心して使用することは出来な
い。それはシリコンは炭酸ガスレーザ光を吸収し
て発熱する度合が大きいからである。即ち、シリ
コン基板上の反射膜がレーザ光損傷を受け、部分
的に基板のシリコンがレーザ光にさらされるとシ
リコン基板は局所的に発熱して基板が破壊してし
まうからである。
FM≡K/α The performance evaluation index FM is calculated for various substrate materials, and the results are expressed as an index with copper as 1.
As shown in the figure. As is clear from this figure, silicon has the highest performance evaluation index FM and appears to be an excellent substrate material. However, a total reflection mirror formed by forming a highly reflective film on a silicon substrate cannot be safely used for a high-output laser. This is because silicon absorbs carbon dioxide laser light and generates a large amount of heat. That is, if the reflective film on the silicon substrate is damaged by the laser beam and the silicon of the substrate is partially exposed to the laser beam, the silicon substrate will locally generate heat and the substrate will be destroyed.

銅基板にニツケル隣合金メツキした基板の場
合、性能評価指数F.M.が銅より小さく、発生熱
による変形が大きいので、大出力用には不適当で
ある。
In the case of a copper substrate plated with a nickel-adjacent alloy, the performance evaluation index FM is smaller than that of copper, and deformation due to generated heat is large, making it unsuitable for high output applications.

そこで性能評価指数F.M.が大きく、それ自身、
反射率の高いモリブデン(98.4%)、タングステ
ン(98.2%)が基板材料として現在最も優れてい
ることになる。更にモリブデン、タングステン等
の硬質金属は機械強度が高く、銅基板の場合のよ
うに取付け時の高い力によつて生ずる永久変形が
起り難いという利点も有している。しかしながら
モリブデンやタングステン基板は上記のような多
くの利点を有する反面、次のような欠点を有して
いる。
Therefore, the performance evaluation index FM is large, and itself,
Molybdenum (98.4%) and tungsten (98.2%), which have high reflectivity, are currently the best substrate materials. Furthermore, hard metals such as molybdenum and tungsten have high mechanical strength and have the advantage of being less likely to undergo permanent deformation caused by high forces during installation, as is the case with copper substrates. However, although molybdenum and tungsten substrates have many advantages as described above, they also have the following disadvantages.

モリブデン、タングステンの比重はそれぞれ
10.2g/c.c.、19.3g/c.c.と大きく、直径10cm、厚
み2cmの基板として構成した場合の重量はそれぞ
れ約1.6Kg、約3Kgと非常に重くなると同時に高
価である。同じ形状のシリコン基板であれば、約
0.37Kgで、モリブデンの約4分の1、タングステ
ンの約8分の1と軽量である。銅基板、或は銅に
ニツケル隣合金メツキした基板等は比重が8.96
g/c.c.であるので、モリブデンに近く重過ぎる。
The specific gravity of molybdenum and tungsten is
They are large at 10.2 g/cc and 19.3 g/cc, and when constructed as a substrate with a diameter of 10 cm and a thickness of 2 cm, the weights are approximately 1.6 kg and approximately 3 kg, respectively, making them extremely heavy and expensive. For silicon substrates of the same shape, approx.
At 0.37 kg, it is about 1/4th the weight of molybdenum and about 1/8th the weight of tungsten. The specific gravity of copper substrates or copper substrates plated with nickel-adjacent alloys is 8.96.
g/cc, it is too heavy and close to molybdenum.

従つてモリブデン、タングステンの利点を維持
し、且つ欠点である重さとコスト高を解決した全
反射鏡基板が望まれている。
Therefore, there is a need for a total reflection mirror substrate that maintains the advantages of molybdenum and tungsten while solving the disadvantages of weight and high cost.

そこで、本発明は、性能評価指数F.M.が大き
く、誤つてレーザ損傷を受けても破損されず、大
出力の炭酸ガスレーザに用いて軽量で安価な全反
射鏡基板を提供することを目的とするものであ
る。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a lightweight and inexpensive total reflection mirror substrate that has a large performance evaluation index FM, is not damaged even if it is accidentally damaged by a laser beam, and can be used in a high-output carbon dioxide laser. It is.

問題点を解決するための手段 そして上記問題点を解決する本発明の技術的な
手段はシリコン基板上にモリブデン、或はタング
ステン等の硬質金属板を一体に設け、この硬質金
属板の表面を研摩したことを特徴とするものであ
る。
Means for Solving the Problems The technical means of the present invention for solving the above problems is to provide a hard metal plate such as molybdenum or tungsten on a silicon substrate, and to polish the surface of this hard metal plate. It is characterized by the fact that

作 用 上記のようにシリコン基板と、モリブデン、或
はタングステン等の硬質金属板を組合わせること
により互の欠点を補い、互の長所を相剰的に組合
わせることができる。即ち、シリコン基板の高い
熱伝導度、軽量化、機械強度の強さ、コストの有
利さと、モリブデン、或はタングステン等の硬質
金属板の優れた性能評価指数、高反射率等を兼ね
備えることができる。
Function As described above, by combining a silicon substrate and a hard metal plate such as molybdenum or tungsten, it is possible to compensate for each other's shortcomings and to combine each other's strengths in a mutually beneficial manner. In other words, it can combine the high thermal conductivity, light weight, high mechanical strength, and cost advantages of a silicon substrate with the excellent performance evaluation index, high reflectance, etc. of a hard metal plate such as molybdenum or tungsten. .

実施例 以下、本発明の一実施例を図面に基いて詳細に
説明する。第1図において1は直径10cmで、厚み
が1.9cmの肉厚のシリコン基板、2は直径10cm、
厚みが0.1cmの肉薄のモリブデン、或はタングス
テンよりなる硬質金属板であり、シリコン基板1
上に硬質金属板2が耐熱無機接着剤(例えばアロ
ンセラミツクス〔東亜合成化学株式会社製〕)に
より接着されて一体となつている。硬質金属板2
の表面はダイヤモンド砥粒により機械的に研摩さ
れた後、更に化学的腐食作用を有する液体中にダ
イヤモンド砥粒を懸濁させた加工液によつて研摩
が行われて鏡面が形成され、全反射鏡基板3が形
成されている。
Embodiment Hereinafter, an embodiment of the present invention will be described in detail based on the drawings. In Figure 1, 1 is a silicon substrate with a diameter of 10 cm and a thickness of 1.9 cm, 2 is a silicon substrate with a diameter of 10 cm,
It is a thin hard metal plate made of molybdenum or tungsten with a thickness of 0.1 cm, and the silicon substrate 1
A hard metal plate 2 is bonded thereon with a heat-resistant inorganic adhesive (for example, Aron Ceramics [manufactured by Toagosei Kagaku Co., Ltd.]) to form an integral structure. hard metal plate 2
The surface is mechanically polished with diamond abrasive grains, and then further polished with a processing fluid in which diamond abrasive grains are suspended in a chemically corrosive liquid to form a mirror surface. A mirror substrate 3 is formed.

このように構成された全反射鏡基板3上に金蒸
着膜を始めとした各種高反射率膜を形成すること
により全反射鏡を構成することが出来る。大出力
用としては金を10-7Torrの高真空中でイオンプ
レーテイング法により形成すると、反射率が99.1
%と高く、優れている。
A total reflection mirror can be constructed by forming various high reflectance films including a gold vapor deposited film on the total reflection mirror substrate 3 thus constructed. For high power applications, if gold is formed using the ion plating method in a high vacuum of 10 -7 Torr, the reflectance will be 99.1.
%, which is excellent.

なお、本発明の全反射鏡基板の形状は平面に限
らず、凹凸の球面、若しくは非球面であつてもよ
い。
Note that the shape of the total reflection mirror substrate of the present invention is not limited to a flat surface, but may be a spherical surface with an uneven surface or an aspheric surface.

上記本発明の全反射鏡基板3の性能評価指数F.
M.の計算値を第2図に示す。図より明らかなよ
うに殆どモリブデン、タングステンを単体で用い
た場合と変わらない高い値を示し、熱による変形
の少ない優れた基板であることが判る。またモリ
ブデン単体の基板の場合には重量が約1.6Kgであ
るが、本発明のシリコン基板1とモリブデンの板
2を組合わせた基板3の重量は約0.43Kgであり、
約4分の1に軽減することが出来る。またタング
ステン単体の基板の場合には重量が約3Kgである
が、本発明のシリコン基板1とタングステンの板
2を組合わせた基板3の重量は約0.5Kgであり、
約6分の1に軽減することが出来、非常に扱い易
くなる。
Performance evaluation index F of the total reflection mirror substrate 3 of the present invention.
Figure 2 shows the calculated value of M. As is clear from the figure, the values are almost as high as when molybdenum and tungsten are used alone, and it is clear that this is an excellent substrate with little deformation due to heat. Further, in the case of a substrate made of molybdenum alone, the weight is about 1.6 kg, but the weight of the substrate 3, which is a combination of the silicon substrate 1 and the molybdenum plate 2 of the present invention, is about 0.43 kg.
It can be reduced to about one-fourth. Further, in the case of a substrate made of tungsten alone, the weight is about 3 kg, but the weight of the substrate 3, which is a combination of the silicon substrate 1 and the tungsten plate 2 of the present invention, is about 0.5 kg.
It can be reduced to about one-sixth, making it extremely easy to handle.

コストの点からも高価なモリブデンやタングス
テン素材の使用量が20分の1となるため、その効
果は大きい。そして本発明の全反射鏡基板3の大
部分を占めるシリコン基板1はモリブデンやタン
グステン素材よりもはるかに安く、且つシリコン
材も高価な単結晶材を使用する必要がなく、安価
な多結晶材を使用することが出来るので、全体的
なコストを低下させることが出来る。
From a cost standpoint, the effect is significant because the amount of expensive molybdenum and tungsten materials used is reduced to one-twentieth. The silicon substrate 1, which occupies most of the total reflection mirror substrate 3 of the present invention, is much cheaper than molybdenum or tungsten materials, and there is no need to use an expensive single crystal silicon material, and an inexpensive polycrystalline material can be used instead. can be used, thereby reducing the overall cost.

本発明の全反射鏡基板3の大部分を占めるシリ
コン基板1はそれ自身、熱伝導度が0.33cal/
cm・K、Sと高く、モリブデン(0.32cal/cm・
K、S)、タングステン(0.4cal/cm・K、S)
と同程度の値を示し、炭酸ガスレーザ光によつて
発生する熱を逃がすのに最適な材料である。また
線膨張係数もモリブデン(5.0×10-6/℃)、タン
グステン(4.5×10-6/℃)の値より小さく(2.5
×10-6/℃)、熱変形を受け難く、優れている。
更に機械強度にも優れ、銅基板等のように取付け
時の強い力によつて生ずる永久変形が起きない。
即ち、本発明の全反射鏡基板3はシリコン基板1
の利点を全て利用し、シリコン基板1の唯一のの
欠点である炭酸ガスレーザ光吸収の問題点をその
表面にモリブデン、タングステン等の硬質金属板
で覆うことにより解決したものである。
The silicon substrate 1, which occupies most of the total reflection mirror substrate 3 of the present invention, has a thermal conductivity of 0.33 cal/
cm・K, S and high, molybdenum (0.32cal/cm・
K, S), tungsten (0.4cal/cm・K, S)
It shows a value similar to that of carbon dioxide, making it the perfect material for dissipating the heat generated by carbon dioxide laser light. The linear expansion coefficient is also smaller ( 2.5
×10 -6 /°C), is resistant to thermal deformation and is excellent.
Furthermore, it has excellent mechanical strength, and unlike copper substrates, permanent deformation caused by strong force during installation does not occur.
That is, the total reflection mirror substrate 3 of the present invention is a silicon substrate 1.
By making use of all the advantages of silicon substrate 1, the only drawback of silicon substrate 1, which is the problem of absorption of carbon dioxide laser light, is solved by covering its surface with a hard metal plate such as molybdenum or tungsten.

発明の効果 以上の説明より明らかなように本発明によれ
ば、シリコン基板上にモリブデン、或はタングス
テン等の硬質金属板を一体に設け、この硬質金属
板の表面を研摩しているので、シリコン基板の利
点と、モリブデン、或はタングステン等の利点を
兼ね備え、且つそれぞれの欠点を取除くことがで
きるものであり、以下にその効果を列挙する。
Effects of the Invention As is clear from the above explanation, according to the present invention, a hard metal plate such as molybdenum or tungsten is integrally provided on a silicon substrate, and the surface of this hard metal plate is polished. It combines the advantages of a substrate with the advantages of molybdenum, tungsten, etc., and can eliminate the disadvantages of each, and the advantages are listed below.

(1) 性能評価指数F.M.が高く、大出力炭酸ガス
レーザ光照射に対して歪の発生量が少なく、信
頼性の高いレーザ発振を可能にする。
(1) It has a high performance evaluation index FM, generates little distortion when irradiated with high-power carbon dioxide laser light, and enables highly reliable laser oscillation.

(2) 軽量であるので、全反射鏡製作時の取扱い、
或は出来上つた全反射鏡の取扱いが容易であ
る。
(2) Since it is lightweight, it is easy to handle when manufacturing a total reflection mirror.
Alternatively, the completed total reflection mirror is easy to handle.

(3) 安価な高信頼性の全反射鏡を提供することが
出来るので、レーザシステム全体のコスト低下
を図ることができる。
(3) Since an inexpensive and highly reliable total reflection mirror can be provided, the cost of the entire laser system can be reduced.

(4) 高反射膜が破損しても基板まで破壊しないの
で、システムとしての安全性に寄与する。
(4) Even if the high-reflection film is damaged, the substrate will not be destroyed, contributing to the safety of the system.

(5) 機械的強度が高いので、取付け時の歪の問題
が銅等に比べて少なく、扱い易い。
(5) Due to its high mechanical strength, there are fewer problems with distortion during installation than with copper, and it is easy to handle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の炭酸ガスレーザ用全反射鏡基
板の一実施例を示す断面図、第2図は各種基板材
料の性能評価指数を比較した説明図である。 1……シリコン基板、3……モリブデン、或は
タングステン等の硬質金属板、3……全反射鏡基
板。
FIG. 1 is a sectional view showing an embodiment of a total reflection mirror substrate for a carbon dioxide laser according to the present invention, and FIG. 2 is an explanatory diagram comparing performance evaluation indexes of various substrate materials. 1... Silicon substrate, 3... Hard metal plate such as molybdenum or tungsten, 3... Total reflection mirror substrate.

Claims (1)

【特許請求の範囲】[Claims] 1 シリコン基板上にモリブデン、或はタングス
テン等の硬質金属板を設け、この硬質金属板の表
面を研摩したことを特徴とする炭酸ガスレーザ用
全反射鏡基板。
1. A total reflection mirror substrate for a carbon dioxide laser, characterized in that a hard metal plate such as molybdenum or tungsten is provided on a silicon substrate, and the surface of the hard metal plate is polished.
JP24523884A 1984-11-20 1984-11-20 Substrate for total reflecting mirror for carbon dioxide gas laser Granted JPS61123801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24523884A JPS61123801A (en) 1984-11-20 1984-11-20 Substrate for total reflecting mirror for carbon dioxide gas laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24523884A JPS61123801A (en) 1984-11-20 1984-11-20 Substrate for total reflecting mirror for carbon dioxide gas laser

Publications (2)

Publication Number Publication Date
JPS61123801A JPS61123801A (en) 1986-06-11
JPH0413681B2 true JPH0413681B2 (en) 1992-03-10

Family

ID=17130711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24523884A Granted JPS61123801A (en) 1984-11-20 1984-11-20 Substrate for total reflecting mirror for carbon dioxide gas laser

Country Status (1)

Country Link
JP (1) JPS61123801A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2536491B2 (en) * 1986-08-25 1996-09-18 三菱マテリアル株式会社 Composite brazing member for reflector
JPS63144304A (en) * 1986-12-08 1988-06-16 Toshiba Corp Metallic mirror for laser and production thereof
US5083139A (en) * 1990-04-06 1992-01-21 Sony Corporation Thermal head formed of a flat cable encapsulated in a supporting body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57114103A (en) * 1981-01-06 1982-07-15 Agency Of Ind Science & Technol Manufacture of mirror for infrared laser
JPS5861247A (en) * 1981-10-07 1983-04-12 Toshiba Corp Laser light reflecting material and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57114103A (en) * 1981-01-06 1982-07-15 Agency Of Ind Science & Technol Manufacture of mirror for infrared laser
JPS5861247A (en) * 1981-10-07 1983-04-12 Toshiba Corp Laser light reflecting material and its manufacture

Also Published As

Publication number Publication date
JPS61123801A (en) 1986-06-11

Similar Documents

Publication Publication Date Title
US4915494A (en) Carbon-carbon mirror for space applications
US2519722A (en) Metallic mirror and method of making same
US4214818A (en) Hot pressed SiC-high power laser mirror
US4142006A (en) Method of making a high power laser mirror
US5058123A (en) Laser apparatus
EP0120240A2 (en) Light-beam scanning apparatus
JPH0413681B2 (en)
US4840442A (en) Multidielectric mirror for carbon dioxide laser providing the mid infrared, in high reflectance with good protection against mechanical attack
US4772111A (en) Optical mirror with c/c composite substrate and an intermediate layer of molydenum, tungsten, or niobium 40 to 100 μm thick
US4476161A (en) Method of producing a buried long period grating
US3875532A (en) Semiconductor laser device having a light focusing transmission
JPS5895301A (en) Laser total reflector
JPH0894813A (en) Light-weight reflection mirror
JPS60214578A (en) Semiconductor light emitting device
JP3002212B2 (en) Reflector
JPS58149002A (en) Total reflection mirror for laser light
JP2536491B2 (en) Composite brazing member for reflector
JPH03140901A (en) Invariable mirror for high-output laser
US20230208091A1 (en) Distributed gain polygon ring laser amplification
CN211826581U (en) CVD diamond flat plate beam splitter structure
JPH01246504A (en) Copper mirror coated with protective film
JPH0669567A (en) Semiconductor laser-excited solid laser equipment
EP4203205A1 (en) A laser amplification module for a solid-state laser system and a method for manufacturing thereof
JPH06300906A (en) Mirror for high-output laser beam and synchrotron radiation light
JPS62237783A (en) Reflecting mirror for laser