JPH04134642A - Optical information recording medium - Google Patents

Optical information recording medium

Info

Publication number
JPH04134642A
JPH04134642A JP2255829A JP25582990A JPH04134642A JP H04134642 A JPH04134642 A JP H04134642A JP 2255829 A JP2255829 A JP 2255829A JP 25582990 A JP25582990 A JP 25582990A JP H04134642 A JPH04134642 A JP H04134642A
Authority
JP
Japan
Prior art keywords
thin film
recording medium
optical information
information recording
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2255829A
Other languages
Japanese (ja)
Other versions
JP2782939B2 (en
Inventor
Noboru Yamada
昇 山田
Eiji Ono
鋭二 大野
Kenichi Osada
憲一 長田
Nobuo Akahira
信夫 赤平
Kenichi Nishiuchi
健一 西内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2255829A priority Critical patent/JP2782939B2/en
Priority to US07/765,514 priority patent/US5346740A/en
Publication of JPH04134642A publication Critical patent/JPH04134642A/en
Priority to US08/067,146 priority patent/US5348783A/en
Application granted granted Critical
Publication of JP2782939B2 publication Critical patent/JP2782939B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To allow high-speed rewriting of information by extremely thinly forming a material which cannot attain a stable amorphous state at room temp. on a substrate. CONSTITUTION:Stabilizing layers 2 and recording layers 3 are repetitively laminated on a resin substrate 1 having a smooth surface and the uppermost layer is formed as the stabilizing layer. The stabilizing layers are preferably dielectric thin films from the reasons that these films are optically transparent and have a sufficiently high m. p. The recording layers are constituted of materials which hardly attain the amorphous state usually at room temp. The relations between the thicknesses of such stabilizing layers and the thicknesses of the recording thin-film layers are so determined as to hold the relations 3>=d1/d2>=1/3, 10nm>=d1>=1nm, 30nm>=d2>=1nm when the thickness of the recording layer is designated as d1 and the thickness of the stabilizing layer as d2. The recording medium which is excellent in all of stability, recording sensitivity, erasing sensitivity and rewriting times is formed in this way.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はレーザー光線等の手段を用いて情報信号を高速
かつ高密度に記録再生し かつ書き換えることが可能な
光学的情報記録媒体に関すも従来の技術 高速に大量の情報を記録し これを必要なときに高速に
再生し 書き換え また保存するという大容量の書換え
可能な記録媒体の研究が盛んに行われていも 例え(瓜
 物質の原子結合レベルでの可逆的な構造変化(相変化
)をレーザ照射によって高速に生じさせ、これに伴う光
学的特性の変化を利用して情報記録を行うという相変化
記録媒体はその有望な候補として多くの研究が成されて
きた 記録薄膜材料として代表的なものはカルコゲナイ
ド薄膜であム これらはレーザ光線の照射条件に応じて
、アモルファス状態と結晶状態の間で容易に構造変化を
することが知られていも 最も多く試みられたのはTe
を主成分とする低融点の系で、例えばTea+Ge+s
S best (特公昭47−26897号公報)、T
 e*sG esS n+5Auas(特開昭60−1
12420号公報)等があムまた 近年注目を集めてい
るのが化合物組成付近の高融点の系であって、GeTe
、(GeTe)ssSnIs(特開昭62−40648
号公報)、GeTe−5b*Te春(Proc、  o
f  l50M’87、Pa1)等が代表的に知られて
いも カルコゲナイド以外では結晶状態の内の熱的平衡
相と熱的非平衡相聞の相変化を用いたものとしてInS
b、AgZn等が知られていも これらの薄膜を記録層に適用するに際して、その多くの
場合には 記録薄膜を誘電体層で挟み込むことが一般に
行われていも 例えば前出のGeTe  Sb2Te*
系の場合にはZnS薄膜を用いることが示されていZ、
、Zn5Mは例えば記録層で生じた熱を効率よく周囲へ
逃がす役割を担っており、記録消去特性を向上させる働
きをすム5iOs、ZrQ*等の酸化塩 SiN、  
AIN等の窒化物等を用いることもまた自明であも 更
に金属反射層を設けて4層構造とし光吸収効率を高めた
構成も知られていも また 記録媒体の感度を上1/  化学的安定性を増す
目的で、 2〜20nm厚の金属膜と1から40nm厚
のSl酸化物膜を繰り返し積み重ねた構造が提案されて
いる(特開昭6O−187950)。ここでは 記録層
として用いる物質として例えばSb*Te*、Co、 
 Pt、Te他多(の金属が上げられているが書換え記
録を行うための組成的提案や限定はな(〜 発明が解決しようとする課題 しかしながら従来の相変化記録媒体では例えばアモルフ
ァス−結晶間の相変化物質の場合には適用可能な材料が
アモルファス状態の安定性という点から大きく制限され
ていた 節板 多くの物質で(よ 通常の成膜方法(蒸
着、スパッタ等)で薄膜を形成するとアモルファス状態
にならず結晶化してしまう。また その結晶状態の薄膜
にレーザ照射を行ってもアモルファス化することできな
シyこれはその物質の結晶化転移温度が室温よりもはる
かニ低温にあるということ、あるいは結晶化速度が太き
すぎてアモルファス形成に必要な臨界冷却速度が満足さ
れないためだと考えられる力交 いずれにせ上 このこ
とが材料の研究対象をTe合金の共晶点付近の組a 8
0台ff1Geを含む化合物組成啄 記録薄膜単独でも
十分アモルファス相が安定な組成に限定してきた とこ
ろパ 光記録媒体として重要な特性はアモルファス状態
の安定性に留まらず、それ以外にも結晶化速度が大きい
こと、記録消去の繰り返し寿命が長いこと暮満足せねば
ならない点が多くあも アモルファス状態が安定な物質
が必ずしも他の特性にも優れているとは言えず、実際に
記録媒体として適用できる材料の範囲は極めて狭かった 本発明は上記問題点に鑑み成されたものであって、記録
媒体の構成に工夫を加え 従来相変化材料として用いる
ことのできなかった材料薄膜を用いて、高速に情報の書
換えが可能な光学的情報記録媒体を提供するものであム 課題を解決するための手段 本発明の光学的情報記録媒体(よ 上記課題を解決する
ために従来室温では安定なアモルファス状態を実現でき
なかった物質を1nmから10nmと極めて薄くして基
板上に形成し かつ少なくともその表面に記録層の物質
よりも高い融点の誘電体層を積層した構成を備えも 作用 記録薄膜層が10nm程度からさらに薄くなることによ
って、内部の電子状態がバルクの状態とは異なるものと
なって急激な構造変化が押さえられ アモルファス状態
が室温レベルで安定化されム また またレーザ照射時
において記録層で生じる熱量が低減され かつ上記構成
により熱の放散効果が増大することでより秩序の低いよ
り安定なアモルファス状態が実現されやすくなる。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to optical information recording media that are capable of recording and rewriting information signals at high speed and high density using means such as laser beams. Although research is actively being conducted on large-capacity rewritable recording media that can record large amounts of information at high speed, reproduce it at high speed when necessary, rewrite it, and store it again. A lot of research has been done on phase change recording media, which is a promising candidate for recording information by causing a reversible structural change (phase change) at high speed by laser irradiation and using the accompanying change in optical properties. The typical recording thin film material that has been used is chalcogenide thin films, which are known to easily change their structure between an amorphous state and a crystalline state depending on the laser beam irradiation conditions. What was attempted was Te
A low melting point system mainly composed of, for example, Tea+Ge+s
S best (Special Publication No. 47-26897), T
e*sG esS n+5Auas (Unexamined Japanese Patent Publication No. 1986-1
12420), etc. In recent years, systems with high melting points near the compound composition have attracted attention, and GeTe
, (GeTe)ssSnIs (JP-A-62-40648
Publication), GeTe-5b*Te Spring (Proc, o
InS
b, AgZn, etc. are known, but when applying these thin films to the recording layer, in most cases the recording thin film is generally sandwiched between dielectric layers. For example, the above-mentioned GeTe, Sb2Te*
It has been shown that a ZnS thin film is used in the case of Z,
, Zn5M plays the role of efficiently dissipating the heat generated in the recording layer to the surroundings, and improves the recording and erasing characteristics.
Although it is obvious to use nitrides such as AIN, it is also known that a metal reflective layer is added to create a four-layer structure to increase light absorption efficiency. For the purpose of increasing the performance, a structure has been proposed in which a metal film with a thickness of 2 to 20 nm and an Sl oxide film with a thickness of 1 to 40 nm are repeatedly stacked (Japanese Patent Application Laid-Open No. 6O-187950). Here, examples of materials used as the recording layer include Sb*Te*, Co,
Pt, Te, and other metals have been mentioned, but there are no compositional proposals or limitations for performing rewrite recording. In the case of phase change materials, the materials that can be used are severely limited by the stability of the amorphous state. Furthermore, even if a thin film in a crystalline state is irradiated with a laser, it will not become amorphous. This means that the crystallization transition temperature of the material is much lower than room temperature. , or because the crystallization rate is too high and the critical cooling rate required for amorphous formation is not satisfied.
The composition of a compound containing Ge has been limited to a composition in which the amorphous phase is sufficiently stable for a recording thin film alone. However, the important characteristics for an optical recording medium are not only the stability of the amorphous state, but also the crystallization rate. There are many things that need to be satisfied, such as being large and having a long life after repeated recording and erasing.However, it cannot be said that a material that is stable in an amorphous state is necessarily superior in other properties, and can actually be used as a recording medium. The scope of the present invention was extremely narrow.The present invention was created in view of the above problems, and by making improvements to the structure of the recording medium and using a thin film of a material that could not be used as a phase change material in the past, information can be transmitted at high speed. In order to solve the above-mentioned problems, an amorphous state which is stable at room temperature has conventionally been realized. The material that could not be produced is made extremely thin from 1 nm to 10 nm and formed on the substrate, and at least a dielectric layer with a melting point higher than that of the material of the recording layer is laminated on the surface. By becoming thinner, the internal electronic state becomes different from the bulk state, suppressing rapid structural changes, stabilizing the amorphous state at room temperature, and reducing the amount of heat generated in the recording layer during laser irradiation. By reducing the heat dissipation effect and increasing the heat dissipation effect with the above structure, it becomes easier to realize a more stable amorphous state with lower order.

実施例 以下、実施例をもって本発明を詳述すム 第1図は本発
明の光学的情報記録媒体の構成を示す断面図であム こ
の実施例においては両表面の平滑なポリカーボネイト樹
脂基板1の上に記録層のアモルファス化を促進し かつ
その状態を他の記録層とは分離することで安定化するZ
nS安定化層2.5nTe記録層3を繰り返し5層ずつ
積層し最上層を安定化層とした構造であム 記録層1層
あたりの光吸収は小さく、かつ記録前後の変化量もあま
り大きくとれないので記録層を繰り返し積層することで
全体としての光吸収取 変化量を大きくしていも 各層
の厚さは3層mであも 図では2枚の板を記録膜の形成
された面を内側へ 接着層4を介して張り合わせた構造
をしていa もちろん単板の構造であってもよ(t ま
た片側には記録膜ならびに安定化層のない樹脂板のみを
張り合わせることも可能であ4 記録層を形成する5nTe薄膜は従来 結晶性の物質と
して知られていも すなわち蒸着やスパッタリング暮 
通常の成膜方法で記録膜を形成すると結晶状態の膜が形
成されも ところが本発明の構造では確かにアモルファ
ス状態が実現されていることが光学的にまたX線回折に
よって確かめられ九 さらに室温中に放置しても急激な
変化は生じず安定なアモルファス状態が形成できている
ことが確認でき九 この記録媒体に波長830nmのレ
ーザ光線を直径0.9μmの光スポットに集光して照射
し 照射部の光学的特性の変化を調べ九 レーザ照射は
第2図に示した装置で行ったこれは”スタティック・テ
スター”として既に報告されており(Proc、  o
f  5PIE  V。
EXAMPLES Hereinafter, the present invention will be described in detail with examples. FIG. 1 is a sectional view showing the structure of an optical information recording medium of the present invention. On top of the recording layer is Z, which promotes amorphousization of the recording layer and stabilizes the state by separating it from other recording layers.
It has a structure in which the nS stabilizing layer 2.5nTe recording layer 3 is repeatedly laminated in 5 layers, with the top layer being the stabilizing layer.The light absorption per recording layer is small, and the amount of change before and after recording cannot be too large. Therefore, even if the overall light absorption change is increased by repeatedly stacking recording layers, the thickness of each layer is 3 m. It has a structure in which it is laminated with an adhesive layer 4 in between (a) Of course, it may be a single-plate structure (t) It is also possible to laminate only a resin plate without a recording film or stabilizing layer on one side. Although the 5nTe thin film that forms the recording layer is conventionally known as a crystalline material, it cannot be processed by vapor deposition or sputtering.
When a recording film is formed using a conventional film formation method, a film in a crystalline state is formed. However, it has been confirmed optically and by X-ray diffraction that an amorphous state is indeed achieved in the structure of the present invention. It was confirmed that a stable amorphous state was formed without any sudden changes even when left for a long time.9 This recording medium was irradiated with a laser beam with a wavelength of 830 nm focused on a light spot of 0.9 μm in diameter. The laser irradiation was performed using the device shown in Figure 2. This has already been reported as a "static tester" (Proc.
f 5PIE V.

1、 695  P79)、照射光の照射強嵐 照射時
間を任意に設定することが可能であり、照射部の変化を
記録媒体の反射率変化として検出する仕組みになってい
も 以下、第2図を参照しつつ本発明の光学情報記録媒体の
記録消去方法ならびに記録消去特性について説明すも 光源である半導体レーザ5を発したレーザ光線6はコリ
メートレンズ7で平行光線となりビームスプリッタ−8
、λ/4板9を通過し 対物レンズ10で絞られて記録
媒体11上に照射され記録媒体に変化を生起すも 光源
はパルスジェネレータ12によって直接駆動されており
パルス幅(照射時間)、パルス高(照射強度)を設定で
きも照射後の状態は 】)照射光の強度を照射部に変化を加えない程度に弱め
て照射すゑ 2)照射部からの反射光をλ/4板9、ビームプリッタ
−8、レンズ13を介して光検出器14に導く、 3)検出器の出力を読み取るという過程で検出すること
ができも 上記5nTeを用いた記録媒体の場合には例えば8mW
、200nsのレーザ照射によって結晶化が生し 反射
率が上昇し九 またオーブンで予め結晶化させた記録媒
体に15mW、 200nsのレーザ照射を行ったとこ
へ 照射部はアモルファス化され反射率が低下し九 節
板 従来書換え型の相変化記録薄膜としては適用できな
かった5nTe薄膜を用いて、情報の書換えを行いうろ
ことが確かめられた 上記記録媒体を構成する基板1としてはポリカーボネイ
ト樹脂以外の樹脂基板、例えばPMMA、塩化ビニーノ
k  アモルファスポリオレフィン等が好ましり一 ま
たガラス板も用いることが出来もガラス板を用いる場合
には記録膜の基板側の安定化層は必ずしも必要ではなl
、%  記録媒体が基板側からレーザ光線を入射させな
い構造をとる場合、例え(瓜 片面の場合、あるいは1
枚の基板の両面に記録層を形成する場合等は金属板も有
効であムアルミニウム坂 銅板 ステンレススチール板
、チタン板等が用いられも 安定化層としては光学的に透明なこと、融点が十分高い
こと等の理由で誘電体薄膜が好ましく℃具体的に(上 
従来光ディスクに用いられている物質、例えばS io
z、  Ge0t、  T i Oa、  Z rot
1, 695 P79), Strong irradiation storm of irradiation light It is possible to set the irradiation time arbitrarily, and even if the system detects changes in the irradiated area as changes in the reflectance of the recording medium, as shown in Figure 2 below, The recording and erasing method and recording and erasing characteristics of the optical information recording medium of the present invention will be explained with reference to the following.A laser beam 6 emitted from a semiconductor laser 5, which is a light source, becomes a parallel beam at a collimating lens 7 and a beam splitter 8.
, passes through the λ/4 plate 9, is focused by the objective lens 10, and is irradiated onto the recording medium 11, causing changes in the recording medium.The light source is directly driven by the pulse generator 12, and the pulse width (irradiation time), pulse Even if you can set a high (irradiation intensity), the state after irradiation is 】) Reduce the intensity of the irradiation light to the extent that it does not change the irradiation area. 2) Convert the reflected light from the irradiation area to the λ/4 plate 9, -8, guided to the photodetector 14 through the lens 13, 3) can be detected in the process of reading the output of the detector, but in the case of the recording medium using the above 5nTe, for example, 8mW
, laser irradiation for 200 ns causes crystallization and the reflectance increases.9 Furthermore, when a recording medium that has been pre-crystallized in an oven is irradiated with a laser at 15 mW for 200 ns, the irradiated area becomes amorphous and the reflectance decreases. 9. Section plate The substrate 1 constituting the above-mentioned recording medium in which information has been rewritten using a 5nTe thin film, which could not be applied as a conventional rewritable phase change recording thin film, is a resin substrate other than polycarbonate resin. For example, PMMA, vinyl chloride amorphous polyolefin, etc. are preferable.Also, a glass plate can also be used, but when a glass plate is used, a stabilizing layer on the substrate side of the recording film is not necessarily required.
, % If the recording medium has a structure that prevents the laser beam from entering from the substrate side,
Metal plates are also effective when forming recording layers on both sides of a single substrate. Copper plates Stainless steel plates, titanium plates, etc. are used as stabilizing layers, but they must be optically transparent and have a sufficient melting point. Dielectric thin films are preferable due to their high cost, etc.
Materials conventionally used in optical discs, such as Sio
z, Ge0t, T i Oa, Z rot
.

”f’at○5等の酸化物薄wL ZnS、Zn5e等
のカルコゲナイド薄111L  TiN、  SiN、
  AIN。
``f'at○5 etc. oxide thin wL ZnS, Zn5e etc. chalcogenide thin 111L TiN, SiN,
A.I.N.

ZrN等の窒化物薄罠Ca F 2.  L a F 
−等の弗化物等を用いも アモルファスカーボン膜等も
有効であム 記録層としては通常室温でアモルファス状態が実現しに
くい物質で構成すム 例えば 融液から固化する場合に
アモルファス状態が実現されにくい組成であることがむ
しろ望ましくも その理由(L本発明は記録層を極端に
薄くすることで従来アモルファス状態が実現しにくいと
されてきた物質のアモルファス化を実現し これを相変
化記録記録薄膜として用いることを念頭に為されたもの
であって、従来 安定なアモルファス物質として用いら
れていた物質を適用するとアモルファス層が安定化され
すぎ、このため結晶化感度が低下する等の悪影響が生じ
るからであa 具体的組成として(よ 例えば化学量論
的化合物組成として上記5nTeの他に SnSb2T
ea (SnTe−3b2Tes)、  Pb2Sb@
Te++(2PbTe  ・ 3Sb2Te=)および
これらの周辺の組成が好ましい効果を示し九 またAu
Tea、Ag2Teおよびこれらの周辺の組成等でも効
果が確認された また上記の組成にGeを少量添加した
凰 あるいはこれらの系のSnまたはPbの一部を、そ
の置換濃度がSnまたはPbの濃度を越えない範囲でG
eに置換した慕 さらにはこれらの系のTeの極−部を
Seに置換した系において特に書換え回数が大きい等の
効果が有っ九 ここで重要なことは これら安定化層の厚さと記録薄膜
層の厚さの関係であム 安定化層の厚さは熱拡散能と、
各記録層を分離する機械的強度と、光吸収効率の3点か
ら決定されム 節板 熱拡散効率は安定化層が厚いほど
大きくなるが記録膜層の厚さに比較して厚すぎると全体
の中での光吸収性物質の体積比が低下して光吸収率が小
さくなり、記録感嵐 消去感度のいずれもが低下すム 
逆に記録膜の厚さを記録膜の膜厚に比較して薄くし過キ
ルと、記録消去のヒートプロセスに伴う記録薄膜の体積
変化が安定化層を破壊L 本発明の構成が消滅してしま
う。第1図の構成を基本にして5nTeとZnSの膜厚
ならびに膜厚比を各種選んでレーザ照射を繰り返し行っ
たとこ&5nTeの記録層が10nmより薄い場合にお
いてレーザ照射によるアモルファス化が実現できた 記
録膜の厚さをさらに薄くするとアモルファス化感度が上
昇ニ アモルファス化に必要なレーザ照射パワーは徐々
に減少した 逆に記録膜を1 n、mよりも薄くすると
アモルファス化は極めて容易になるが結晶化できなくな
ってしまつ九 記録層が薄くなると電子状態がバルク状
態とは大きく異なること、即ち電子の自由度が小さくな
ることから構造変化の速度、構造の安定性が変化するも
のと考えられも 記録層が1nmより薄い領域ではバル
ク状態とは大きく特性が変化し 固有の特性を消失する
ものと考えられも 記録層を1nm以上としたとき、記
録層の厚さにかかわらず安定化層の厚さは1nmより厚
いことが必要であり、これより薄くなると構造の保存性
が低下し九 5nTeの膜厚としては5nmから2nm
の間において最も好ましい特性が得られ九 節板 高い
結晶化速度と安定なアモルファス状態の2つが同時に実
現され九 節板 記録層の厚さをd 1.  安定化層の厚さをd
2とした場合 3≧ d 1/d 2  ≧1/3   (1)10n
m  ≧ dl ≧ 1nm   (2)30nm  
≧ d2 ≧ Inm   (3)の3つの関係式の成
立することで安定法 記録感度、消去感度、書換え回数
の共に優れた記録媒体を形成することができることが分
かった記録媒体の構造としては上記繰り返し多層構造を
1つの記録層と見なして従来の3層構ム 4層構造とし
て構成することも当然可能であム この場合には第3図
に示すように記録層両側のエンハンスメント層14、反
射層15の各膜厚は記録層での光吸収率が大きくなるよ
うをミ 光学的変化が大きくなるように遣水 エンハン
スメント層の材質としては上述の安定化層と同様の物質
を用いる。
Nitride thin trap such as ZrN Ca F 2. L a F
It is effective to use fluorides such as -, or an amorphous carbon film.The recording layer is usually made of a substance that is difficult to achieve an amorphous state at room temperature.For example, it is difficult to achieve an amorphous state when solidifying from a melt. The reason for this is that by making the recording layer extremely thin, the present invention realizes amorphousization of a substance that has conventionally been considered difficult to achieve an amorphous state, and uses this as a phase change recording thin film. This is because the amorphous layer is stabilized too much when a substance that has been conventionally used as a stable amorphous substance is used, which causes negative effects such as a decrease in crystallization sensitivity. A As a specific composition (for example, as a stoichiometric compound composition, in addition to the above 5nTe, SnSb2T
ea (SnTe-3b2Tes), Pb2Sb@
Te++ (2PbTe 3Sb2Te=) and the composition around these showed favorable effects.
The effect was also confirmed with Tea, Ag2Te, and their surrounding compositions.Also, by adding a small amount of Ge to the above composition, or by replacing a part of Sn or Pb in these systems, the concentration of which is higher than the concentration of Sn or Pb. G without exceeding
In addition, systems in which the polar portion of Te in these systems is replaced with Se have a particularly large effect on the number of rewrites.What is important here is the thickness of these stabilizing layers and the recording thin film. The thickness of the stabilizing layer is related to the thickness of the layer.
It is determined from three points: the mechanical strength that separates each recording layer, and the light absorption efficiency.The thicker the stabilizing layer, the greater the heat diffusion efficiency. The volume ratio of the light-absorbing substance in the medium decreases, and the light absorption rate decreases, resulting in a decrease in both recording and erasing sensitivity.
On the other hand, if the thickness of the recording film is made thinner than that of the recording film, the overkill and the volume change of the recording thin film caused by the heat process of erasing records will destroy the stabilizing layer. Put it away. Based on the configuration shown in Figure 1, various film thicknesses and film thickness ratios of 5nTe and ZnS were selected and laser irradiation was repeated, and when the 5nTe recording layer was thinner than 10 nm, it was possible to make it amorphous by laser irradiation. As the thickness of the recording film was further reduced, the amorphization sensitivity increased, and the laser irradiation power required for near-amorphization gradually decreased.On the other hand, when the recording film was made thinner than 1 nm or 1 m, amorphization became extremely easy, but crystallization occurred. 9. When the recording layer becomes thinner, the electronic state is significantly different from the bulk state. In other words, the degree of freedom of the electrons decreases, so it is thought that the speed of structural change and the stability of the structure change. In a region where the layer is thinner than 1 nm, the characteristics change significantly from the bulk state, and it is thought that the unique characteristics disappear.When the recording layer is 1 nm or more, the thickness of the stabilizing layer is determined regardless of the thickness of the recording layer. It is necessary that the film be thicker than 1 nm; if it becomes thinner than this, the preservation of the structure will deteriorate.
The most favorable characteristics were obtained between the nine-section plate and a stable amorphous state, which simultaneously achieved a high crystallization rate. The thickness of the stabilizing layer is d
When set to 2, 3≧ d 1/d 2 ≧ 1/3 (1) 10n
m ≧ dl ≧ 1 nm (2) 30 nm
≧ d2 ≧ Inm Stabilization method when the three relational expressions (3) hold. It has been found that a recording medium with excellent recording sensitivity, erasing sensitivity, and number of rewrites can be formed. The structure of the recording medium is the above repetition method. Of course, it is also possible to consider the multilayer structure as one recording layer and configure it as a conventional three-layer structure or four-layer structure.In this case, as shown in FIG. 3, an enhancement layer 14 on both sides of the recording layer, a reflective layer The thickness of each film in No. 15 is determined so that the light absorption rate in the recording layer becomes large.The water is applied so that the optical change becomes large.As the material of the enhancement layer, the same substance as the above-mentioned stabilizing layer is used.

また 反射層としてはAu、  AI、  Ti、  
CuNi、  Cr、Pd、  Pt等の金属またはこ
れらの間の会合 例えばAu−Al、  Ni−Cr、
  AlTi、  Al−Cr、Au−Pd等を用いる
ことができる。
In addition, the reflective layer includes Au, AI, Ti,
Metals such as CuNi, Cr, Pd, and Pt, or associations between them, such as Au-Al, Ni-Cr,
AlTi, Al-Cr, Au-Pd, etc. can be used.

本発明の光学的情報記録媒体は通常薄膜を製造する行程
と同様に形成することができる。第1図の実施例の場合
には真空槽内に5nTeとZnSの2つのターゲットを
有するスパッタ装置を用いスパッタガスにArガスを用
いて膜を形成し九2つのターゲットはシャッターで独立
に開閉できるようになっていて、規定の厚さの膜を交互
に基板上に堆積させることで形成した 形成方法には電
子ビーム加熱による真空蒸着法も用いることができた 
この場合には真空槽内にSn、  Te、  ZnSの
3つのソースを準備した 3つのソースは独立にシャッ
ターで開閉することができ、記録膜堆積時にはSnとT
eの2つのソースを開状態にして基板上に共蒸着し 安
定化層堆積時にはZnSソースを開にし 交互に基板上
に堆積させ島各層の厚さはスパッタ速度を、あるいは蒸
着速度を予め測定しておき、時間で制御することができ
も より正確のためには膜厚に対する光学的な反射率の
変化光学定数と膜厚の関係から予め計算しておき、反射
率をモニターすることでも行うことができも 複数のタ
ーゲット、蒸着ソースを用いる場合には基板を回転させ
、各ターゲット、ソースの上を通過させることが組成の
均一性に効果があっ九 反射層を用いる場合にはターゲ
ットの数を3つにすベ ソースの数を4つにする等の方
法で形成すも 各層は真空を破らず、インラインで構成
することが重要であった 例えば各層間で真空を破った
場合には層間に酸化物層が形成され界面が不均一になる
ことで繰り返し回数が低下する等の傾向が見られた 以下、より具体的実施例に基づき本発明を説明すも 実施例1 厚さ1.2mmのガラス基板上にスパッタ法によって5
nTe薄風 またはPbTe薄膜を、各0. 5nm、
  In@ Znm、  3nm、  4nrrb5n
m、  6n@  7nm、  8nm、  9nm、
  10n亀 15nm、  20nmの厚さに形成し
 その上に10nmの5iOa膜を形成した試料につい
て、a(記録層形成と安定化層形成をインラインで形成
したもの)、 b (記録層形成と安定化層形成との間
で一度大気中にさらしたもの)2種類準備し九 これら
の薄膜を形成後直ちにX線回折で構造を調べたとこ71
x  PbTe、  5nTeのいずれの場合にも共通
して以下の結果が得られ九すなわ&aの試料では厚さ1
0nmの試料でやや結晶性の回折ピークが見られ九15
、20nmの試料は完全に結晶状態であっ九 10nm
より薄い試料では結晶性の回折ピークは見られなかっ九
 bの試料では15nmおよび20nmの試料に加えて
、10nmの試料が既に結晶化しており、 9n瓜 8
nmではブロードで低い結晶性の回折ピークが検出され
?、:、、7nm以下の試料では結晶性のピークは見ら
れなかった 上記各試料に第2図に示した装置を用いて、様々な条件
でレーザ光線を照射したところa、  bいずれの場合
にも厚さZnm以上の試料にたいしてパルス幅200n
sのレーザ照射より反射率が変化し結晶化が生じ九 1
nmの試料ではそれ以上の長いレーザ照射が必要であっ
九 また0、5nmの試料ではレーザ照射による結晶化
が確認できなかった 引続き、結晶化した試料に照射条
件を変えて照射を行ったところ10nm以下の試料では
アモルファス化すること、 1nmから5nmの試料は
それより厚い試料に比べて高感度であり比較的容易にア
モルファス化することが分かった実施例2 実施例1において記録薄膜をSnSbiTe4またはP
bus beT e++とし かつ安定化層膜をZnS
として蒸着法によって膜形成を行し\ 同様の実験を行
っ九 この場合には2種類の記録膜組成に対して以下の
結果が得られ九 すなわt=、  a、  bいずれの試料でも厚さ20
nmの試料は完全に結晶化しており、 15nmの試料
ではやや結晶化が進んだ回折ピークが見られ九15nm
より薄い試料では結晶性の回折ピークは見られなかった 上記各試料に第2図に示した装置を用いて、様々な条件
でレーザ光線を照射したところa、  bいずれの場合
にも厚さZnm以上の試料にたいしてパルス幅200n
sのレーザ照射により反射率が変化し結晶化が生じ九 
1nmの試料ではそれ以上の長いレーザ照射が必要であ
っ九 また0、5nmの試料ではレーザ照射による結晶
化が確認できなかつ九 引続き、結晶化した試料に照射
条件を変えて照射を行ったところ10nm以下の試料で
はアモルファス化すること、 Inmから5nmの試料
はそれより厚い試料に比べて高感度であり比較的容易に
アモルファス化することが分かつ九実施例3 基板を1. 2mm厚のPMMA板またはポリカーボネ
イト板とし その各表面に厚さ10nmのZnS!!L
  5nTeまたはPbTe記録罠 厚さ10nmのZ
nS膜の3層を真空を破らず、インラインスパッタ法で
形成し九 その上に基板と同じ板を紫外線硬化樹脂を用
いて接着し九 記録層の膜厚を0.5nmから0.5n
m刻みで20nmまで変化し 各試料について実施例と
同じ実験を行った その結果 X線回折による分析ではいずれの記録膜に対
しても膜厚10nm以下の試料においてアモルファス状
態が実現されていること、 レーザ照射によると0.5
nmの試料では結晶化が困難なことが確認され九 実施例4 直径130mm、、厚さ1.2mmでその表面にスパイ
ラル状のレーザ光線ガイド用の溝トラツク(幅0.65
mm、  深さ0. 7μa  1. 6μmピッチ)
を備えたディスク基板上にZnS−5ide混合膜(S
 i Os:  20mo 1%)、 5n4eQe+
5Tess膜を繰り返し積層し さらに最上層にZnS
  Si0g膜をスパッタ法によって形成したものを記
録層を内側に2枚張り合わせた光ディスクを準備し九 
記録層の厚さは3nmと獣 安定化層の厚さを0.  
5nm、  ln@ 3nm、  5nm。
The optical information recording medium of the present invention can be formed in the same manner as the process for manufacturing ordinary thin films. In the case of the embodiment shown in Fig. 1, a sputtering device having two targets of 5nTe and ZnS in a vacuum chamber is used to form a film using Ar gas as the sputtering gas, and the two targets can be opened and closed independently by shutters. It was formed by depositing films of a specified thickness alternately on a substrate.The vacuum evaporation method using electron beam heating could also be used for the formation method.
In this case, three sources of Sn, Te, and ZnS were prepared in a vacuum chamber. The three sources can be opened and closed independently by shutters, and when the recording film is deposited, Sn and T
The ZnS source was co-deposited on the substrate with the two sources of e open, and when the stabilizing layer was deposited, the ZnS source was turned on and deposited alternately on the substrate, and the thickness of each layer was determined by measuring the sputtering rate or evaporation rate in advance. However, for more accuracy, it is possible to calculate the change in optical reflectance with respect to film thickness in advance from the relationship between optical constants and film thickness, and then monitor the reflectance. However, when using multiple targets and deposition sources, rotating the substrate and passing it over each target and source has an effect on composition uniformity.When using a reflective layer, the number of targets can be However, it was important to configure each layer in-line without breaking the vacuum.For example, if the vacuum was broken between each layer, There was a tendency that the number of repetitions decreased due to the formation of an oxide layer and the unevenness of the interface.The present invention will be explained below based on more specific examples.Example 1 5 by sputtering on a glass substrate
nTe thin film or PbTe thin film, respectively. 5nm,
In@Znm, 3nm, 4nrrb5n
m, 6n@7nm, 8nm, 9nm,
For samples in which a 10n film was formed to a thickness of 15nm or 20nm and a 10nm 5iOa film was formed thereon, a (recording layer formation and stabilization layer formation were formed in-line), b (recording layer formation and stabilization layer formation) Two types of thin films were prepared (those exposed to the atmosphere once during layer formation) and their structures were examined by X-ray diffraction immediately after forming these thin films71.
The following results are commonly obtained for both PbTe and 5nTe.
A slightly crystalline diffraction peak was observed in the 0 nm sample915
, the 20 nm sample is completely crystalline.
No crystalline diffraction peaks were observed in the thinner samples.9 In the sample b, in addition to the 15 nm and 20 nm samples, the 10 nm sample was already crystallized, and the 9n melon 8
A broad and low crystalline diffraction peak was detected at nm? , :,, No crystalline peak was observed in samples with a diameter of 7 nm or less. When each of the above samples was irradiated with a laser beam under various conditions using the apparatus shown in Figure 2, in both cases a and b. For samples with a thickness of Znm or more, the pulse width is 200n.
Due to laser irradiation of s, the reflectance changes and crystallization occurs.91
A longer laser irradiation was required for a 0.5 nm sample.In addition, no crystallization due to laser irradiation was observed for a 0.5 nm sample.Subsequently, the crystallized sample was irradiated under different irradiation conditions, resulting in a 10 nm laser irradiation. Example 2 It was found that the following samples were made amorphous, and samples with a thickness of 1 nm to 5 nm had higher sensitivity than thicker samples and were relatively easily made amorphous. In Example 1, the recording thin film was made of SnSbiTe4 or P.
The bus beT e++ and the stabilizing layer film is ZnS.
A film was formed using the vapor deposition method, and a similar experiment was carried out.In this case, the following results were obtained for two types of recording film compositions. 20
The 15 nm sample was completely crystallized, and the 15 nm sample had a diffraction peak with slightly advanced crystallization.
No crystalline diffraction peak was observed in the thinner samples. When each of the above samples was irradiated with a laser beam under various conditions using the apparatus shown in Figure 2, the thickness was Znm in both cases a and b. Pulse width 200n for the above samples
Due to laser irradiation of s, the reflectance changes and crystallization occurs.9
For samples with a thickness of 1 nm, longer laser irradiation was required.9 Also, for samples with a diameter of 0.5 nm, crystallization due to laser irradiation could not be confirmed. It was found that the following samples were made amorphous, and that samples with a thickness of Inm to 5 nm had higher sensitivity than thicker samples and were relatively easily made amorphous.9 Example 3 Substrate 1. A 2mm thick PMMA or polycarbonate plate with 10nm thick ZnS on each surface! ! L
5nTe or PbTe recording trap 10nm thick Z
9. Form three layers of nS film by in-line sputtering without breaking the vacuum. 9. Glue the same plate as the substrate on top of it using ultraviolet curing resin. 9. Adjust the thickness of the recording layer from 0.5 nm to 0.5 nm.
The same experiment as in the example was carried out for each sample, varying up to 20 nm in m increments.The results showed that an amorphous state was achieved for all recording films with a film thickness of 10 nm or less in the analysis by X-ray diffraction. 0.5 according to laser irradiation
It was confirmed that it was difficult to crystallize a sample with a diameter of 130 mm and a thickness of 1.2 mm.
mm, depth 0. 7μa 1. 6μm pitch)
A ZnS-5ide mixed film (S
i Os: 20mo 1%), 5n4eQe+
5Tess films are repeatedly stacked, and the top layer is ZnS.
Prepare an optical disc with two recording layers laminated on the inside of Si0g films formed by sputtering.
The thickness of the recording layer is 3 nm, and the thickness of the stabilizing layer is 0.
5nm, ln@3nm, 5nm.

7n亀 9n亀 l1nmに選び、 トータルの厚さが
1100n近傍になるように積層回数を選ん旭 各記録
層はアモルファス状態で形成され九この光ディスクを波
長830n爪 最大出力40mWの半導体レーザを1個
備えた実験デツキ上で180orpmで回転しレーザ記
録消去実験を行った 実験デツキはこの技術分野に従事
する人の間では一般的な構成であって、機械的なディス
クのサーボ(回転 フォーー力人 トラッキング)、レ
ーザーの駆動回路(パワーサーボ)、光記録ヘッド(対
物レンズの開口数は0.5)等が備えられていも 各光ディスクに対し照射パワーを選びながら照射を行っ
たとこへ いずれの光ディスクにおいてもそれぞれの光
ディスクに応じたあるパワーP1で結晶化が生じること
、Plよりも大きなパワーP2でアモルファス化が生じ
ること、つまり、情報の記録と消去が可能なことが確認
でき九 このとき安定化層が厚くなるほど感度が低下し
 安定化層l1nmの場合にはアモルファス可能な面積
が低下することが観察され九 次へ 上記各ディスクを用しく パワーPIの照射とパ
ワーP2の照射を交互に行っ九 照射を行う毎にディス
クからの反射率を測定したところ安定化層の厚さがQ、
51mのディスクでは数回の照射で反射率が大きくシフ
トL  構造が破壊された 安定化層の厚さが1nm以
上では照射を1000回繰り返しても変化は見られなか
った実施例5 M−Te−Ge(MはSnまたはPb)の3元系で5n
TeまたはPbTeの周辺の組成を用いて以下の実験を
行っ7’、、PMMA樹脂基板の上に2nm厚のZnS
薄膜と様々な組成の2nm厚のM−Te−Ge薄膜を繰
り返し10層ずつ積層し最上層にZnS膜を形成し九 
この上に基板と同じ板を張り合わせて記録媒体を構成し
た これらの記録媒体に上述のスタティックテスターを
用いて、 200nsのパルス幅で結晶化(試料面で8
m W )とアモルファス化(試料面で20mW)の繰
り返し実験を行ったところ第4図に示す組成傾板 即’
tax  MxGeyTez (25<x<60゜Q<
y<25. 37. 5<z<60)において以下の条
件: 1)アモルファス膜ができ収 2)結晶化できべ 3)1000回以上の繰り返しが可能であべ4)その間
の反射率のシフトが無しく という条件が満足され九 パルス幅を変えた実験も行(
X、特にMTe−GeTe組成線上では100ns以下
の短時間に記録消去の可能なことが分かった 実施例6 SnSb*Te4およびp btSb*Te++の3元
系組成の周辺において実施例5と同様の実験を行った 
この場合には各中心組成に対して、それぞれの第構成元
素のブラ入 マイナス5at%の変化に対して上記条件
が満足された 実施例7 実施例6で得た組成範囲においてSnまたはPbの一部
をGeに置換することを試みたところGeが加わること
でアモルファス化の感度が向上し九 Ge濃度がSnま
たはPbの濃度を越えると結晶化感度が低下した また
5000回以上の記録消去の繰り返しが可能であっ九 実施例8 実施例4と同じ溝を備えたガラスディスク基板上に厚さ
1100nのZnS  5ift層を形成しその上に2
.5nm厚のS na〒G esT esa膜と5nm
厚のZnS−5id2膜を交互に15層ずつ積層し さ
らにその上に更にZnS  5ide層を1100n、
、Al−Cr  (Cr:  5at%)膜を50層m
積層したものを2枚用意し記録面を内側にして張り合わ
せた このディスクを1800rpmで回転し 最外周
部(線速度15m/s)の位置で記録実験を行った ま
ず、照射パワーを記録面でlomWとして連続照射し 
1つのトラックを結晶化させた 次へ レーザパワーを
20mWのピークレベルと10mWのバイアスレベルの
間で5HHzで変調して前記結晶化トラックに照射した
ところビークパワーで照射されたところはアモルファス
化し記録が行われ九 レーザパワーを1mWに落として
連続照射しながら情報の再生を行ったところ5MHz成
分に対して50dBのCN比が得られ九 次にレーザパ
ワーを2MHzで変調L 前記記録済みのトラックに同
様の照射を行ったところ50MHz成分は照射前の35
dB減となり、変わって2MHz成分が50dBのCN
比を示し九 2つの周波数で交互に照射を行し\ 情報の書換えが繰
り返し可能なことが確かめられた発明の効果 以上 説明したように本発明によって従来アモルファス
状態を安定に保持することが難しいとされてきた物質を
相変化記録媒体に適用することが可能となり、新規な記
録薄膜を用いた記録媒体を提供することができへ
Each recording layer is formed in an amorphous state, and each recording layer is formed in an amorphous state.The optical disc has a wavelength of 830n and one semiconductor laser with a maximum output of 40mW. A laser recording erasure experiment was conducted on an experimental deck that rotated at 180 rpm.The experimental deck has a common configuration among people engaged in this technical field, and has a mechanical disk servo (rotation) and tracking. , a laser drive circuit (power servo), an optical recording head (the numerical aperture of the objective lens is 0.5), etc. Even if the irradiation is performed while selecting the irradiation power for each optical disk, it will not work on any optical disk. It was confirmed that crystallization occurs at a certain power P1 depending on each optical disc, and that amorphization occurs at a power P2 greater than P1, that is, it is possible to record and erase information.9 At this time, the stabilizing layer It has been observed that the sensitivity decreases as the thickness increases, and in the case of a stabilizing layer of 1 nm, the area that can become amorphous decreases. The reflectance from the disk was measured each time the stabilization layer was measured, and the thickness of the stabilizing layer was Q.
For a 51m disk, the reflectance shifted significantly after several irradiations, and the L structure was destroyed.When the thickness of the stabilizing layer was 1 nm or more, no change was observed even after irradiation was repeated 1000 times.Example 5 M-Te- Ge (M is Sn or Pb) ternary system with 5n
The following experiments were performed using compositions around Te or PbTe.7', 2 nm thick ZnS was deposited on a PMMA resin substrate
A thin film and a 2 nm thick M-Te-Ge thin film of various compositions were repeatedly laminated in 10 layers, and a ZnS film was formed on the top layer.
A recording medium was constructed by pasting the same plate as the substrate on top of this. Using the above-mentioned static tester, crystallization was performed with a pulse width of 200 ns (8 8 ns on the sample surface).
As a result of repeated experiments of m W ) and amorphization (20 mW at the sample surface), the compositional gradient plate shown in Figure 4 was obtained.
tax MxGeyTez (25<x<60゜Q<
y<25. 37. 5<z<60), the following conditions are satisfied: 1) an amorphous film is formed, 2) crystallization is achieved, 3) repetition is possible over 1000 times, and 4) there is no shift in reflectance during that time. Experiments were also conducted with different pulse widths (
Example 6 It was found that recording and erasing was possible in a short time of 100 ns or less, especially on the MTe-GeTe composition line.Experiment similar to Example 5 around the ternary compositions of SnSb*Te4 and pbtSb*Te++ performed
In this case, for each central composition, the content of each of the first constituent elements will be increased.Example 7 where the above conditions are satisfied for a change of -5 at%.In the composition range obtained in Example 6, Sn or Pb When an attempt was made to replace part with Ge, the addition of Ge improved the sensitivity of amorphization.9 When the Ge concentration exceeded the concentration of Sn or Pb, the crystallization sensitivity decreased.Also, recording and erasing was repeated over 5,000 times. Example 8 A ZnS 5ift layer with a thickness of 1100 nm was formed on a glass disk substrate with the same grooves as in Example 4, and 2
.. 5nm thick SnaGesTesa film and 5nm thick
15 thick ZnS-5ide films were alternately stacked, and then a 1100nm ZnS-5ide layer was added on top of that.
, 50 layers of Al-Cr (Cr: 5at%) film
Two laminated discs were prepared and pasted together with the recording surface inward.The disk was rotated at 1800 rpm and a recording experiment was conducted at the outermost periphery (linear velocity 15 m/s).First, the irradiation power was set to lomW on the recording surface. continuous irradiation as
One track was crystallized Next When the laser power was modulated at 5 Hz between a peak level of 20 mW and a bias level of 10 mW and the crystallized track was irradiated, the area irradiated with the peak power became amorphous and no recording was made. 9 When the laser power was lowered to 1 mW and the information was reproduced while being continuously irradiated, a CN ratio of 50 dB was obtained for the 5 MHz component.9 Next, the laser power was modulated at 2 MHz. When irradiation was performed, the 50MHz component was 35% before irradiation.
dB decrease, and the 2MHz component has changed to 50dB CN.
The effect of the invention is that it has been confirmed that information can be repeatedly rewritten by alternately irradiating at 92 frequencies. It has become possible to apply substances that have been developed for phase change recording media, and it has become possible to provide recording media using novel recording thin films.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光学的情報記録媒体の1実施例の構成
を示す断面医 第2図は本発明の光学的情報記録媒体の
レーザ照射に対する特性を調べるための静止評価系の概
略構成を示す諷 第3図は本発明の光学的情報記録媒体
の別の実施例の構成を示す断面交 第4図は本発明の光
学的情報記録媒体の記録層に用いるM−Te−Ge(M
はSnまたはPb)3元薄膜の組成範囲を示す図であム
ト・・基板、 2・・・安定化W#3・・・記録# 4
・・・接着慰 5・・・半導体レーザー6・・・レーザ
ー光fttL  7・・・コリメートレンX 8・・・
ビームスプリッタ−9・・・λ/4板、 10・・・対
物レン、C11・・・記録媒体 12・・・パルスジェ
ネレーター 13・・・レンX  13・・・光検出器
 14・・・エンハンスメント# 15・・・繰り返し
多層風 16・・・エンハンスメント[17・・・反射
胤代理人の氏名 弁理士 小鍜治 明 ほか2名 Vリドl鯵ニー) 第 図 1し一燥1薦U々罰蔓 16−−−エ)へンスjンF日 す(数丁4す 第 図 e 7e (5n ヌ+sPb>
FIG. 1 is a cross-sectional diagram showing the configuration of one embodiment of the optical information recording medium of the present invention. FIG. 2 is a schematic configuration of a stationary evaluation system for examining the characteristics of the optical information recording medium of the present invention against laser irradiation. Figure 3 is a cross-sectional view showing the structure of another embodiment of the optical information recording medium of the present invention.
is a diagram showing the composition range of the ternary thin film (Sn or Pb).
...Adhesive support 5...Semiconductor laser 6...Laser light fttL 7...Collimating train X 8...
Beam splitter 9...λ/4 plate, 10... Objective lens, C11... Recording medium 12... Pulse generator 13... Len X 13... Photodetector 14... Enhancement # 15... Repeated multi-layered wind 16... Enhancement [17... Name of reflective seed agent Patent attorney Akira Okaji and 2 others V Rido l Haji Ni) Fig. 1 ---D) Hensjn F date (number 4th figure e 7e (5n nu+sPb>

Claims (15)

【特許請求の範囲】[Claims] (1)レーザ光線の照射によって光学的に検出可能な複
数の状態間を可逆的に相転移する記録薄膜と、前記記録
薄膜の少なくとも上側に密着して形成され前記記録薄膜
の相変化を促進するための安定化層の少なくとも2層を
基板の上に積層して成る光学的情報記録媒体であって、 前記記録薄膜が、バルク状態では室温で安定な非平衡状
態を形成しない物質を、厚さ10nmから1nmの間の
厚さの薄膜にしたものであり、かつ前記安定化層が前記
記録薄膜よりも高い融点を有する誘電体薄膜であること
を特徴とする光学的情報記録媒体。
(1) A recording thin film that undergoes a reversible phase transition between a plurality of optically detectable states upon irradiation with a laser beam, and a recording thin film that is formed in close contact with at least an upper side of the recording thin film to promote phase change of the recording thin film. An optical information recording medium comprising at least two stabilizing layers stacked on a substrate, wherein the recording thin film contains a substance that does not form a non-equilibrium state that is stable at room temperature in a bulk state. 1. An optical information recording medium, characterized in that the stabilizing layer is a dielectric thin film having a melting point higher than that of the recording thin film, and the stabilizing layer is a thin film having a thickness of between 10 nm and 1 nm.
(2)結晶状態とアモルファス状態の可逆的相変化を用
いることを特徴とする請求項1記載の光学的情報記録媒
体。
(2) The optical information recording medium according to claim 1, characterized in that a reversible phase change between a crystalline state and an amorphous state is used.
(3)安定化層が記録薄膜の上下両側にあって、少なく
とも3層を積層して成る請求項1記載の光学的情報記録
媒体。
(3) The optical information recording medium according to claim 1, wherein the stabilizing layer is provided on both the upper and lower sides of the recording thin film, and comprises at least three laminated layers.
(4)記録薄膜層と安定化層とを交互に繰り返して複数
層積層したことを特徴とする請求項1または3記載の光
学情報記録媒体。
(4) The optical information recording medium according to claim 1 or 3, characterized in that a plurality of recording thin film layers and stabilizing layers are alternately stacked.
(5)記録薄膜の膜厚d1、それに接する安定化層の膜
厚d2に対して 1/3≦d1/d2≦3 である請求項1または4記載の光学情報記録媒体。
(5) The optical information recording medium according to claim 1 or 4, wherein 1/3≦d1/d2≦3 with respect to the thickness d1 of the recording thin film and the thickness d2 of the stabilizing layer in contact therewith.
(6)記録薄膜層の膜厚が5nmから2nmの間にある
ことを特徴とする請求項1記載の光学的情報記録媒体。
(6) The optical information recording medium according to claim 1, wherein the thickness of the recording thin film layer is between 5 nm and 2 nm.
(7)記録薄膜が、少なくともM(SnまたはPb)、
Te、Geの3元から成り、かつその各成分の組成がM
xGeyTez(25≦x≦60、0≦y<25、37
.5≦z≦60)で表されることを特徴とする請求項1
記載の光学的情報記録媒体。
(7) The recording thin film is at least M (Sn or Pb),
It consists of three elements, Te and Ge, and the composition of each component is M.
xGeyTez(25≦x≦60, 0≦y<25, 37
.. 5≦z≦60) Claim 1
The optical information recording medium described above.
(8)記録薄膜の組成がM_5_0_−_aGe_aT
e_5_0(0≦a<25)である請求項1または7記
載の光学情報記録媒体。
(8) The composition of the recording thin film is M_5_0_-_aGe_aT
The optical information recording medium according to claim 1 or 7, wherein e_5_0 (0≦a<25).
(9)記録薄膜が、SnTe、PbTeのいずれかであ
ることを特徴とする請求項1記載の光学的情報記録媒体
(9) The optical information recording medium according to claim 1, wherein the recording thin film is made of either SnTe or PbTe.
(10)記録薄膜が少なくともSn、Sb、Teの3元
からなり、その組成が化学量論化合物組成SnSb_2
Te_4を中心にして、各構成要素がプラスマイナス5
at%の範囲内にあることを特徴とする請求項1記載の
光学的情報記録媒体。
(10) The recording thin film is composed of at least three elements of Sn, Sb, and Te, and its composition has a stoichiometric compound composition SnSb_2
Each component is plus or minus 5, centering on Te_4.
The optical information recording medium according to claim 1, wherein the optical information recording medium is within a range of at%.
(11)記録薄膜の組成がSn、Sb、TeとGeの少
なくとも4元からなり、かつGe濃度はSn濃度よりも
小さいことを特徴とする請求項1または10記載の光学
的情報記録媒体。
(11) The optical information recording medium according to claim 1 or 10, wherein the composition of the recording thin film is at least four elements of Sn, Sb, Te, and Ge, and the Ge concentration is lower than the Sn concentration.
(12)記録薄膜の組成が Sn_1_−_bGe_bSb_2Te_4(0<b<
0.5)で表されることを特徴とする請求項1または1
1記載の光学的情報記録媒体。
(12) The composition of the recording thin film is Sn_1_−_bGe_bSb_2Te_4 (0<b<
0.5) Claim 1 or 1 characterized in that
1. The optical information recording medium according to 1.
(13)記録薄膜が少なくともPb、Sb、Teの3元
から成り、その組成が化学量論化合物組成Pb_2Sb
_3Te_1_1を中心にして、各構成要素がプラスマ
イナス5at%の範囲内にあることを特徴とする請求項
1記載の光学的情報記録媒体。
(13) The recording thin film is composed of at least three elements, Pb, Sb, and Te, and its composition has a stoichiometric compound composition of Pb_2Sb.
2. The optical information recording medium according to claim 1, wherein each component is within a range of plus or minus 5 at% with respect to _3Te_1_1.
(14)記録薄膜の組成がPb、Sb、Te、Geの少
なくとも4元から成り、かつGe濃度がSb濃度よりも
小さいことを特徴とする請求項1または13記載の光学
的情報記録媒体。
(14) The optical information recording medium according to claim 1 or 13, wherein the composition of the recording thin film is composed of at least four elements of Pb, Sb, Te, and Ge, and the Ge concentration is lower than the Sb concentration.
(15)記録薄膜の組成がPb_2_−_cGe_cS
b_6Te_1_1(0<c<1)で表されることを特
徴とする請求項1または14記載の光学的情報記録媒体
(15) The composition of the recording thin film is Pb_2_-_cGe_cS
The optical information recording medium according to claim 1 or 14, characterized in that it is expressed by b_6Te_1_1 (0<c<1).
JP2255829A 1990-09-25 1990-09-25 Optical information recording medium Expired - Lifetime JP2782939B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2255829A JP2782939B2 (en) 1990-09-25 1990-09-25 Optical information recording medium
US07/765,514 US5346740A (en) 1990-09-25 1991-09-25 Optical information recording medium
US08/067,146 US5348783A (en) 1990-09-25 1993-05-26 Optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2255829A JP2782939B2 (en) 1990-09-25 1990-09-25 Optical information recording medium

Publications (2)

Publication Number Publication Date
JPH04134642A true JPH04134642A (en) 1992-05-08
JP2782939B2 JP2782939B2 (en) 1998-08-06

Family

ID=17284188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2255829A Expired - Lifetime JP2782939B2 (en) 1990-09-25 1990-09-25 Optical information recording medium

Country Status (1)

Country Link
JP (1) JP2782939B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166696A (en) * 1984-09-11 1986-04-05 Nippon Telegr & Teleph Corp <Ntt> Laser recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166696A (en) * 1984-09-11 1986-04-05 Nippon Telegr & Teleph Corp <Ntt> Laser recording medium

Also Published As

Publication number Publication date
JP2782939B2 (en) 1998-08-06

Similar Documents

Publication Publication Date Title
EP1349160B1 (en) Optical information recording medium and method for manufacturing the same
US5523140A (en) Optical recording method and medium
KR20000062984A (en) Information recording medium, manufacturing method of the medium and recording method of the medium
US5637371A (en) Phase change optical recording medium and activation energy determining method
JPWO2004025640A1 (en) Information recording medium and manufacturing method thereof
JP2001322357A (en) Information recording medium and its manufacturing method
JP3076412B2 (en) Optical information recording medium and optical information recording / reproducing method
JPS61269247A (en) Reversible optical information recording and reproducing method
JPH01277338A (en) Optical recording medium
JP2834131B2 (en) Thin film for information recording
US7485355B2 (en) Optical information recording medium and method for manufacturing the same
JP2002298433A (en) Phase change optical recording medium
JPH04134643A (en) Optical information recording medium
JP2001273673A (en) Optical recording medium and method for producing the same
JP2755593B2 (en) Information recording medium
WO2005015555A1 (en) Optical information recording medium and manufacturing method thereof
JPH04134642A (en) Optical information recording medium
JP4296717B2 (en) Optical information recording medium and manufacturing method thereof
JP3908682B2 (en) Optical information recording medium, manufacturing method thereof, and recording / reproducing method thereof
JP4086689B2 (en) Optical information recording medium and manufacturing method thereof
WO2006112165A1 (en) Optical information recording medium and method for manufacturing same
JP2005129205A (en) Information recording medium and its manufacturing method
WO2006057116A1 (en) Information recording medium and method for manufacturing same
JPS63167440A (en) Method for recording or recording and erasing information
JPH10289478A (en) Optical information recording medium and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090522

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100522

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100522

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110522

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110522

Year of fee payment: 13