JPH0413670B2 - - Google Patents

Info

Publication number
JPH0413670B2
JPH0413670B2 JP61306819A JP30681986A JPH0413670B2 JP H0413670 B2 JPH0413670 B2 JP H0413670B2 JP 61306819 A JP61306819 A JP 61306819A JP 30681986 A JP30681986 A JP 30681986A JP H0413670 B2 JPH0413670 B2 JP H0413670B2
Authority
JP
Japan
Prior art keywords
noise
pulse
period
detection processing
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61306819A
Other languages
Japanese (ja)
Other versions
JPS63158482A (en
Inventor
Toshimasa Takagi
Susumu Katayama
Naoya Azuma
Toshiki Yamane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP30681986A priority Critical patent/JPS63158482A/en
Publication of JPS63158482A publication Critical patent/JPS63158482A/en
Publication of JPH0413670B2 publication Critical patent/JPH0413670B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [技術分野] 本発明は超音波検知器の雑音による誤動作を防
止する技術に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a technique for preventing malfunction of an ultrasonic detector due to noise.

[背景技術] 一般に超音波検知器においては、受波される雑
音は殆どがエンジンなどの回転機が発する超音波
パルスであり、その周期が超音波検知器の動作周
期に比較的近いために、雑音により誤動作を生じ
易いという問題がある。そこでこの雑音の周期性
を利用して、検出された雑音からその繰り返し周
期と継続時間すなわちパルス幅とを計測すること
により、次の雑音のない時点を予測し、その時点
に送波パルスを出力して検知処理を行う方法が提
案されている。
[Background Art] Generally, in an ultrasonic detector, most of the noise received is ultrasonic pulses emitted by rotating machines such as engines, and the period is relatively close to the operating period of the ultrasonic detector. There is a problem in that malfunctions are likely to occur due to noise. Therefore, by making use of the periodicity of this noise and measuring the repetition period and duration, or pulse width, from the detected noise, we can predict the next point in time when there will be no noise, and output a transmission pulse at that point. A method has been proposed in which detection processing is performed using

第3図はその方法を示したもので、a図は回転
機から発生するトーンバースト状雑音波形を示
し、b図は超音波検知器の動作タイミングを示し
たもので、図中Pは送波パルス、T1は物体から
の反射波パルスの受波区間、T2は雑音監視区間、
T3は検知処理区間である。この雑音監視区間T2
は、物体が検知領域外にあつて空気中の減衰のた
めに物体からの反射波が受波される可能性がな
く、従つてこの区間T2に受波される信号は雑音
と判別できる区間であり、この区間に雑音パルス
が検出された場合には、その繰り返し周期τ1とパ
ルス幅τ2とを計測して、次の雑音の入らない時点
を予測し、その時点まで次の検知処理を遅らせる
ものである。
Figure 3 shows this method. Figure a shows the tone burst noise waveform generated from the rotating machine, Figure b shows the operation timing of the ultrasonic detector, and P in the figure shows the transmitting wave. pulse, T 1 is the reception period of the reflected wave pulse from the object, T 2 is the noise monitoring period,
T 3 is the detection processing period. This noise monitoring section T 2
If the object is outside the detection area, there is no possibility that the reflected wave from the object will be received due to attenuation in the air, and therefore the signal received in this interval T2 is an interval that can be distinguished as noise. If a noise pulse is detected in this interval, the repetition period τ 1 and pulse width τ 2 are measured, the next time when no noise occurs is predicted, and the next detection process is continued until that point. It is something that delays the

いま雑音がない場合には、検知器はb図のよう
に動作し、区間T3の検知処理とT2の雑音監視と
を繰り返しているが、a図のような雑音が到来す
ると、雑音監視区間T2に検出される2個以上の
雑音パルスNによつて、その繰り返し周期τ1とパ
ルス幅τ2とを計測し、それにより次の検知処理可
能な時点Aを決定して、c図に示すように、その
時点Aまで検知処理を延期する。この時点Aは通
常、雑音監視区間T2が終了した直後か、または
雑音監視区間T2後の最初の雑音Nの直後(図示
の場合)に来るが、雑音の繰り返し周期が小さい
時には、雑音が消えるまで検知処理ができない場
合もある。
If there is no noise now, the detector operates as shown in figure b, repeating the detection process in section T 3 and the noise monitoring in T 2. However, when noise as shown in figure a arrives, the detector operates as shown in figure b. The repetition period τ 1 and pulse width τ 2 of two or more noise pulses N detected in the interval T 2 are measured, and the next point in time A at which detection processing is possible is determined. The detection process is postponed until that point A, as shown in FIG. This point A usually comes immediately after the end of the noise monitoring interval T 2 or immediately after the first noise N after the noise monitoring interval T 2 (in the case shown), but when the repetition period of the noise is small, the noise In some cases, detection processing cannot be performed until it disappears.

所で上記従来方法において、雑音の繰り返し周
期τ1を計測するためには、雑音監視区間T2の長
さをτ1の少なくとも2倍以上に設定しておく必要
があるが、T2をあまり大きくして多数個の雑音
パルスNが検出されるようにすると、検知処理の
間隔が長くなつて検知器の応答性が悪くなり、逆
にT2を小さくすると、繰り返し周期τ1の大きな
雑音に対応できなくなつて予測不能に陥り、検知
器の信頼性が低下するという問題がある。しかも
この繰り返し周期τ1は雑音発生源である回転機の
回転速度で決まり、例えばスタート直後のモータ
バイクと高速走行中のモータバイクとでは、その
繰り返し周期τ1も数倍の開きがあるので、応答性
も信頼性も犠牲にしないように雑音監視区間T2
を設定するのはきわめて困難であつた。
By the way, in the above conventional method, in order to measure the noise repetition period τ 1 , it is necessary to set the length of the noise monitoring interval T 2 to at least twice the length of τ 1 . If T2 is increased so that a large number of noise pulses N are detected, the detection processing interval becomes longer and the responsiveness of the detector deteriorates.On the other hand, if T2 is decreased, large noise with a repetition period τ1 is generated. There is a problem in that the detector becomes unable to respond and becomes unpredictable, reducing the reliability of the detector. Moreover, this repetition period τ 1 is determined by the rotational speed of the rotating machine that is the source of noise, and for example, the repetition period τ 1 differs several times between a motorcycle that has just started and a motorcycle that is running at high speed. Noise monitoring section T 2 so as not to sacrifice responsiveness or reliability
It was extremely difficult to set the

[発明の目的] 本発明は上記の問題点に鑑み為されたものであ
り、その目的とするところは、検知器の応答性を
犠牲にすることなく、従来より広範囲の繰り返し
周期の雑音に対処できるような超音波検知器を提
供するにある。
[Object of the Invention] The present invention has been made in view of the above-mentioned problems, and its purpose is to cope with noise having a wider range of repetition periods than before without sacrificing the responsiveness of the detector. We aim to provide ultrasonic detectors that can

[発明の開示] しかして本発明は、超音波パルスを間欠的に送
波し、物体からの反射波を受波して、物体の存在
乃至物体までの距離を検知する超音波検知器にお
いて、送波及び受波を含む検知区間の終了後に雑
音監視区間を設け、該区間に雑音パルスが検出さ
れた時には、雑音パルスの繰り返し周期とパルス
幅を計測して、これを記憶回路に記憶させると共
に、該計測結果から次の検知処理時点を決定する
ようにし、雑音監視区間に上記計測ができなかつ
た場合には、前回記憶した計測結果を用いて次の
検知処理時点を決定するようにしたものであり、
雑音監視区間には必ずしも2個の雑音パルスを検
出しなくても予測が可能となつたので、従来より
も応答性を低下させることなく、検知し得る雑音
の繰り返し周期の範囲をほぼ2倍に拡大し得る点
に特徴を有するものである。
[Disclosure of the Invention] The present invention provides an ultrasonic detector that transmits ultrasonic pulses intermittently and receives reflected waves from an object to detect the presence of an object or the distance to the object. A noise monitoring section is provided after the detection section including transmission and reception, and when a noise pulse is detected in this section, the repetition period and pulse width of the noise pulse are measured and stored in a storage circuit. , the next detection processing time point is determined from the measurement result, and if the above measurement cannot be performed during the noise monitoring section, the next detection processing time point is determined using the previously stored measurement result. and
Since prediction is now possible without necessarily detecting two noise pulses in the noise monitoring interval, the range of detectable noise repetition periods has been almost doubled without reducing responsiveness compared to before. The feature is that it can be expanded.

[実施例] 第1図は本発明の一実施例を示したもので、送
受波兼用の超音波振動子1は、送波回路2に駆動
されて超音波パルスを間欠的に送波し、物体から
の反射波パルスを受波するつもりであり、この受
波信号が受波回路3で増幅され、更に増幅検波回
路4で増設検波されて、物体検知回路5に入力さ
れる。物体検知回路5では、第2図bに示されて
いるように、受波区間T1内に信号が受波された
時に物体の存在を検知すると共に、その受波パル
スの送波パルスPからの時間遅れから物体までの
距離を算出するものであり、その出力が表示器6
に表示される。
[Embodiment] FIG. 1 shows an embodiment of the present invention, in which an ultrasonic transducer 1 for both transmitting and receiving waves is driven by a wave transmitting circuit 2 to intermittently transmit ultrasonic pulses, It is intended to receive a reflected wave pulse from an object, and this received signal is amplified by a wave receiving circuit 3, further detected by an amplification/detection circuit 4, and inputted to an object detection circuit 5. As shown in FIG. 2b, the object detection circuit 5 detects the presence of an object when a signal is received within the reception period T1 , and also detects the presence of an object from the transmission pulse P of the reception pulse. The distance to the object is calculated from the time delay, and the output is displayed on the display 6.
will be displayed.

受波回路3の出力はまた、雑音検知回路7へも
入力されており、この雑音検知回路7では、第2
図bのように、受波区間T1の後に設定された一
定時間の雑音監視区間T2内に信号が受波された
時に、これを雑音として検出する。この区間T2
内に2個の雑音パルスN1,N2が検出されると、
雑音の繰り返し周期τ1とその継続時間すなちパル
ス幅τ2とを計測し、それによつて次の検知処理の
可能な時点A1を決定し、その結果に基づいて送
波回路2を制御する。
The output of the wave receiving circuit 3 is also input to the noise detection circuit 7, and in this noise detection circuit 7, the second
As shown in FIG. b, when a signal is received within a noise monitoring period T 2 of a fixed time set after the reception period T 1 , this is detected as noise. This section T 2
When two noise pulses N 1 and N 2 are detected within
Measure the repetition period τ 1 of the noise and its duration, or pulse width τ 2 , determine the possible time point A 1 for the next detection process, and control the transmitter circuit 2 based on the results. do.

第2図bは雑音のない状態における検知器の動
作を示しており、送波パルスPとその直後の受波
区間T1よりなる検知処理区間T3が一定間隔で繰
り返されており、各検知処理区間T3の終了後に
それぞれ一定長さの雑音監視区間T2が設けられ
ている。ここでいまa図のような雑音が到来し、
そのうち2個の雑音パルスN1及びN2が雑音監視
区間T2内で検出されると、雑音パルスの繰り返
し周波数τ1とパルス幅τ2とが計測され、この計測
結果からc図に示すように次の送波パルスPの送
波時点A1が算出される。同図において、この時
点A1は第2の雑音パルスN2の立ち下がりからそ
の残響時間αだけ経過した時点であり、実際には
N2の立ち上がり時点から(τ2−α)経過後とし
て算出される。
Figure 2b shows the operation of the detector in a noise-free state, in which a detection processing section T3 consisting of a transmission pulse P and a reception section T1 immediately after it is repeated at regular intervals, and each detection After each processing interval T 3 ends, a noise monitoring interval T 2 of a certain length is provided. At this point, the noise shown in figure a has arrived,
When two of them, noise pulses N 1 and N 2 , are detected within the noise monitoring section T 2 , the repetition frequency τ 1 and pulse width τ 2 of the noise pulses are measured, and from this measurement result, as shown in figure c, The transmission time point A1 of the next transmission pulse P is calculated at . In the figure, this time A1 is the time when the reverberation time α has elapsed since the fall of the second noise pulse N2 , and in reality
It is calculated after (τ 2 −α) has elapsed since the rise of N 2 .

c図において次の検知処理が終了し、それに続
く雑音監視区間T2に、第3の雑音パルスN3が検
出されると、今度は同一雑音監視区間2内に2個
の雑音パルスが検出できなくなる。このようなこ
とは、繰り返し周期τ1が雑音監査区間T2の1/2よ
りも大きい場合に起こり得ることであるが、その
場合にはτ1及び2の値として、記憶回路9に記憶
されている前回計測結果を使用する。
In figure c, when the next detection process is completed and the third noise pulse N 3 is detected in the subsequent noise monitoring interval T 2 , two noise pulses can now be detected within the same noise monitoring interval 2 . It disappears. This may occur if the repetition period τ 1 is larger than 1/2 of the noise audit interval T 2 , but in that case, the values of τ 1 and 2 are stored in the storage circuit 9. Use the previous measurement results.

c図における時点A2はそのようにして算出さ
れたものであり、1個の雑音パルスN3と前回の
結果とからN4の到来時点が算出され、その前の
時点A2で送波P及び受波T1が可能であることを
予測されている。
Time point A2 in figure c is calculated in this way, and the arrival time point of N4 is calculated from one noise pulse N3 and the previous result, and the transmitted wave P is calculated at the previous time point A2. It is predicted that a reception T 1 will be possible.

このようにして雑音パルスの発生周期を予測
し、雑音パルスが存在しないと推定した期間に検
知処理区間T3を設定することによつて、検知処
理区間T3を雑音パルスの発生周期に合わせて不
定期的に設定することができ、発生間隔に周期性
を有した雑音パルスの影響を除去しながらも計測
することができるのである。
By predicting the generation period of noise pulses in this way and setting the detection processing period T 3 to a period in which it is estimated that no noise pulses exist, the detection processing period T 3 can be adjusted to match the generation period of noise pulses. It can be set irregularly and can be measured while eliminating the influence of noise pulses that have periodicity in their generation intervals.

上記の構成によれば、雑音監視区間T2内に1
個でも雑音を検出している限り次の雑音到来時点
をほぼ正確に予測できるので、雑音監視区間T2
の長さを例えば通常速度で走行中のモータバイク
の雑音の繰り返し周期の2倍程度に設定しておけ
ば、滅多に通らないような低速のモータバイクが
通過したような場合にも充分対処することができ
るものである。
According to the above configuration, one
As long as the noise is detected even if the noise is detected, the next noise arrival point can be predicted almost accurately .
For example, by setting the length to be about twice the repetition period of the noise of a motorbike running at normal speed, it will be sufficient to deal with the case where a low-speed motorbike passes by, which rarely happens. It is something that can be done.

なお雑音パルスの繰り返し周期τ1が非常に短く
て、(τ1−τ2−α)の期間内に送波と受波区間と
を含む検知処理区間T3が入らない場合には、検
知処理可能時点A1は雑音が消滅するまで延期さ
れることになる。
Note that if the repetition period τ 1 of the noise pulse is very short and the detection processing period T 3 including the wave transmission and reception period does not fall within the period (τ 1τ 2 − α), the detection processing Possible point A 1 will be postponed until the noise disappears.

[発明の効果] 上述のように本発明は、雑音を検知するとその
繰り返し周期と継続時間を検出して雑音の入らな
い時点を予測し、物体検知を行う方式の超音波検
知器において、雑音監視区間に2個の雑音パルス
が検出されず繰り返し周期の計測ができない場合
に、前回の計測結果を用いるようにしたので、こ
の区間に1個でも雑音パルスを検出している限り
正しく予測を行うことができ、従つて従来に比し
応答性を損なうことなく、約2倍の繰り返し周期
の雑音までは確実に誤動作を防止し得るという利
点がある。
[Effects of the Invention] As described above, the present invention provides noise monitoring in an ultrasonic detector that detects an object by detecting the repetition period and duration of noise and predicting the point at which no noise occurs. If two noise pulses are not detected in an interval and the repetition period cannot be measured, the previous measurement result is used, so as long as at least one noise pulse is detected in this interval, predictions can be made correctly. Therefore, there is an advantage that malfunctions can be reliably prevented even with noise of approximately twice the repetition period without impairing responsiveness compared to the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロツク図、
第2図は同上の動作を示すタイミング図、第3図
は従来例の動作を示すタイミング図である。 P……送波パルス、T1……受波区間、T2……
雑音監視区間、T3……検知処理区間、N1,N2
N3……雑音パルス、τ1……雑音の繰り返し周期、
τ2……雑音のパルス幅、A1,A2……検知可能時
点。
FIG. 1 is a block diagram showing one embodiment of the present invention;
FIG. 2 is a timing diagram showing the same operation as above, and FIG. 3 is a timing diagram showing the operation of the conventional example. P...Transmission pulse, T1 ...Reception section, T2 ...
Noise monitoring section, T 3 ...Detection processing section, N 1 , N 2 ,
N 3 ... Noise pulse, τ 1 ... Noise repetition period,
τ 2 ...Pulse width of noise, A 1 , A 2 ...Detectable time point.

Claims (1)

【特許請求の範囲】[Claims] 1 超音波パルスを間欠的に送波し、物体からの
反射波を受波して、物体の存在乃至物体までの距
離を検知する超音波検知器において、送波及び受
波を含む検知処理区間の終了後に雑音監視区間を
設け、該雑音監視区間に雑音パルスが検出された
時には、雑音パルスの繰り返し周期とパルス幅を
計測して、これを記憶回路に記憶させると共に、
該計測結果から次の検知処理時点を決定するよう
にし、該雑音監視区間に上記計測ができなかつた
場合には、前回記憶した計測結果を用いて次の検
知処理時点を決定することを特徴とする超音波検
知器。
1 In an ultrasonic detector that transmits ultrasonic pulses intermittently and receives reflected waves from an object to detect the presence of an object or the distance to the object, a detection processing section that includes wave transmission and wave reception. After the end of the noise monitoring period, a noise monitoring period is provided, and when a noise pulse is detected in the noise monitoring period, the repetition period and pulse width of the noise pulse are measured and stored in a storage circuit,
The next detection processing time point is determined from the measurement result, and if the above measurement cannot be performed in the noise monitoring section, the next detection processing time point is determined using the previously stored measurement result. Ultrasonic detector.
JP30681986A 1986-12-23 1986-12-23 Ultrasonic detector Granted JPS63158482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30681986A JPS63158482A (en) 1986-12-23 1986-12-23 Ultrasonic detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30681986A JPS63158482A (en) 1986-12-23 1986-12-23 Ultrasonic detector

Publications (2)

Publication Number Publication Date
JPS63158482A JPS63158482A (en) 1988-07-01
JPH0413670B2 true JPH0413670B2 (en) 1992-03-10

Family

ID=17961640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30681986A Granted JPS63158482A (en) 1986-12-23 1986-12-23 Ultrasonic detector

Country Status (1)

Country Link
JP (1) JPS63158482A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2826198B2 (en) * 1991-01-28 1998-11-18 松下電工株式会社 Ultrasonic object detector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61162773A (en) * 1985-01-11 1986-07-23 Tokyo Keiki Co Ltd Length measuring apparatus using ultrasonic

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61162773A (en) * 1985-01-11 1986-07-23 Tokyo Keiki Co Ltd Length measuring apparatus using ultrasonic

Also Published As

Publication number Publication date
JPS63158482A (en) 1988-07-01

Similar Documents

Publication Publication Date Title
US6314055B1 (en) Range measuring system
JPH0413670B2 (en)
JP3141278B2 (en) Ultrasonic sensor
JPH04250388A (en) Ultrasonic object detector
JPH0413671B2 (en)
JPH0449077B2 (en)
JP2797725B2 (en) Ultrasonic object detector
JPH05675B2 (en)
JPH09113617A (en) Ultrasound sensor
JP2826198B2 (en) Ultrasonic object detector
JPH077054B2 (en) Ultrasonic object detector
JPS62140084A (en) Ultrasonic object detector
JPH0352031B2 (en)
JPS6371673A (en) Ultrasonic body detector
JPH0545456A (en) Ultrasonic detector
JPS6333685A (en) Ultrasonic object detector
JPH04233487A (en) Ultrasonic distance measuring apparatus
JP2778300B2 (en) Ultrasonic distance measuring device
JPH0627806B2 (en) Ultrasonic object detector
JP2953181B2 (en) Ultrasonic sensor
JP2655744B2 (en) Ultrasonic object detector
JP2522597B2 (en) Ultrasonic object detector
JP3388660B2 (en) Underwater position measurement method and device
JPS5916376B2 (en) Ultrasonic switch noise removal circuit
JPH0545455A (en) Ultrasonic detector