JPH04135212A - Drive control method for unmanned carrier - Google Patents

Drive control method for unmanned carrier

Info

Publication number
JPH04135212A
JPH04135212A JP2258621A JP25862190A JPH04135212A JP H04135212 A JPH04135212 A JP H04135212A JP 2258621 A JP2258621 A JP 2258621A JP 25862190 A JP25862190 A JP 25862190A JP H04135212 A JPH04135212 A JP H04135212A
Authority
JP
Japan
Prior art keywords
data
control circuit
detection sensor
control
unmanned vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2258621A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kobayashi
博之 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2258621A priority Critical patent/JPH04135212A/en
Publication of JPH04135212A publication Critical patent/JPH04135212A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To improve the reliability and the safety of an unmanned carrier by comparing the detection data on a track detection sensor with the error data on a control circuit obtained before a steering action for calculation of the estimated error data and inputting these error data to each drive motor for the drive control of the unmanned carrier. CONSTITUTION:When an unmanned carrier runs on a guide track 1 including the rectilinear and curve parts, a track sensor 10 detects the carrier running of the track 1. The detection data (dn) obtained by the sensor 10 are inputted to a control circuit 9 and compared with the error data (dn - 1) on the circuit 9 obtained before a steering action and to be previously inputted. Then the estimated error data (dn + 1) is calculated and inputted to the drive motors 7 and 8 for control of the drive of the carrier. As a result, the control action delay of the circuit 9 caused by the detecting action of the sensor 10 can be eliminated. Thus the reliability nd the safety of the carrier can be improved.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、例えば、工場や倉庫内に敷設された磁気軌条
上を軌条検出センサ(磁気軌条検出センサ)により検出
して台車に設けられた各一対の車輪の各駆動モータを駆
動制御しながら直線部がら曲線部へ自由に自動走行する
ようにした無人車の走行制御方法に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention is directed to detecting magnetic rails laid in a factory or warehouse using a rail detection sensor (magnetic rail detection sensor). The present invention relates to a traveling control method for an unmanned vehicle that freely and automatically travels from a straight section to a curved section while controlling drive motors for each pair of wheels provided on a truck.

(従来の技術) 既に提案されているこの種の無人車の走行制御手段は、
第5図乃至第9図に示されるように構成されている。
(Prior art) This type of driving control means for unmanned vehicles that has already been proposed is as follows:
It is constructed as shown in FIGS. 5 to 9.

即ち、第5図乃至第9図において、例えば、工場や倉庫
内に敷設された磁気軌条(磁気誘導線)1には、無人車
の台車2が設けられており、この台車2には、各一対の
車輪3.4と5.6が軸装されている。又、この一方の
各車輪3.4には、各駆動モータ7.8かそれぞれ独立
して連結されており、この各駆動モータ7.8には、制
御回路(MPU)9か接続されている。さらに、この制
御回路9には、軌条検出センサ(磁気軌条検出センサ)
10が接続されており、この軌条検出センサ10は上記
台車2の前端部2aに磁気軌条1を検出するように付設
されている。
That is, in FIGS. 5 to 9, for example, a magnetic rail (magnetic guide line) 1 laid in a factory or warehouse is provided with a bogie 2 for an unmanned vehicle. A pair of wheels 3.4 and 5.6 are mounted on the shaft. Further, each drive motor 7.8 is independently connected to each wheel 3.4 on one side, and a control circuit (MPU) 9 is connected to each drive motor 7.8. . Furthermore, this control circuit 9 includes a rail detection sensor (magnetic rail detection sensor).
10 is connected, and this rail detection sensor 10 is attached to the front end 2a of the bogie 2 so as to detect the magnetic rail 1.

従って、上述した無人車の走行制御手段は、直線部及び
曲線部の磁気軌条(磁気誘導線)1上を上記軌条検出セ
ンサ10で検出し、この検出データd(磁気軌条1に対
する無人車のズレ)を上記制御回路9へ送信して、予め
、この制御回路9に入力しているステアリングの入力デ
ータと比較演算して予測ズレデータ(ズレ幅)d′を演
算して、これを上記各駆動モータ7.8へ入力して走行
制御するようにしている(第7図乃至第9図参照)。
Therefore, the above-described traveling control means for the unmanned vehicle detects the magnetic rail (magnetic induction wire) 1 on the straight and curved portions using the rail detection sensor 10, and detects the detection data d (the deviation of the unmanned vehicle with respect to the magnetic rail 1). ) is sent to the control circuit 9 and compared with the steering input data input to the control circuit 9 in advance to calculate predicted deviation data (deviation width) d', which is then applied to each of the above-mentioned drives. The driving control is performed by inputting the signal to the motor 7.8 (see FIGS. 7 to 9).

(発明か解決しようとする課題) しかしながら、上述した無人車の走行制御手段は、無人
車の走行速度が速いにも拘らず、曲線部の磁気軌条(磁
気誘導線)1上を上記軌条検出センサ10の検出データ
dで検出し、この検出ブタdを、予め、入力している上
記制御回路9でステアリングの入力データと比較演算し
て予測ズレデータd′を演算して、これを上記各駆動モ
ータ7.8へ入力して走行制御するようにしている関係
上、先の上記曲線部の磁気軌条1か大きく曲線走行する
場合に、いずれの方向へ走行するのか予測が困難である
ばかりでなく、上記軌条検出センサ10の検出データd
による検出に伴う上記制御回路の制御動作の遅延に伴い
、無人車の安定走行に信頼性や安全性に問題かある。
(Problem to be Solved by the Invention) However, the above-mentioned driving control means for an unmanned vehicle does not allow the above-mentioned rail detection sensor to move on the magnetic rail (magnetic guide wire) 1 of the curved portion, despite the high running speed of the unmanned vehicle. The detection data d is compared with the steering input data in the control circuit 9, which has been inputted in advance, to calculate predicted deviation data d', which is used for each of the above-mentioned drives. Because the vehicle is controlled by input to the motor 7.8, it is not only difficult to predict in which direction it will travel when traveling on a large curve on the magnetic rail 1 at the above-mentioned curved section. , detection data d of the track detection sensor 10
Due to the delay in the control operation of the control circuit due to the detection by

本発明は、上述した事情に鑑みてなされたものであって
、無人車の走行速度か速いにも拘らず、曲線部の磁気軌
条上を上記軌条検出センサの検出データと制御回路のス
テアリング前のズレデータとを比較演算して予測ズレデ
ータを演算するようにし、先の曲線部の磁気軌条がいず
れの方向へ走行するのかを迅速に予測し、検出動作に伴
う上記制御回路の制御動作の遅延を解消し、無人車の安
定走行に信頼性や安全性の向上を図るようにした無人車
の走行制御方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and despite the high running speed of an unmanned vehicle, the detection data of the above-mentioned track detection sensor and the control circuit before steering can be used to Predicted deviation data is calculated by comparing and calculating the deviation data, and it is possible to quickly predict in which direction the magnetic rail at the previous curved section will travel, and to delay the control operation of the control circuit described above due to the detection operation. The purpose of the present invention is to provide a driving control method for an unmanned vehicle that solves the problem and improves reliability and safety for stable driving of the unmanned vehicle.

〔発明の構成〕[Structure of the invention]

(課題を解決するだめの手段及び作用)本発明は、無人
車の台車に設けられた各一対の車輪と、この一方の各車
輪に連結された各駆動モータと、この各駆動モータに接
続された制御回路と、この制御回路に接続され上記台車
の前端部に付設され磁気軌条を検出する軌条検出センサ
とよりなり、この軌条検出センサの検出データdnと上
記制御回路のステアリング前のズレデータd n−1と
を比較演算して予測ズレデータn+1を演算して、これ
を上記各駆動モータへ入力して走行制御するようにした
無人車の走行制御方法である。
(Means and effects for solving the problem) The present invention provides a pair of wheels provided on a bogie of an unmanned vehicle, a drive motor connected to one of the wheels, and a drive motor connected to each drive motor. and a rail detection sensor connected to the control circuit and attached to the front end of the bogie to detect the magnetic rail, and detecting data dn of the rail detection sensor and pre-steering deviation data d of the control circuit. This is a driving control method for an unmanned vehicle in which predicted deviation data n+1 is calculated by comparing n-1 with n-1, and this is input to each of the drive motors to control driving.

(実施例) 以下、本発明を図示の一実施例について説明する。(Example) Hereinafter, the present invention will be described with reference to an illustrated embodiment.

なお、本発明は、上述した具体例と同一構成部材には、
同じ符号を付して説明する。
Note that the present invention includes the same constituent members as those in the above-mentioned specific example.
The same reference numerals will be used to explain.

第1図乃至第4図において、符号1は、例えば、工場や
倉庫内に敷設された磁気軌条(磁気誘導線)であって、
この磁気軌条(磁気誘導線)1には、無人車の台車2が
設けられており、この台車2には、前後各一対の車輪3
.4と5.6か軸装されている。又、この一方の各車輪
3.4には、各駆動モータ7.8がそれぞれ独立して連
結されており、この各駆動モータ7.8には、制御回路
9が接続されている。さらに、この制御回路9には、軌
条検出センサ(磁気軌条検出センサ)10が接続されて
おり、この軌条検出センサ1oは上記台車2の前端部2
aに磁気軌条1を検出するように付設されている。
In FIGS. 1 to 4, reference numeral 1 indicates a magnetic rail (magnetic guide wire) laid in a factory or warehouse, for example.
This magnetic rail (magnetic guide line) 1 is provided with a bogie 2 for an unmanned vehicle, and this bogie 2 has a pair of front and rear wheels 3.
.. 4 and 5.6 are equipped. Further, each drive motor 7.8 is independently connected to each of the wheels 3.4, and a control circuit 9 is connected to each drive motor 7.8. Furthermore, a rail detection sensor (magnetic rail detection sensor) 10 is connected to this control circuit 9, and this rail detection sensor 1o is connected to the front end portion 2 of the bogie 2.
A is attached to detect the magnetic track 1.

従って、本発明の無人車か、直線部及び曲線部の磁気軌
条(磁気誘導線)1上を走行するとき、上記軌条検出セ
ンサ10が直線部及び曲線部の磁気軌条(磁気誘導線)
1上を検出し、この軌条検出センサ10による検出デー
タdnを上記制御回路9へ入力し、この軌条検出センサ
の検出データdn  (d)と予め入力されている上記
制御回路10のステアリング前のズレデータd n−1
とを比較演算して予測ズレデータ(ズレ幅d’)dn+
1を演算して、これを上記各駆動モータ7.8へ入力し
て走行制御するようにしている(第2図乃至第4図参照
)。
Therefore, when the unmanned vehicle of the present invention runs on the magnetic rail (magnetic guide wire) 1 in the straight and curved sections, the track detection sensor 10 detects the magnetic rail (magnetic guide wire) in the straight and curved sections.
1 is detected, the detection data dn by this rail detection sensor 10 is input to the control circuit 9, and the detected data dn (d) of this rail detection sensor and the pre-steering deviation of the control circuit 10 inputted in advance are calculated. data d n-1
Compare and calculate predicted deviation data (difference width d') dn+
1 is calculated and inputted to each of the drive motors 7.8 for driving control (see FIGS. 2 to 4).

〔発明の効果〕 以上述べたように本発明によれば、無人車の台車に設け
られた各一対の車輪と、この一方の各車輪に連結された
各駆動モータと、この各駆動モータに接続された制御回
路と、この制御回路に接続され上記台車の前端部に付設
して磁気軌条を検出する軌条検出センサとよりなり、こ
の軌条検出センサの検出データdnと上記制御回路のス
テアリング前のズレデータd n−1とを比較演算して
予測ズレデータn+1を演算して、これを上記各駆動モ
ータへ入力して走行制御するようにしであるので、先の
曲線部の磁気軌条かいずれの方向へ走行するのか迅速に
予測できるばかりでなく、上記軌条検出センサの検出デ
ータで検出に伴う制御動作の遅延を解消し、無人車の安
定走行に信頼性や安全性の向上を図る二とかできる等の
優れた効果を有する。
[Effects of the Invention] As described above, according to the present invention, each pair of wheels provided on the bogie of an unmanned vehicle, each drive motor connected to one of the wheels, and each drive motor connected to each pair of wheels provided on the bogie of an unmanned vehicle. and a rail detection sensor that is connected to the control circuit and attached to the front end of the bogie to detect the magnetic rail, and detects the detected data dn of the rail detection sensor and the deviation of the control circuit before steering. The predicted deviation data n+1 is calculated by comparing the data d n-1 and is inputted to each of the above drive motors for running control. Not only can it be quickly predicted whether or not the vehicle will move forward, but the detection data from the track detection sensor can also be used to eliminate delays in control operations caused by detection, thereby improving reliability and safety for stable driving of unmanned vehicles. It has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の無人車の走行制御方法を説明するた
めの無人車の平面図、第2図及び第3図は、本発明の詳
細な説明するための各図、第4図は、本発明の詳細な説
明するフローチャート、第5図は、既に提案されている
無人車の走行制御方法を説明するための無人車の斜面図
、第6図は、既に提案されている無人車の走行制御方法
を説明するための無人車の一部を示す正面図、第7図及
び第8図は、既に提案されている無人車の走行制御方法
の作用を説明するための各図、第9図は、既に提案され
ている無人車の走行制御方法の動作を説明するだめのフ
ローチャートである。 1・磁気軌条、2・・・台車、3.4.5.6・・・車
輪、7.8・・駆動モータ、9・・制御回路、10・・
・軌条検出センサ。 出願人代理人  佐  藤  −雄 部1図 %2図 第4図 第3図 第5図
FIG. 1 is a plan view of an unmanned vehicle for explaining the driving control method of an unmanned vehicle according to the present invention, FIGS. 2 and 3 are diagrams for explaining the present invention in detail, and FIG. , a flowchart for explaining the present invention in detail, FIG. 5 is a slope view of an unmanned vehicle for explaining the previously proposed driving control method for an unmanned vehicle, and FIG. 6 is a flowchart for explaining the already proposed unmanned vehicle. FIGS. 7 and 8 are front views showing a part of an unmanned vehicle for explaining the driving control method, and FIGS. The figure is a flowchart for explaining the operation of an already proposed method for controlling the running of an unmanned vehicle. 1. Magnetic rail, 2. Bogie, 3.4.5.6. Wheels, 7.8. Drive motor, 9. Control circuit, 10.
・Rail detection sensor. Applicant's Representative Sato - Male Part 1 Figure % 2 Figure 4 Figure 3 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 無人車の台車に設けられた各一対の車輪と、この一方の
各車輪に連結された各駆動モータと、この各駆動モータ
に接続された制御回路と、この制御回路に接続され上記
台車の前端部に付設され磁気軌条を検出する軌条検出セ
ンサとよりなり、この軌条検出センサの検出データdn
と上記制御回路のステアリング前のズレデータdn−1
とを比較演算して予測ズレデータn+1を演算して、こ
れを上記各駆動モータへ入力して走行制御するようにし
た無人車の走行制御方法。
Each pair of wheels provided on the bogie of the unmanned vehicle, each drive motor connected to one of the wheels, a control circuit connected to each drive motor, and a front end of the bogie connected to the control circuit. It consists of a rail detection sensor that is attached to the section and detects the magnetic rail, and the detection data dn of this rail detection sensor is
and the deviation data dn-1 of the above control circuit before steering.
A driving control method for an unmanned vehicle, wherein predicted deviation data n+1 is calculated by comparing and calculating the predicted deviation data n+1, and the data is inputted to each of the drive motors to control the driving.
JP2258621A 1990-09-27 1990-09-27 Drive control method for unmanned carrier Pending JPH04135212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2258621A JPH04135212A (en) 1990-09-27 1990-09-27 Drive control method for unmanned carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2258621A JPH04135212A (en) 1990-09-27 1990-09-27 Drive control method for unmanned carrier

Publications (1)

Publication Number Publication Date
JPH04135212A true JPH04135212A (en) 1992-05-08

Family

ID=17322824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2258621A Pending JPH04135212A (en) 1990-09-27 1990-09-27 Drive control method for unmanned carrier

Country Status (1)

Country Link
JP (1) JPH04135212A (en)

Similar Documents

Publication Publication Date Title
RU2008147118A (en) ACTIVE RAIL TRANSPORT SYSTEM
JPS59177611A (en) Unattended moving car and its steering method
JPS5845042B2 (en) Trajectory control device for trackless moving objects
JP2759134B2 (en) Automatic guidance method for guided vehicles
JPH04135212A (en) Drive control method for unmanned carrier
JPS63268405A (en) Train driving system
JP2727370B2 (en) Travel control method for self-propelled bogie
JPH0840686A (en) Travel control method of non-track type carrying truck
KR200151328Y1 (en) Steering device of unmanned vehicle
JP2907876B2 (en) Autopilot running device for vehicles
JP2000259249A (en) Device for guiding unmanned vehicle
JPH01195511A (en) Speed control circuit for unmanned guide type cart
JPH0399304A (en) Automatic operating/traveling controller for vehicle
JPH06314125A (en) Steering control method for unmanned carriage
JPH0729686Y2 (en) Travel control device for self-propelled carriage
KR20220021774A (en) SAW apparatus capable of curved driving
JPS63242769A (en) Abnormality detecting method of car body tilter
JP3227950B2 (en) Travel control method for automatic guided vehicles
JPH0424162A (en) Truck running rail
SU1093595A1 (en) Apparatus for controlling the turning of a vehicle
JPS6031615A (en) Method for controlling unmanned carrier car
JPH0313768Y2 (en)
JPH06239207A (en) Car wash device
JPS61156409A (en) Controller of trackless truck
JPS61221804A (en) Drive controller for unmanned carrier