JPH04136504A - Hydraulic circuit - Google Patents

Hydraulic circuit

Info

Publication number
JPH04136504A
JPH04136504A JP25723490A JP25723490A JPH04136504A JP H04136504 A JPH04136504 A JP H04136504A JP 25723490 A JP25723490 A JP 25723490A JP 25723490 A JP25723490 A JP 25723490A JP H04136504 A JPH04136504 A JP H04136504A
Authority
JP
Japan
Prior art keywords
pressure
valve
circuit
tank
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25723490A
Other languages
Japanese (ja)
Inventor
Teruo Akiyama
照夫 秋山
Naoki Ishizaki
直樹 石崎
Kiyoshi Shirai
白井 清
Mitsuharu Yamashita
光治 山下
Shinichi Shinozaki
篠崎 晋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP25723490A priority Critical patent/JPH04136504A/en
Publication of JPH04136504A publication Critical patent/JPH04136504A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
    • F15B13/0422Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with manually-operated pilot valves, e.g. joysticks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To enhance the responsiveness of a hydraulic circuit by connecting the hydraulic circuit for leading loaded pressure oil to a switching valve, which controls the hydraulic pump capacity in the direction of decrease by pump discharge pressure and in the direction of increase by load pressure, to the tank through a bleed-off valve which shuts off the oil by control valve switching-over pressure and allows to pass through by spring force. CONSTITUTION:A branch circuit 26 is connected to a hydraulic circuit 23 for connecting a shuttle valve 21 to a pressure receiving portion 14a of a switching valve 14 and a bypass circuit 27 is connected to a discharge line 10a for a hydraulic pump 10. These circuits 26 and 27 are connected to and shut off from a tank 29 through a bleed-off valve 28. The bleed-off valve 28 at a connecting position A connects the branch circuit 26 to the tank 29 through a restriction 31 by a spring 30, and the bypass line 27 to the tank 29, at a middle position B, shuts off the branch circuit 26 by a pressure at the pressure receiving portion 32 and, at a shutting position C, the circuits 26 and 27 shut off. Thus, the responsiveness of the circuit can be enhanced since the loaded pressure oil does not flow out into the tank 29.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、1つの油圧ポンプの吐出圧油を複数の油圧ア
クチユエータに供給する油圧回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hydraulic circuit that supplies pressure oil discharged from one hydraulic pump to a plurality of hydraulic actuators.

〔従来の技術〕[Conventional technology]

1つの油圧ポンプの吐出圧油を複数の油圧アクチュエー
タに供給するには、油圧ポンプの吐出路に複数の操作弁
を設け、その操作弁を切換えることで各油圧アクチュエ
ータに圧油を供給すれば良いが、このようにすると複数
の油圧アクチュエータに圧油を同時に供給する際に、負
荷の小さな油圧アクチュエータにのみ圧油が供給されて
負荷の大きな油圧アクチュエータに圧油が供給されなく
なってしまう。
In order to supply pressure oil discharged from one hydraulic pump to multiple hydraulic actuators, it is sufficient to provide multiple operating valves in the discharge path of the hydraulic pump and supply pressure oil to each hydraulic actuator by switching the operating valves. However, in this case, when pressure oil is supplied to a plurality of hydraulic actuators at the same time, pressure oil is supplied only to the hydraulic actuators with a small load, and no pressure oil is supplied to the hydraulic actuators with a large load.

このことで解消する油圧回路として、例えば特開昭59
−197803号公報に示すものが提案されている。
As a hydraulic circuit that solves this problem, for example, JP-A-59
The one shown in Japanese Patent No. 197803 has been proposed.

かかる油圧回路を模式的に示すと第6図に示すようにな
る。
Such a hydraulic circuit is schematically shown in FIG. 6.

つまり、油圧ポンプlの吐出路1ai:複数の操作弁2
を設け、各操作弁2と各油圧アクチュエータ3を接続す
る回路4に圧力補償弁5をそれぞれ設けると共に、各回
路4の圧力、つまり負荷圧における最も高い圧力をシャ
トル弁6で検出し、その検出した負荷圧を各圧力補償弁
5に作用してその負荷圧に見合う圧力にセットし、各操
作弁2の出口側圧力を等しくして各操作弁2を同時操作
した時に各操作弁の開口面積に比例した分流比で各油圧
アクチュエータ3に圧油を供給できるようにしである。
In other words, the discharge path 1ai of the hydraulic pump l: the plurality of operating valves 2
A pressure compensating valve 5 is provided in each circuit 4 connecting each operating valve 2 and each hydraulic actuator 3, and the pressure in each circuit 4, that is, the highest pressure in the load pressure is detected by a shuttle valve 6. The load pressure applied to each pressure compensation valve 5 is set to a pressure commensurate with the load pressure, and when the outlet side pressure of each operation valve 2 is equalized and each operation valve 2 is operated simultaneously, the opening area of each operation valve is This allows pressure oil to be supplied to each hydraulic actuator 3 at a branching ratio proportional to .

かかる油圧回路であると、圧力補償弁5の機能によって
各油圧アクチュエータ3の負荷の大小に無関係に操作弁
2の開口面積に比例した流量分配ができるから、1つの
油圧ポンプ1の吐出圧油を操作弁2の操作量に比例して
各油圧アクチュエータ3にそれぞれ供給できる。
With such a hydraulic circuit, the function of the pressure compensating valve 5 makes it possible to distribute the flow rate in proportion to the opening area of the operating valve 2, regardless of the magnitude of the load on each hydraulic actuator 3. It can be supplied to each hydraulic actuator 3 in proportion to the amount of operation of the operation valve 2.

しかしながら、油圧ポンプ1の容量(1回転当たり吐出
流量)はポンプ圧と負荷圧とによって、ポンプ圧が高く
なると容量小、負荷圧が低くなると容量大となるように
制御され、しかも操作弁2を中立位置とすると吐出路1
aと回路4が遮断されて回路4か閉塞されて負荷圧が残
り、その負荷圧が各部リークにより低下するまでポンプ
容量が低下しない。
However, the capacity (discharge flow rate per rotation) of the hydraulic pump 1 is controlled by the pump pressure and load pressure so that the capacity becomes smaller when the pump pressure increases and becomes larger when the load pressure decreases. In the neutral position, discharge path 1
A and circuit 4 are cut off, circuit 4 is blocked, and load pressure remains, and the pump capacity does not decrease until the load pressure decreases due to leaks from various parts.

このために、オペレータが操作弁2を中立位置に復帰し
てから所定時間だけ油圧ポンプ1の容量が多くなって油
圧ポンプ駆動音が生じオペレータに違和感を与えている
For this reason, the capacity of the hydraulic pump 1 increases for a predetermined period of time after the operator returns the operating valve 2 to the neutral position, producing hydraulic pump drive noise, giving the operator a sense of discomfort.

そこで、本出願人は先に油圧ポンプの容量を制御する切
換弁に負荷圧を導入する回路を絞りを経てタンクに接続
して、操作弁を中立位置とした時に回路内の負荷圧が直
ちに低下するようにした油圧回路を提案した。
Therefore, the applicant first connected the circuit that introduces load pressure to the switching valve that controls the capacity of the hydraulic pump to the tank through a throttle, and when the operating valve is set to the neutral position, the load pressure in the circuit immediately drops. We proposed a hydraulic circuit designed to do this.

この油圧回路は具体的に第5図に示すように構成しであ
る。
This hydraulic circuit is specifically constructed as shown in FIG.

すなわち、油圧ポンプ10は斜板11の角度を変更する
ことで容量、つまり1回転当たり吐出流量が変化する可
変容量型の油圧ポンプとなり、その斜板11は大径ピス
トン12で容量減方向に傾動し、小径ピストン13で容
量増方向に傾動する。
That is, the hydraulic pump 10 is a variable displacement hydraulic pump in which the displacement, that is, the discharge flow rate per rotation, is changed by changing the angle of the swash plate 11, and the swash plate 11 is tilted in the direction of decreasing capacity by the large diameter piston 12. Then, the small diameter piston 13 tilts in the direction of increasing capacity.

前記大径ピストン12の受圧室12aは切換弁14で油
圧ポンプ10の吐出路10aに連通・遮断され、小径ピ
ストン13の受圧室13aは前記吐出路10gに接続し
である。
The pressure receiving chamber 12a of the large diameter piston 12 is communicated with and cut off from the discharge passage 10a of the hydraulic pump 10 by a switching valve 14, and the pressure receiving chamber 13a of the small diameter piston 13 is connected to the discharge passage 10g.

前記油圧ポンプ10の吐出路10aには複数の操作弁1
5が設けてあり、各操作弁ユ5と油圧アクチュエータ1
6を接続する回路17に圧力補償弁18がそれぞれ設け
てあり、該圧力補償弁18は第1受圧部19の圧油で低
圧セット側に押され、第2受圧部20の圧油で高圧セッ
ト側に押される構成としてあり、第1受圧部19は操作
弁15の出口側に接続して出口側圧力が供給され、第2
受圧部20はシャトル弁21を経て各回路17に接続さ
れて最も高い負荷圧が供給される。
A plurality of operation valves 1 are provided in the discharge passage 10a of the hydraulic pump 10.
5 are provided, each operating valve unit 5 and hydraulic actuator 1
A pressure compensation valve 18 is provided in each of the circuits 17 connecting 6, and the pressure compensation valves 18 are pushed to the low pressure set side by the pressure oil of the first pressure receiving part 19, and are pushed to the high pressure set side by the pressure oil of the second pressure receiving part 20. The first pressure receiving part 19 is connected to the outlet side of the operation valve 15 and is supplied with outlet side pressure, and the second
The pressure receiving section 20 is connected to each circuit 17 via a shuttle valve 21 and is supplied with the highest load pressure.

前記切換弁14は吐出路10a内の圧力で連通方向に押
され、バネ22と前記負荷圧でドレーン方向に押されて
、吐出圧力P1が高くなると大径ピストン12の受圧室
12gに吐出圧を供給して斜板11を容量減方向に傾動
し、吐出圧力P1が低くなると大径ピストン12の受圧
質12aをタンク側に流出して斜板11を容量増方向に
傾動する。
The switching valve 14 is pushed in the communication direction by the pressure in the discharge passage 10a, and pushed in the drain direction by the spring 22 and the load pressure, so that when the discharge pressure P1 increases, the discharge pressure is applied to the pressure receiving chamber 12g of the large diameter piston 12. When the discharge pressure P1 becomes low, the pressure-receiving material 12a of the large-diameter piston 12 flows out to the tank side, and the swash plate 11 is tilted in the direction of increasing capacity.

前記負荷圧を切換弁14の受圧部14gに供給する回路
23、つまり、受圧部14aとシャトル弁21の出力側
を接続する回路23は絞り24を経てタンク25に接続
している。
A circuit 23 that supplies the load pressure to the pressure receiving section 14g of the switching valve 14, that is, a circuit 23 that connects the pressure receiving section 14a and the output side of the shuttle valve 21, is connected to the tank 25 through a throttle 24.

かかる油圧回路であれば、操作弁15を圧油供給位置I
とすると従来と同様に油圧ポンプ10の吐出圧油が油圧
アクチュエータ16に供給されると共に、負荷圧がシャ
トル弁21、回路23より切換弁14の受圧部14aに
供給される。
In such a hydraulic circuit, the operation valve 15 is moved to the pressure oil supply position I.
Then, as in the conventional case, the discharge pressure oil of the hydraulic pump 10 is supplied to the hydraulic actuator 16, and the load pressure is supplied from the shuttle valve 21 and the circuit 23 to the pressure receiving part 14a of the switching valve 14.

この時、回路23に流入した圧油は絞り24でタンク2
5に流出するが、常時圧油が流入するために絞り24の
上流側の圧力は保持されて負荷圧として切換弁14の受
圧部14aに供給される。
At this time, the pressure oil flowing into the circuit 23 passes through the throttle 24 to the tank 2.
However, since pressure oil always flows in, the pressure on the upstream side of the throttle 24 is maintained and supplied to the pressure receiving part 14a of the switching valve 14 as a load pressure.

前述の状態から操作弁15を中立位置Nとすると吐出路
10g、回路17が閉塞されるが、回路23内の圧油は
絞り24よりタンク25に流出して回路23内の負荷圧
が急速に低下し、大径ピストン12の受圧室12aが吐
出路10aに連通して油圧ポンプ10の容量が直ちに最
小となり、油圧ポンプ10の吐出流量が減少してポンプ
圧が低下するから油圧ポンプ10の駆動音が小さくなる
When the operation valve 15 is set to the neutral position N from the above-mentioned state, the discharge passage 10g and the circuit 17 are blocked, but the pressure oil in the circuit 23 flows out from the throttle 24 to the tank 25, and the load pressure in the circuit 23 rapidly increases. The pressure receiving chamber 12a of the large-diameter piston 12 communicates with the discharge passage 10a, and the capacity of the hydraulic pump 10 immediately becomes the minimum.The discharge flow rate of the hydraulic pump 10 decreases and the pump pressure decreases, so that the drive of the hydraulic pump 10 decreases. The sound becomes quieter.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら前述の先に提案した油圧回路であると、負
荷圧を切換弁14の受圧部14aに供給する回路23が
常時絞り24を経てタンク25に接続しているので、操
作弁15を中立位置Nから圧油供給位置に操作した時に
負荷圧の昇圧が遅れて応答性が悪くなる。
However, in the previously proposed hydraulic circuit, the circuit 23 that supplies the load pressure to the pressure receiving part 14a of the switching valve 14 is always connected to the tank 25 via the throttle 24, so the operating valve 15 is moved to the neutral position N. When operating from the pressure oil supply position to the pressure oil supply position, there is a delay in increasing the load pressure, resulting in poor response.

そこで、本発明は前述の課題を解決できるようにした油
圧回路を提供することを目的とする。
Therefore, an object of the present invention is to provide a hydraulic circuit that can solve the above-mentioned problems.

〔課題を解決するための手段及び作用〕負荷圧を切換弁
の受圧部に供給する回路をブリードオフ弁でタンクに接
続し、このブリードオフ弁を操作弁切換圧で遮断位置と
なり、かつバネ力で連通位置となるようにして、操作弁
を中立位置とした時にはブリードオフ弁が遮断位置とな
って負荷圧をタンクに流出し、操作弁を圧油供給位置と
した時にはブリードオフ弁が遮断位置となって負荷圧が
タンクに流出しないようにしたものである。
[Means and actions for solving the problem] A circuit that supplies load pressure to the pressure receiving part of the switching valve is connected to the tank through a bleed-off valve, and the bleed-off valve is set to the cutoff position by the operating valve switching pressure, and the spring force When the control valve is in the neutral position, the bleed-off valve is in the cutoff position and the load pressure flows out to the tank, and when the control valve is in the pressure oil supply position, the bleed-off valve is in the cutoff position. This prevents the load pressure from flowing into the tank.

〔実 施 例〕〔Example〕

第1図に示すように、シャトル弁21と切換弁14の受
圧部14aを接続する回路23に分岐回路26を接続し
、油圧ポンプ10の吐出路10aにバイパス回路27を
接続し、このバイパス路27と分岐回路26をブリード
オフ弁28でタンク29に連通・遮断する。
As shown in FIG. 1, a branch circuit 26 is connected to the circuit 23 connecting the shuttle valve 21 and the pressure receiving part 14a of the switching valve 14, and a bypass circuit 27 is connected to the discharge path 10a of the hydraulic pump 10. 27 and the branch circuit 26 are communicated with and cut off from the tank 29 by a bleed-off valve 28.

該ブリードオフ弁28はバネ30で連通位置Aに保持さ
れて分岐回路26を絞り31でタンク29に連通し、か
つバイパイ路27をタンク29に連通し、受圧部32の
圧力で中間位置B。
The bleed-off valve 28 is held at the communication position A by a spring 30, connects the branch circuit 26 to the tank 29 through the throttle 31, and connects the bypass passage 27 to the tank 29, and is moved to the intermediate position B by the pressure of the pressure receiving part 32.

遮断位置Cに順次押され、中間位置Bとなると分岐回路
26か遮断されてバイパス回路27がタンク29に絞り
33を経て連通し、遮断位置Cとなると両回路がそれぞ
れ遮断される。
They are sequentially pushed to the cutoff position C, and when the intermediate position B is reached, the branch circuit 26 is cut off and the bypass circuit 27 is communicated with the tank 29 via the throttle 33, and when the cutoff position C is reached, both circuits are cut off.

前記ブリードオフ弁28の受圧部32には操作弁15を
切換えるための複数のパイロット制御弁34の出力圧に
おける最高圧がシャトル弁35で供給され、そのパイロ
ット制御弁34はレバー36で操作される。
The pressure receiving part 32 of the bleed-off valve 28 is supplied with the highest pressure among the output pressures of a plurality of pilot control valves 34 for switching the operation valve 15 by a shuttle valve 35, and the pilot control valve 34 is operated by a lever 36. .

しかして、パイロット制御弁34のレバー36を中立と
して操作弁15を中立位置Nとした時には油圧ポンプ1
0の吐出圧が大径ピストン12の受圧室12aに供給さ
れて斜板11は最小角度となってポンプ容量は最小とな
り、さらにブリードオフ弁28が連通位置Aとなってポ
ンプの僅かの吐出流量はバイパス回路27よりタンク2
9に流出し、かつ回路23は分岐回路26、絞り31を
経てタンク29に連通ずる。
Therefore, when the lever 36 of the pilot control valve 34 is set to the neutral position and the operating valve 15 is set to the neutral position N, the hydraulic pump 1
A discharge pressure of 0 is supplied to the pressure receiving chamber 12a of the large-diameter piston 12, the swash plate 11 is at its minimum angle, and the pump capacity is minimized.Furthermore, the bleed-off valve 28 is in the communication position A, and the pump's small discharge flow rate is reduced. is the tank 2 from the bypass circuit 27.
9, and the circuit 23 communicates with a tank 29 via a branch circuit 26 and a throttle 31.

また、レバー36を操作してパイロット制御弁34より
パイロット圧を操作弁15に供給して圧油供給位置Iと
すると、油圧ポンプ10の吐出圧油が圧力補償弁18を
通って油圧アクチュエータ16に供給され、パイロット
制御弁34の出力圧がブリードオフ弁28の受圧部32
に供給されるから、レバー36のストロークが小さく出
力圧が低い時にはブリードオフ弁28は中間位置Bとな
り、レバー36がフルストロークの時には出力圧が高く
ブリードオフ弁28は遮断位置Cとなる。
Further, when the lever 36 is operated to supply pilot pressure from the pilot control valve 34 to the operation valve 15 to set the pressure oil supply position I, the discharge pressure oil of the hydraulic pump 10 passes through the pressure compensation valve 18 to the hydraulic actuator 16. The output pressure of the pilot control valve 34 is supplied to the pressure receiving part 32 of the bleed-off valve 28.
Therefore, when the stroke of the lever 36 is small and the output pressure is low, the bleed-off valve 28 is in the intermediate position B, and when the lever 36 is at full stroke, the output pressure is high and the bleed-off valve 28 is in the cutoff position C.

したがって、操作弁15を中立位置Nから圧油供給位置
Iに操作した時にはブリードオフ弁28が連通位置Aか
ら中間位MB、遮断位置Cとなるために回路23がタン
ク29と連通しないので応答性が確保され、操作弁15
を圧油供給位置Iから中立位置Nに操作した時にはブリ
ードオフ弁28が遮断位置Cから中間位置B5連通位置
Aとなって回路23が絞り31を通ってタンク29に連
通ずるため負荷圧の低下がはやくなりポンプ圧の低下も
はやくなるから違和感を生じない。
Therefore, when the operation valve 15 is operated from the neutral position N to the pressure oil supply position I, the bleed-off valve 28 changes from the communication position A to the intermediate position MB to the cutoff position C, so that the circuit 23 does not communicate with the tank 29, resulting in responsiveness. is secured and the operation valve 15
When the is operated from the pressure oil supply position I to the neutral position N, the bleed-off valve 28 changes from the cutoff position C to the intermediate position B5 and the communication position A, and the circuit 23 passes through the throttle 31 and communicates with the tank 29, resulting in a decrease in load pressure. Since the pump pressure decreases quickly and the pump pressure does not drop quickly, there is no discomfort.

また、実施例においては油圧ポンプ10の吐出圧油をブ
リードオフ弁28でタンク29に連通・遮断するように
したので、下記の効果を有する。
Further, in the embodiment, the pressure oil discharged from the hydraulic pump 10 is communicated with and cut off from the tank 29 by the bleed-off valve 28, so that the following effects are obtained.

すなわち、操作弁15が中立位置Nの時にはブリードオ
フ弁28が連通位置Aとなって油圧ポンプ10の吐出圧
油がタンク側に流れるので、油圧ポンプ10の吐出圧油
が操作弁ユ5との間で圧縮されたり、高圧となることが
なく、しかも操作弁15を第1・第2圧油供給位置とす
るとブリードオフ弁28が遮断位置Cとなって油圧ポン
プ10の吐出圧油がタンク側に流れなくなる。
That is, when the operation valve 15 is in the neutral position N, the bleed-off valve 28 is in the communication position A, and the pressure oil discharged from the hydraulic pump 10 flows to the tank side. Furthermore, when the operation valve 15 is set to the first and second pressure oil supply positions, the bleed-off valve 28 is set to the cutoff position C, and the pressure oil discharged from the hydraulic pump 10 is transferred to the tank side. It stops flowing.

したがって、操作弁15を急操作した時の油圧アクチュ
エータ16の静定性を向上できるばかりか、操作弁15
が中立位置の時の油圧ポンプ10の吐出流量を多くして
応答性を向上でき、しかも油圧アクチュエータ16に圧
油を供給する時には従来と同様に圧力補償できる。
Therefore, not only can the static stability of the hydraulic actuator 16 be improved when the operating valve 15 is suddenly operated, but also the static stability of the hydraulic actuator 16 can be improved.
It is possible to increase the discharge flow rate of the hydraulic pump 10 when the hydraulic pump 10 is at the neutral position to improve responsiveness, and when supplying pressure oil to the hydraulic actuator 16, pressure compensation can be performed in the same way as in the conventional case.

第2図は第2実施例を示し、負荷圧を圧力補償弁18の
出力側から検出している。
FIG. 2 shows a second embodiment, in which the load pressure is detected from the output side of the pressure compensation valve 18.

第3図、第4図はブリードオフ弁28の変形例を示し、
分岐回路26の入口側、出口側に絞り31を設けである
3 and 4 show modified examples of the bleed-off valve 28,
A throttle 31 is provided on the inlet side and the outlet side of the branch circuit 26.

〔発明の効果〕〔Effect of the invention〕

操作弁15を中立位置Nとして吐出路10a1回路17
を閉塞した時にはブリードオフ弁28が連通位置となっ
て負荷圧を導入する回路23内の圧油がタンク29に流
出してその回路23内の圧力、つまり負荷圧か急激に低
下するので、油圧ポンプ]0の容量が操作弁15を中立
位置Nとすると直ちに最小となって油圧ポンプ10の駆
動音が発生せずにオペレータに違和感を与えることがな
い。
Discharge path 10a1 circuit 17 with operating valve 15 at neutral position N
When the bleed-off valve 28 is closed, the pressure oil in the circuit 23 that introduces load pressure flows into the tank 29, and the pressure in the circuit 23, that is, the load pressure, decreases rapidly. As soon as the operation valve 15 is set to the neutral position N, the capacity of the hydraulic pump 10 becomes the minimum, and the driving noise of the hydraulic pump 10 is not generated, so that the operator does not feel uncomfortable.

また、操作弁15を中立位置より圧油供給位置とした時
にはブリードオフ弁28が遮断位置となって回路23内
の圧力、つまり負荷圧がタンク29に流出しないので、
応答性を向上できる。
Furthermore, when the operating valve 15 is moved from the neutral position to the pressure oil supply position, the bleed-off valve 28 is in the cutoff position and the pressure in the circuit 23, that is, the load pressure, does not flow out to the tank 29.
Responsiveness can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の第1・第2実施例を示す油圧
回路図、第3図、第4図はブリードオフ弁の変形例を示
す説明図、第5図は先に提案した油圧回路図、第6図は
従来の油圧回路図である。 10は油圧ポンプ、10aは吐出路、14は切換弁、1
5は操作弁、16は油圧アクチュエータ、17は回路、
18は圧力補償弁、23は回路、28はブリードオフ弁
、29はタンク。
Figures 1 and 2 are hydraulic circuit diagrams showing the first and second embodiments of the present invention, Figures 3 and 4 are explanatory diagrams showing modifications of the bleed-off valve, and Figure 5 is an illustration of a modification of the bleed-off valve. FIG. 6 is a conventional hydraulic circuit diagram. 10 is a hydraulic pump, 10a is a discharge path, 14 is a switching valve, 1
5 is an operating valve, 16 is a hydraulic actuator, 17 is a circuit,
18 is a pressure compensation valve, 23 is a circuit, 28 is a bleed-off valve, and 29 is a tank.

Claims (1)

【特許請求の範囲】  油圧ポンプ10の吐出路10aに複数の操作弁15を
設け、各操作弁15と各油圧アクチュエータ16の接続
回路に圧力補償弁18をそれぞれ設け、各圧力補償弁1
8を各油圧アクチュエータ16の負荷圧における最高圧
でセットするようにした油圧回路において、前記油圧ポ
ンプ10の容量を制御する切換弁14をポンプ吐出圧で
容量減方向に作動し、かつ前記負荷圧により容量増方向
に作動し、その負荷圧を切換弁14に導く回路23をブ
リードオフ弁28を経てタンク29に接続し、 該ブリードオフ弁28を操作弁切換圧により遮断位置と
なり、バネ力によって連通位置となるようにしたことを
特徴とする油圧回路。
[Claims] A plurality of operation valves 15 are provided in the discharge path 10a of the hydraulic pump 10, and a pressure compensation valve 18 is provided in the connection circuit between each operation valve 15 and each hydraulic actuator 16, and each pressure compensation valve 1
8 is set at the highest pressure among the load pressures of each hydraulic actuator 16, the switching valve 14 for controlling the capacity of the hydraulic pump 10 is operated in the direction of reducing the capacity by the pump discharge pressure, and the load pressure The circuit 23, which operates in the direction of increasing capacity and leads the load pressure to the switching valve 14, is connected to the tank 29 via the bleed-off valve 28, and the bleed-off valve 28 is brought to the cutoff position by the operating valve switching pressure, and is closed by the spring force. A hydraulic circuit characterized by being in a communicating position.
JP25723490A 1990-09-28 1990-09-28 Hydraulic circuit Pending JPH04136504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25723490A JPH04136504A (en) 1990-09-28 1990-09-28 Hydraulic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25723490A JPH04136504A (en) 1990-09-28 1990-09-28 Hydraulic circuit

Publications (1)

Publication Number Publication Date
JPH04136504A true JPH04136504A (en) 1992-05-11

Family

ID=17303546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25723490A Pending JPH04136504A (en) 1990-09-28 1990-09-28 Hydraulic circuit

Country Status (1)

Country Link
JP (1) JPH04136504A (en)

Similar Documents

Publication Publication Date Title
KR100752115B1 (en) Hydraulic pump control system for an excavator
JP2003194006A (en) Oil control device for heavy construction equipment
JPH04136507A (en) Hydraulic circuit
JP2002206508A (en) Hydraulic driving device
JPS595165B2 (en) hydraulic control device
JPH04136504A (en) Hydraulic circuit
JPH05288203A (en) Pressure relieving device in oil hydraulic circuit having pressure compensating valve
JPH11315805A (en) Unload valve
JPH08100770A (en) Discharge flow control device of hydraulic pump
JP3798187B2 (en) Hydraulic drive
JP3522959B2 (en) Hydraulic drive
JP2557002B2 (en) Operation valve used for hydraulic circuit
JPH03213703A (en) Discharge flow control circuit for load pressure compensating pump
JPH08200308A (en) Hydraulic circuit
JPH04136505A (en) Hydraulic circuit
JP3240286B2 (en) Hydraulic system
JP3532279B2 (en) Hydraulic circuit
JP3681709B2 (en) Hydraulic control device
JP3707847B2 (en) Operation valve
JPH0419408A (en) Hydraulic circuit
JP2563216B2 (en) Hydraulic circuit
JPH0419407A (en) Hydraulic circuit
JP3558862B2 (en) Hydraulic system
JP2605587Y2 (en) Pressure compensation valve
JP2556999B2 (en) Hydraulic circuit