JPH04134506A - Method for controlling phase controller - Google Patents

Method for controlling phase controller

Info

Publication number
JPH04134506A
JPH04134506A JP25542490A JP25542490A JPH04134506A JP H04134506 A JPH04134506 A JP H04134506A JP 25542490 A JP25542490 A JP 25542490A JP 25542490 A JP25542490 A JP 25542490A JP H04134506 A JPH04134506 A JP H04134506A
Authority
JP
Japan
Prior art keywords
signal
control
output
measurement
pwm signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25542490A
Other languages
Japanese (ja)
Other versions
JP2529130B2 (en
Inventor
Takehisa Nakamura
中村 毅久
Matsuo Henda
辺田 松雄
Takashi Nakazato
中里 敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RKC Instrument Inc
Original Assignee
Rika Kogyo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rika Kogyo Inc filed Critical Rika Kogyo Inc
Priority to JP2255424A priority Critical patent/JP2529130B2/en
Publication of JPH04134506A publication Critical patent/JPH04134506A/en
Application granted granted Critical
Publication of JP2529130B2 publication Critical patent/JP2529130B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)
  • Control Of Temperature (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To exactly control the phase of a controlled system with high accuracy even when a power supply frequency is fluctuated by correcting a PWM signal for operation by measuring a wave height range corresponding to a maximum wave height value. CONSTITUTION:The wave height range corresponding to the maximum wave height value of a lamp voltage is measured by a trigger signal generation circuit 13 and a measuring signal output circuit 17, and the frequency of a power supply voltage is indirectly measured. In this case, a control circuit 9 stores the contents of the PWM signal corresponding to an inputted measuring signal into a RAM 9c and outputs the PWM signal with the stored PWM signal contents as the 100% operation output range. Further, the output of an output inhibiting signal is stopped so as to output a trigger signal from an output switching circuit 15 to an operation output circuit 19, and the operation output circuit 19 outputs the power supply voltage to a heater from the output of the trigger signal to the turn of this signal to 0 level in each half cycle period of the power supply voltage. Thus, even when the power supply frequency is fluctuated, the phase of the controlled system can be exactly controlled with high accuracy.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は位相制御調節計の制御方法に係り、例えば温度
調節計等のように位相を制御してヒータへの操作電力を
位相制御する位相制御調節計に用いられる制御方法の改
良に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method of controlling a phase control controller, for example, a phase controller that controls the phase of operating power to a heater, such as a temperature controller. This invention relates to improvements in control methods used in control controllers.

[従来の技術] 従来、この種の位相制御調節計は、第6図に示すように
、制御回路1にて設定値svおよび成形機(図示せず)
等に配置された温度センサがらの測定値PVから操作量
を例えばPID演算してPWM (パルス幅変調)信号
を変換出力し、PWM/電圧変換回路3でそのPWM信
号を直流レベルの制御電圧に変換し、トリガ信号発生回
路5では成形機のヒータ(図示せず)への電源電圧に同
期してランプ電圧(鋸波電圧)を発振して制御電圧とレ
ベル比較し、ランプ電圧が制御電圧より高くなるときト
リガ信号を出力し、操作出力回路7では電源電圧の各半
サイクル期間においてそのトリガ信号によって電源電圧
をOレベルになるまで電源電力をヒータに出力する構成
を有していた。
[Prior Art] Conventionally, in this type of phase control controller, as shown in FIG. 6, a control circuit 1 controls a set value sv and a molding machine (not shown).
For example, a PID calculation is performed on the manipulated variable from the measured value PV of temperature sensors placed at the same location, and a PWM (pulse width modulation) signal is converted and output.The PWM/voltage conversion circuit 3 converts the PWM signal into a DC level control voltage. The trigger signal generation circuit 5 oscillates a lamp voltage (sawtooth voltage) in synchronization with the power supply voltage to the heater (not shown) of the molding machine, compares the level with the control voltage, and determines whether the lamp voltage is lower than the control voltage. When the power supply voltage becomes high, a trigger signal is output, and the operation output circuit 7 outputs power to the heater until the power supply voltage reaches O level according to the trigger signal during each half cycle period of the power supply voltage.

すなわち、第7図Aのように、制御回路1からPID演
算結果としての操作量を1周期中のデユーティ−比を変
化させたPWM信号で出力し、同図BのようにPWM信
号をそのデユーティ−比に応じた直流レベルの制御電圧
に変換し、その後同図りのように電源電圧(同図C)の
周波数に同期したランプ電圧と制御電圧のレベルを比較
してランプ電圧が制御電圧より高くなる時にトリガ信号
を出力し、同図EおよびFのように電源電圧の各半サイ
クル期間においてトリガ信号出力時から電源電圧がOレ
ベルになるまでヒータに電源電圧を出力する制御方法と
なっていた。
That is, as shown in FIG. 7A, the control circuit 1 outputs the manipulated variable as a PID calculation result as a PWM signal with a varying duty ratio during one cycle, and as shown in FIG. 7B, the PWM signal is output with the duty ratio changed. -Convert the control voltage to a DC level control voltage according to the ratio, and then compare the level of the lamp voltage synchronized with the frequency of the power supply voltage (C in the same figure) and the control voltage level as shown in the same figure.The lamp voltage is higher than the control voltage. The control method was to output a trigger signal when the power supply voltage reached the O level, and output the power supply voltage to the heater during each half-cycle period of the power supply voltage from the time the trigger signal was output until the power supply voltage reached the O level, as shown in E and F in the same figure. .

第7図AのPWM信号は反転された出力となってPWM
出力80%をデユーティ−比1:4とし、同図Bの制御
電圧はその電圧レベルを0〜5vとしたときOvが操作
量100%、5vが操作量O%に変換され、PWM信号
の操作量80%が1■に変換されるようになっている。
The PWM signal in Figure 7A becomes the inverted output and becomes the PWM signal.
When the output is 80% and the duty ratio is 1:4, and the control voltage in Figure B is set to a voltage level of 0 to 5V, Ov is converted to the operation amount 100%, 5V is converted to the operation amount O%, and the PWM signal is controlled. 80% of the amount is converted to 1■.

以下の説明でも同様である。The same applies to the following explanation.

従って、このような制御方法では電源電圧の周波数が例
えば50Hzであれば、ランプ電圧の最大波高値が第7
図りのように50Hzに同期した固定値となり、最大波
高値をヒータへの操作出力0%として固定的に決めるこ
とが可能である。
Therefore, in such a control method, if the frequency of the power supply voltage is, for example, 50Hz, the maximum peak value of the lamp voltage will be the seventh
As shown in the figure, it becomes a fixed value synchronized with 50 Hz, and the maximum wave height value can be fixedly determined as 0% of the operation output to the heater.

そのため、そのランプ電圧の波高範囲を操作量0〜10
0%としてPID演算がなされれば、PWM信号に基づ
いて作成した制御電圧とランプ電圧を比較することによ
って正確にヒータを位相制御できる。
Therefore, the wave height range of the lamp voltage can be adjusted by the manipulated variable 0 to 10.
If the PID calculation is performed with 0%, the phase of the heater can be accurately controlled by comparing the lamp voltage with the control voltage created based on the PWM signal.

[発明が解決しようとする課題] しかしながら、第8図Aのように電源電圧の周波数が例
えば実線の50Hzから一点鎖線の60Hzに変化する
と、同図Bのようにランプ電圧が実線状態から一点鎖線
状態に変化し、ランプ電圧の最大波高値が低下してヒー
タへの位相制御範囲がE50からE60となって狭くな
る。すなわち、ΔE(Δを時間)分の位相制御ができな
い。
[Problems to be Solved by the Invention] However, when the frequency of the power supply voltage changes from, for example, 50 Hz as shown in the solid line to 60 Hz as shown in the dashed dot line as shown in FIG. 8A, the lamp voltage changes from the solid line state to the dashed dotted line as shown in FIG. The maximum peak value of the lamp voltage decreases, and the phase control range for the heater narrows from E50 to E60. That is, phase control for ΔE (where Δ is time) cannot be performed.

そのため、50Hzの電源電圧で正確にヒータが位相制
御されていても、電源電圧の周波数が60Hzに変化す
ると操作出方が不正確となり易く、正確な位相制御を確
保するためには、電源周波数の変化、換言すればランプ
電圧の最大波高値の変化に応じてPWM信号の演算を補
正しなければならず、特別な工夫が必要である。
Therefore, even if the heater is accurately phase-controlled with a power supply voltage of 50Hz, when the frequency of the power supply voltage changes to 60Hz, the operation method tends to be inaccurate.In order to ensure accurate phase control, it is necessary to adjust the power supply frequency. The calculation of the PWM signal must be corrected in accordance with the change, in other words, the change in the maximum peak value of the lamp voltage, and special measures are required.

しかも、予め異なる周波数が分っている地域での使用に
対してはその補正も不可能ではないが、予め決定されて
いる電源周波数が変動する場合には対応できない難点が
ある。
Furthermore, although it is not impossible to correct for use in areas where different frequencies are known in advance, there is a drawback that it cannot be corrected when the predetermined power supply frequency varies.

本発明はこのような従来の欠点を解決するためになされ
たもので、位相制御調節計を使用する地域の電源周波数
が変動しても制御対象を正確かつ高精度で位相制御可能
であり、電源周波数の異なる地域においてもその周波数
差を考慮することなく使用できる制御方法を提供するも
のである。
The present invention has been made to solve these conventional drawbacks, and even if the power frequency of the area where the phase control controller is used fluctuates, it is possible to accurately and highly precisely phase control the controlled object, and the power source The present invention provides a control method that can be used in areas with different frequencies without considering the frequency difference.

[課題を解決するための手段] このような課題を解決するために本発明は、設定値およ
び制御対象からの測定値から操作量を演算して操作用P
WM信号として出力し、この操作用PWM信号のデユー
ティ−比に応じた直流レベルの操作用制御信号を作成し
、傾きが一定で電源信号の周波数に同期したランプ信号
とその操作用制御信号のレベルを比較して操作用制御信
号を越えるランプ信号期間だけ電源信号でその制御対象
を操作制御する位相制御調節計の制御方法であり、上記
ランプ信号の最大波高に応じた波高範囲を測定し、測定
したその波高範囲を上記制御対象への100%操作出力
範囲として上記操作用PWM信号を補正演算するもので
ある。
[Means for Solving the Problems] In order to solve such problems, the present invention calculates the operation amount from the set value and the measured value from the controlled object,
Output as a WM signal, create a DC level operation control signal according to the duty ratio of this operation PWM signal, and generate a ramp signal with a constant slope and synchronized with the frequency of the power supply signal and the level of the operation control signal. This is a control method for a phase control controller in which the control target is operated and controlled by a power supply signal only during the period of the ramp signal that exceeds the operation control signal by comparing the The operation PWM signal is corrected by using the wave height range as the 100% operation output range to the controlled object.

そして、本発明は、高レベル又は低レベルから測定用P
WM信号を所定の分能で順次変化出力して測定用制御信
号を作成し、これら各測定用制御信号毎に前記ランプ信
号の最大波高値と比較し、上記測定用制御信号がその最
大波高値を越えたか否かによって波高範囲を測定し、こ
の測定時の上記測定用PWM信号内容を上記制御対象へ
の100%操作出力範囲として上記操作用PWM信号を
補正演算する方法も可能である。
And, the present invention can measure P from a high level or a low level.
A control signal for measurement is created by sequentially changing the WM signal with a predetermined resolution, and each of these control signals for measurement is compared with the maximum peak value of the ramp signal, and the control signal for measurement is determined to be the maximum peak value. It is also possible to measure the wave height range based on whether or not the wave height range exceeds the range, and to correct the operation PWM signal by using the content of the measurement PWM signal at the time of this measurement as the 100% operation output range to the controlled object.

さらに、本発明は、上記操作用PWM信号と測定用PW
M信号、上記操作用制御信号と測定用制御信号を同一に
した制御方法でもよい。
Furthermore, the present invention provides the above-mentioned PWM signal for operation and PWM signal for measurement.
A control method may be used in which the M signal, the operation control signal, and the measurement control signal are the same.

[作  用] このような手段を備えた本発明では、電源信号の周波数
が変化するとランプ信号の最大波高値が変化し、その最
大波高値に応じた波高範囲を測定して操作用PWM信号
を補正演算するから、電源周波数が変動しても常に操作
用PWM信号が制御対象への100%操作出力の範囲で
演算出力される。
[Function] In the present invention equipped with such a means, when the frequency of the power signal changes, the maximum peak value of the lamp signal changes, and the pulse height range corresponding to the maximum peak value is measured to generate the PWM signal for operation. Since the correction calculation is performed, even if the power supply frequency fluctuates, the operation PWM signal is always calculated and output within the range of 100% operation output to the controlled object.

そして、測定用PWM信号から測定用制御信号を作成し
、ランプ信号の波高範囲を測定して操作用PWM信号を
演算する方法では、操作用PWM信号を演算して制御対
象を操作制御しながら常に操作用PWM信号が補正演算
される。
In the method of creating a measurement control signal from the measurement PWM signal, measuring the wave height range of the lamp signal, and calculating the operation PWM signal, the operation PWM signal is calculated and the control target is constantly controlled. The operation PWM signal is corrected and calculated.

さらに、操作用PWM信号と測定用PWM信号、上記操
作用制御信号と測定用制御信号を同一とした方法では、
位相制御調節計の構成を部分的に共用可能で、操作用制
御時と測定時でランプ信号の差が小さい。
Furthermore, in the method in which the operation PWM signal and the measurement PWM signal, and the operation control signal and measurement control signal are the same,
Part of the configuration of the phase control controller can be shared, and the difference in lamp signals between operational control and measurement is small.

[実 施 例] 以下本発明の実施例を図面を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

便宜上、本発明の制御方法を実施する位相制御調節計を
先に説明する。
For convenience, a phase control controller that implements the control method of the present invention will be described first.

第1図は本発明の制御方法を実施する位相制御調節計の
主要部を示すブロック図である。
FIG. 1 is a block diagram showing the main parts of a phase control controller that implements the control method of the present invention.

図において、制御回路9は、例えばPID演算機能その
他の公知の演算機能を有するCPU9a、このCPU9
aの動作プログラムを内蔵したROM9 b、演算結果
その他のデータを記憶するRAM9cおよび入出力信号
のインタフェースl10(図示せず)を有しており、制
御対象の複数箇所に分散配置された温度センサ(図示せ
ず)からの測定値PVや外部からの設定値SVが人力可
能になっており、測定値PVや設定値Svから操作量を
PID演算し、その操作量に応じて1周期中のデユーテ
ィ−比を変化させたPWM信号としてPWM/電圧変換
回路11に出力する演算手段となっている。
In the figure, the control circuit 9 includes, for example, a CPU 9a having a PID calculation function and other known calculation functions;
It has a ROM 9b containing the operating program of a, a RAM 9c that stores calculation results and other data, and an input/output signal interface l10 (not shown), and temperature sensors (not shown) distributed at multiple locations of the control target. The measured value PV from (not shown) and the set value SV from the outside can be manually input, and the manipulated variable is PID calculated from the measured value PV and set value Sv, and the duty during one cycle is adjusted according to the manipulated variable. - serves as an arithmetic means for outputting a PWM signal with a changed ratio to the PWM/voltage conversion circuit 11.

PWM/電圧変換回路11は、PWM信号をデユーティ
−比に応じた直流レベルの制御電圧に変換してトリガ信
号発生回路13に出力する制御信号作成手段である(第
7図参照)。
The PWM/voltage conversion circuit 11 is a control signal generating means that converts the PWM signal into a DC level control voltage according to the duty ratio and outputs it to the trigger signal generation circuit 13 (see FIG. 7).

トリガ信号発生回路13は、第2図に示すように、傾き
が一定で電源電圧の周波数の半サイクルに同期したラン
プ電圧を内部発振するとともに、このランプ電圧と制御
電圧のレベルを比較し、ランプ電圧が制御電圧を越える
とき電源電圧の各半サイクル期間において正(+)負(
−)のトリガ信号を出力切換回路15および測定信号出
力回路17へ出力するトリガ信号発生手段である。
As shown in FIG. 2, the trigger signal generation circuit 13 internally oscillates a lamp voltage that has a constant slope and is synchronized with a half cycle of the frequency of the power supply voltage, compares this lamp voltage with the level of the control voltage, and generates a lamp voltage. Positive (+) and negative (
-) to the output switching circuit 15 and the measurement signal output circuit 17.

出力切換回路15はトリガ信号発生回路13がらのトリ
ガ信号の操作出力回路19への出力を切換えるものであ
り、後述するように制御回路9からの出力禁止信号によ
ってトリガ信号の操作出力回路19への出力をOFFす
るものである。なお、出力切換回路15へのトリガ信号
は第2図のように例えば正(+)レベルで出力されてい
る。
The output switching circuit 15 switches the output of the trigger signal from the trigger signal generation circuit 13 to the operation output circuit 19, and as described later, the output of the trigger signal to the operation output circuit 19 is controlled by an output prohibition signal from the control circuit 9. This is to turn off the output. Note that the trigger signal to the output switching circuit 15 is output at, for example, a positive (+) level as shown in FIG.

操作出力回路19は電源電圧の各半サイクル期間におい
てそのトリガ信号の出力時がらそれが0レベルになるま
で制御対象としてのヒータ(図示せず)に電源電圧を出
力する操作出力手段である。
The operation output circuit 19 is an operation output means that outputs a power supply voltage to a heater (not shown) as a controlled object during each half-cycle period of the power supply voltage from when the trigger signal is output until the trigger signal becomes 0 level.

測定信号出力回路17は、トリガ信号発生回路13から
の正(+)負(−)のトリガ信号の論理和をとり、論理
和が「1」であればこれを測定信号(+)として制御回
路9へ出力するものである。
The measurement signal output circuit 17 takes the logical sum of the positive (+) and negative (-) trigger signals from the trigger signal generation circuit 13, and if the logical sum is "1", the control circuit uses this as a measurement signal (+). 9.

制御回路9は電源電圧の周波数確認モードと非周波数確
認モードを有し、これら各モードを位相制御調節計の本
体パネル等に配置したキーボードスイッチ等から切換え
設定可能になっている。
The control circuit 9 has a power supply voltage frequency confirmation mode and a non-frequency confirmation mode, and these modes can be switched and set using a keyboard switch or the like disposed on the main body panel of the phase control controller.

非周波数確認モードは、第6図に示したように、設定値
SVや測定値PVから操作量をPID演算してPWM信
号に変換してPWM/電圧変換回路11に出力するモー
ドであり、従来の位相制御調節計における制御回路と同
様である。
As shown in FIG. 6, the non-frequency confirmation mode is a mode in which the manipulated variable is PID calculated from the set value SV and measured value PV, converted to a PWM signal, and outputted to the PWM/voltage conversion circuit 11. This is similar to the control circuit in a phase control controller.

周波数の確認モードは、当初はトリガ信号発生回路13
で発生可能なトリガ信号の最大波高値よりも例えば大き
いレベルの制御信号となるようなデユーティ−比のPW
M信号を、例えば30m5ecの分解能で5mVずつ低
下させて測定信号出力回路17から測定信号が出力され
るまで順次出力するとともに、測定信号を入力したとき
には制御回路9が測定信号に対応するPWM信号のレベ
ルをヒータへの100%操作出力範囲として操作用のP
WM信号を補正演算して出力するモードであり、1II
J111回路9はこの補正演算手段となっている。なお
100%操作出力範囲は有効出力範囲のことである。
In the frequency confirmation mode, the trigger signal generation circuit 13 was initially used.
PW with a duty ratio such that the control signal has a level greater than, for example, the maximum peak value of the trigger signal that can be generated.
The M signal is decreased by 5 mV at a resolution of, for example, 30 m5ec, and is sequentially output until the measurement signal is output from the measurement signal output circuit 17, and when the measurement signal is input, the control circuit 9 outputs the PWM signal corresponding to the measurement signal. P for operation with level as 100% operation output range to heater
This is a mode in which the WM signal is corrected and output, and 1II
The J111 circuit 9 serves as this correction calculation means. Note that the 100% operating output range is the effective output range.

しかも、操作用のPWM信号が出力されるまでトリガ信
号を操作出力回路19へ出力させないような出力禁止信
号を出力切換回路15へ出力するものである。
Furthermore, an output prohibition signal is output to the output switching circuit 15 so that the trigger signal is not output to the operation output circuit 19 until the PWM signal for operation is output.

次に、このような位相制御調節計の動作を説明しながら
本発明に係る制御方法を説明する。
Next, the control method according to the present invention will be explained while explaining the operation of such a phase control controller.

第3図は位相制御調節計の動作を示すフローチャートを
示している。
FIG. 3 shows a flowchart showing the operation of the phase control controller.

プログラムがスタートすると、ステップ301で周波数
確認モードであるか否か判断され、YESの場合にはス
テップ302で出力切換回路15へ出力禁止信号を出力
し、ステップ303にてトリガ信号の最大波高値よりも
大きいレベルの制御信号となるような操作量のPWM信
号、すなわちヒータへの操作出力O%より大きなレベル
を設定する。
When the program starts, it is determined in step 301 whether the mode is frequency confirmation mode, and if YES, an output prohibition signal is output to the output switching circuit 15 in step 302, and in step 303, the maximum peak value of the trigger signal is A PWM signal with a manipulated variable that results in a control signal with a high level, that is, a level higher than 0% of the manipulated output to the heater is set.

ステップ304にてレベルの高い第2図BのPWM信号
を演算出力し、ステップ305でPWM信号を直流レベ
ルの制御電圧に変換し、ステップ306でトリガ信号発
生回路13における制御電圧とランプ電圧(第2図C)
を比較してステップ307に移る。
In step 304, the high-level PWM signal shown in FIG. Figure 2C)
are compared and the process moves to step 307.

ステップ307では再び周波数確認モードであるか否か
判断し、YESの場合にはステップ3゜8でランプ電圧
か制御電圧以上か否か判断し、NOの場合にはステップ
301に戻ってステップ301〜308を繰返し処理す
るが、繰返し処理毎に第2図Bのように制御電圧のレベ
ルを順次低下させるようなPWM信号が演算出力される
In step 307, it is determined again whether or not it is the frequency confirmation mode. If YES, it is determined in step 3.8 whether or not the lamp voltage is equal to or higher than the control voltage. If NO, the process returns to step 301 and steps 301 to 301 are performed. 308 is repeatedly processed, and each time the process is repeated, a PWM signal that sequentially lowers the level of the control voltage as shown in FIG. 2B is calculated and output.

制御電圧がランプ電圧の最大波高値より低下して第2図
のP点でステップ308がYESになると、ステップ3
09でトリガ信号発生回路13がら第2図Aの電源電圧
の半サイクルに応じて正(+)又は負(−)のトリガ信
号が測定信号出力回路17へ一瞬出力され(第2図D)
、ステップ310でそれら正(+)又は負(=)の論理
和をとって同図Eのような測定信号が制御回路9へ出力
される。
When the control voltage falls below the maximum peak value of the lamp voltage and step 308 becomes YES at point P in FIG. 2, step 3
At 09, the trigger signal generation circuit 13 instantaneously outputs a positive (+) or negative (-) trigger signal to the measurement signal output circuit 17 in accordance with the half cycle of the power supply voltage shown in FIG. 2A (FIG. 2D).
, and in step 310, the positive (+) or negative (=) values are logically summed and a measurement signal as shown in E of the figure is outputted to the control circuit 9.

すなわち、トリガ信号発生回路13および測定信号出力
回路17でランプ電圧の最大波高値に対応した波高範囲
を測定し、間接的に電源電圧の周波数を測定する測定手
段となっている。
That is, the trigger signal generation circuit 13 and the measurement signal output circuit 17 measure a wave height range corresponding to the maximum wave height value of the lamp voltage, thereby serving as a measuring means for indirectly measuring the frequency of the power supply voltage.

ステップ311では入力された測定信号に対応するPW
M信号内容(レベル)を制御回路9がRAM9cに記憶
し、ステップ312では制御回路9がその記憶したPW
M信号内容を100%の操作出力範囲としてPWM信号
を出力するとともに、出力禁止信号の出力を停止して出
力切換回路15からトリガ信号を操作出力回路19へ出
力可能とし、操作出力回路19が電源電圧の各半サイク
ル期間においてそのトリガ信号の出力時からこれがOレ
ベルになるまでヒータに電源電圧を出力する。
In step 311, the PW corresponding to the input measurement signal is
The control circuit 9 stores the M signal contents (level) in the RAM 9c, and in step 312, the control circuit 9 stores the stored PW
The PWM signal is output with the M signal content set to 100% of the operation output range, and the output of the output prohibition signal is stopped so that the trigger signal can be output from the output switching circuit 15 to the operation output circuit 19, and the operation output circuit 19 In each half-cycle period of the voltage, the power supply voltage is output to the heater from the time when the trigger signal is output until the trigger signal reaches the O level.

すなわち、制御回路9は補正演算手段としても機能する
That is, the control circuit 9 also functions as a correction calculation means.

非周波数確認モードであってステップ301がNoに場
合にはステップ313にて操作用のPWM信号を演算出
力してステップ304に移り、ステップ307でNoの
場合にはステップ314でランプ電圧が制御電圧以上か
否か判断され、N。
If it is the non-frequency confirmation mode and step 301 is No, a PWM signal for operation is calculated and output in step 313, and the process moves to step 304. If step 307 is No, the lamp voltage is changed to the control voltage in step 314. It is judged whether or not it is above, and the answer is N.

の場合にはステップ314を繰返し、YESになるとス
テップ315でトリガ信号を出力し、ステップ316で
そのトリガ信号の出力時からこれが0レベルになるまで
ヒータに電源電圧を出力する。
If YES, step 315 outputs a trigger signal, and step 316 outputs the power supply voltage to the heater from the time the trigger signal is output until it becomes 0 level.

本発明は、上述した周波数確認モートによる制御方法を
補正演算するものであり、測定値PVおよび設定値S■
から操作量を演算してPWM信号に変換出力し、このP
WM信号のデユーティ−比に応じた制御電圧を作成し、
電源電圧の周波数に同期したランプ信号とその制御電圧
のレベルを比較し、制御電圧を越えるそのランプ電圧の
期間だけヒータを電源電圧で操作制御する制御方法を前
提とし、そのランプ信号の最大波高に応じた波高範囲を
測定し、その測定信号の出力時のPWM信号からランプ
電圧の波高範囲を規定してヒータへの100%操作範囲
として操作用のPWM信号を補正演算する方法となって
いる。
The present invention corrects the control method using the frequency confirmation mode described above, and calculates the measured value PV and set value S
The manipulated variable is calculated from and converted to a PWM signal and output, and this P
Create a control voltage according to the duty ratio of the WM signal,
The control method is based on a control method in which a lamp signal synchronized with the frequency of the power supply voltage is compared with the level of its control voltage, and the heater is operated and controlled by the power supply voltage only during the period when the lamp voltage exceeds the control voltage. This method measures the corresponding wave height range, defines the wave height range of the lamp voltage from the PWM signal at the time of outputting the measured signal, and corrects the PWM signal for operation as the 100% operation range for the heater.

しかも、PWM信号は、当初、高レベルから測定用とし
てのPWM信号を所定の分能で順次変化出力して測定用
の制御電圧を作成し、これら各測定用制御電圧毎にラン
プ電圧の最大波高値と比較し、測定用制御電圧が最大波
高値を越えた時の測定信号によってランプ電圧の波高範
囲を測定し、この測定時の測定用PWM信号内容をヒー
タへの100%操作出力範囲として操作用PWM信号を
補正演算する方法となっており、PWM信号および制御
電圧はランプ電圧の波高範囲を測定する際に共に測定用
とし、測定後はヒータの操作用に変更する方法である。
Moreover, the PWM signal is initially changed from a high level to a PWM signal for measurement at a predetermined resolution to create a control voltage for measurement, and the maximum waveform of the lamp voltage is generated for each of these control voltages for measurement. The peak range of the lamp voltage is measured using the measurement signal when the control voltage for measurement exceeds the maximum peak value by comparing with the high value, and the contents of the PWM signal for measurement at this time of measurement are operated as the 100% operation output range to the heater. In this method, the PWM signal and the control voltage are both used for measurement when measuring the wave height range of the lamp voltage, and after the measurement, they are changed to use for operating the heater.

このような本発明では、電源電圧の周波数に対応して変
化するランプ電圧の波高値から電源電圧の周波数を間接
的に測定し、この測定結果からPID演算を補正してP
WM信号を変換出力し、電源電圧の周波数が変化しても
正確な位相制御か可能となる。
In the present invention, the frequency of the power supply voltage is indirectly measured from the peak value of the lamp voltage that changes in accordance with the frequency of the power supply voltage, and the PID calculation is corrected based on this measurement result.
By converting and outputting the WM signal, accurate phase control is possible even when the frequency of the power supply voltage changes.

例えば、第4図に示すように、PWM信号出力の100
%の上下10%の余裕をみて10〜90%の範囲を電源
電圧50Hzにおける操作出力100%にした場合、電
源電圧が60HzになるとPWM信号出力の100%中
の10%〜90%未満の範囲(図中の一点鎖線や二点鎖
線の範囲)を100%の操作出力としてPWM信号を補
正演算することになる。
For example, as shown in FIG.
If the operating output at a power supply voltage of 50Hz is set to 100% in the range of 10% to 90% with a margin of 10% above and below %, when the power supply voltage becomes 60Hz, the range of 10% to less than 90% of 100% of the PWM signal output The PWM signal is corrected and calculated by setting the operation output (the range indicated by the one-dot chain line or two-dot chain line in the figure) as 100%.

ちなみに、操作出力が80%の場合には、(100−8
0) X ((90−10) /100)+10=26
%のPWM信号出力となり、操作出力がX%の場合に上
下の余裕値をAおよびBとすれば、 (100−x) x ((A−B) /1001 +B
のPWM信号出力となる。
By the way, when the operation output is 80%, (100-8
0) X ((90-10) /100)+10=26
% PWM signal output, and if the operation output is X% and the upper and lower margin values are A and B, (100-x) x ((A-B) /1001 +B
This is the PWM signal output.

しかも、本発明の制御方法を実施する場合には、従来の
回路構成をそのまま供用可能となって位相制御調節計の
内部構成を変更する必要性が少ない。
Moreover, when implementing the control method of the present invention, the conventional circuit configuration can be used as is, and there is little need to change the internal configuration of the phase control controller.

そして、PWM信号および制御電圧はランプ電圧の波高
範囲を測定する際に共に測定用とし、測定後はヒータの
操作用に変更する方法では、回路構成を共通化できるし
、測定時と操作制御時のランプ電圧誤差が少ない利点か
ある。
In addition, if the PWM signal and control voltage are used for measurement when measuring the wave height range of the lamp voltage, and then changed to the heater operation after measurement, the circuit configuration can be shared, and the circuit configuration can be shared between measurement and operation control. The advantage is that there is less lamp voltage error.

そのため、周波数の異なる地域で同一の位相制御調節計
を供用可能であるばかりか、周波数が変動する電源の下
でも安定して位相制御できる。
Therefore, not only can the same phase control controller be used in areas with different frequencies, but also stable phase control can be achieved even under power sources with varying frequencies.

ところで、上述した構成では、低レベルから測定用PW
M信号を高レベルに順次変化出力させ、測定用制御信号
かランプ電圧の最大波高値を越えて大きくなったときに
波高範囲を測定する構成でも良い。
By the way, in the above-mentioned configuration, the PW for measurement starts from a low level.
A configuration may also be used in which the M signal is sequentially changed to a high level and output, and the wave height range is measured when the measurement control signal exceeds the maximum wave height value of the lamp voltage.

第5図は本発明の他の実施例を実施するための位相制御
調節計のブロック図を示すものである。
FIG. 5 shows a block diagram of a phase control controller for implementing another embodiment of the present invention.

この構成は、制御回路9に対して上述した従来の位相制
御調節計を形成するPWM/電圧変換回路3、トリが信
号発生回路5及び操作出力回路7を接続し、更に、制御
回路9に第1図に示したPWM/電圧変換回路11、ト
リガ信号発生回路13及び測定信号出力回路17を接続
して構成されており、操作出力切換回路15が省略され
ている。
In this configuration, a PWM/voltage conversion circuit 3 forming the conventional phase control controller described above, a signal generation circuit 5 and an operation output circuit 7 are connected to the control circuit 9. It is configured by connecting the PWM/voltage conversion circuit 11, trigger signal generation circuit 13, and measurement signal output circuit 17 shown in FIG. 1, and the operation output switching circuit 15 is omitted.

この構成では、制御回路9が操作用のPWM信号をPW
M/電圧変換回路3に出力し、トリガ信号発生回路5か
らトリガ信号を操作出力回路7に出力して操作出力を制
御対象に出力して位相制御する状態下で、制御回路9が
測定用のPWM信号をPWM/電圧変換回路11へ出力
し、トリが信号発生回路13にてトリガ信号を測定信号
出力回路17に出力して測定信号か制御回路9に入力さ
れると、制御回路9はその測定用のPWM信号に基づい
て操作用のPWM信号を補正演算して出力する。
In this configuration, the control circuit 9 converts the PWM signal for operation into PWM
The control circuit 9 outputs the signal to the M/voltage conversion circuit 3, outputs the trigger signal from the trigger signal generation circuit 5 to the operation output circuit 7, outputs the operation output to the controlled object, and performs phase control. The PWM signal is output to the PWM/voltage conversion circuit 11, and when the signal generation circuit 13 outputs a trigger signal to the measurement signal output circuit 17 and the measurement signal is input to the control circuit 9, the control circuit 9 Based on the PWM signal for measurement, a PWM signal for operation is corrected and output.

この構成の位相制御調節計における制御方法は、制御回
路9が操作用のPWM信号を出力し、この操作用のPW
M信号に基づいて制御対象を位相制御するとともに、こ
れと並行して制御回路9が測定用のPWM信号を出力し
てトリガ信号の波高範囲を測定し、測定信号に対応する
測定用のPWM信号に基づいてその操作用のPWM信号
を補正演算するものである。
The control method for the phase control controller with this configuration is that the control circuit 9 outputs a PWM signal for operation, and the PWM signal for operation is
While controlling the phase of the controlled object based on the M signal, in parallel, the control circuit 9 outputs a PWM signal for measurement to measure the wave height range of the trigger signal, and outputs a PWM signal for measurement corresponding to the measurement signal. Based on this, the PWM signal for the operation is corrected and calculated.

このような制御方法では、制御対象の位相制御を行ない
ながら周波数測定を行なう構成であり、電源電圧の周波
数安定度が悪い地域においてもリアルタイムで操作用の
PWM信号を補正演算することが可能となり、常時正確
かつ高精度で位相制御できる。
In such a control method, the frequency is measured while controlling the phase of the controlled object, and it is possible to correct the PWM signal for operation in real time even in areas where the frequency stability of the power supply voltage is poor. Phase control can be performed accurately and with high precision at all times.

この制御方法では、測定結果から常に操作用のPWM信
号を補正演算してもよいが、各測定時の測定用PWM信
号の複数の測定結果における平均値から補正演算する方
が好ましい。
In this control method, the operation PWM signal may always be corrected based on the measurement results, but it is preferable to perform the correction calculation based on the average value of a plurality of measurement results of the measurement PWM signal during each measurement.

なお、操作用と測定用のランプ電圧で波高値が一致しな
くなる場合も予想されるが、出荷時やその後適宜レベル
調整をすればよいであろう。
It should be noted that although it is expected that the peak values of the operating lamp voltage and the measuring lamp voltage may not match, the levels may be adjusted appropriately at the time of shipment or thereafter.

[発明の効果コ 以上説明したように本発明の制御方法は、位相制御調節
計を使用する地域の電源周波数が変動しても制御対象を
正確かつ高精度で位相制御可能であり、電源周波数の異
なる地域においてもその周波数差を考慮することなくそ
のまま実施可能である。
[Effects of the Invention] As explained above, the control method of the present invention enables accurate and high-precision phase control of the controlled object even if the power frequency in the area where the phase control controller is used fluctuates, and It can be implemented as is even in different regions without considering the frequency difference.

しかも、測定用PWM信号から測定用制御信号を作成し
、ランプ信号の波高範囲を測・定して操作用PWM信号
を演算する方法では、操作用PWM信号を演算して制御
対象を操作制御しながら常に操作用P、WM信号が補正
される利点がある。
Moreover, in the method of creating a measurement control signal from a measurement PWM signal, measuring the wave height range of a lamp signal, and calculating an operation PWM signal, the operation PWM signal is calculated and the control target is controlled. However, there is an advantage that the operation P and WM signals are always corrected.

さらに、操作用PWM信号と測定用PWM信号、上記操
作用制御信号と測定用制御信号を同一とした方法では、
位相制御調節計の構成を部分的に共用可能となるうえ、
操作制御時と測定時でランプ信号差が小さく、−層高精
度の位相制御が可能である。
Furthermore, in the method in which the operation PWM signal and the measurement PWM signal, and the operation control signal and measurement control signal are the same,
In addition to making it possible to partially share the configuration of the phase control controller,
The difference in lamp signals between operation control and measurement is small, allowing highly accurate phase control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る制御方法を実施する位相制御調節
計の主要部を示すブロック図、第2図は第1図の位相制
御調節計の動作を説明する波形図、第3図は第1図の位
相制御調節計の動作を説明するフローチャート、第4図
は本発明による操作範囲を説明する図、第5図は本発明
の他の実施例を実施するための位相制御調節計を示すブ
ロック図、第6図は従来の制御方法を実施する位相制御
調節計を示すブロック図、第7図および第8図は第6図
の位相制御調節計の動作を説明する波形図である。 1.9・・・・・・・・・制御回路 3.11・・・・・・PWM/電圧変換回路5.13・
・・用トリガ信号発生回路 7.19・・・用操作出力回路
FIG. 1 is a block diagram showing the main parts of a phase control controller that implements the control method according to the present invention, FIG. 2 is a waveform diagram explaining the operation of the phase control controller shown in FIG. 1, and FIG. FIG. 4 is a flowchart explaining the operation of the phase control controller of FIG. 1, FIG. 4 is a diagram explaining the operating range according to the present invention, and FIG. 5 shows a phase control controller for implementing another embodiment of the present invention. FIG. 6 is a block diagram showing a phase control controller implementing a conventional control method, and FIGS. 7 and 8 are waveform diagrams illustrating the operation of the phase control controller shown in FIG. 6. 1.9... Control circuit 3.11... PWM/voltage conversion circuit 5.13.
Trigger signal generation circuit for...7.19 Operation output circuit for...

Claims (3)

【特許請求の範囲】[Claims] (1)設定値および制御対象からの測定値から操作量を
演算して操作用PWM信号として出力し、この操作用P
WM信号のデューティー比に応じた直流レベルの操作用
制御信号を作成し、 傾きが一定で電源信号の周波数に同期したランプ信号と
前記操作用制御信号のレベルを比較して前記操作用制御
信号を越える前記ランプ信号期間だけ前記電源信号で前
記制御対象を操作制御する位相制御調節計の制御方法に
おいて、 前記ランプ信号の最大波高に応じた波高範囲を測定し、 測定した前記波高範囲を前記制御対象への100%操作
出力範囲として前記操作用PWM信号を補正演算するこ
とを特徴とする位相制御調節計の制御方法。
(1) Calculates the manipulated variable from the set value and the measured value from the controlled object and outputs it as an operating PWM signal.
A control signal for operation at a DC level is created according to the duty ratio of the WM signal, and the level of the control signal for operation is compared with a ramp signal whose slope is constant and synchronized with the frequency of the power supply signal, and the control signal for operation is determined. A method for controlling a phase control controller in which the controlled object is operated and controlled by the power supply signal for a period of the ramp signal exceeding the period of time, comprising: measuring a wave height range corresponding to a maximum wave height of the ramp signal; and using the measured wave height range as the control object. A method for controlling a phase control controller, comprising performing a correction calculation on the operating PWM signal as a 100% operating output range.
(2)高レベル又は低レベルから測定用PWM信号を所
定の分能で順次変化出力して測定用制御信号を作成し、
これら各測定用制御信号毎に前記ランプ信号の最大波高
値と比較し、前記測定用制御信号が前記最大波高値を越
えたか否かによって前記波高範囲を測定し、この測定時
の前記測定用PWM信号内容を前記制御対象への100
%操作出力範囲として前記操作用PWM信号を補正演算
する請求項1記載の位相制御調節計の制御方法。
(2) Create a measurement control signal by sequentially outputting a measurement PWM signal with a predetermined resolution from a high level or a low level,
Each of these measurement control signals is compared with the maximum wave height value of the ramp signal, and the wave height range is measured depending on whether or not the measurement control signal exceeds the maximum wave height value, and the measurement PWM at the time of this measurement is 100 of the signal content to the control target
2. The method of controlling a phase control controller according to claim 1, wherein the operating PWM signal is corrected as a % operating output range.
(3)前記操作用PWM信号と測定用PWM信号、前記
操作用制御信号と測定用制御信号を同一にした請求項1
記載の位相制御調節計の制御方法。
(3) Claim 1 in which the operating PWM signal and the measuring PWM signal are the same, and the operating control signal and the measuring control signal are the same.
A method of controlling the phase control controller described above.
JP2255424A 1990-09-27 1990-09-27 Phase control controller control method Expired - Fee Related JP2529130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2255424A JP2529130B2 (en) 1990-09-27 1990-09-27 Phase control controller control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2255424A JP2529130B2 (en) 1990-09-27 1990-09-27 Phase control controller control method

Publications (2)

Publication Number Publication Date
JPH04134506A true JPH04134506A (en) 1992-05-08
JP2529130B2 JP2529130B2 (en) 1996-08-28

Family

ID=17278572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2255424A Expired - Fee Related JP2529130B2 (en) 1990-09-27 1990-09-27 Phase control controller control method

Country Status (1)

Country Link
JP (1) JP2529130B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130868U (en) * 1984-07-27 1986-02-24 横河電機株式会社 Wave height measuring device
JPS6132782U (en) * 1984-07-26 1986-02-27 澤藤電機株式会社 phase control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132782U (en) * 1984-07-26 1986-02-27 澤藤電機株式会社 phase control device
JPS6130868U (en) * 1984-07-27 1986-02-24 横河電機株式会社 Wave height measuring device

Also Published As

Publication number Publication date
JP2529130B2 (en) 1996-08-28

Similar Documents

Publication Publication Date Title
US4961130A (en) Voltage inverter control applying real-time angle pattern determination
SU936834A3 (en) Device for controlling electric power
JPH03207267A (en) Control method and device
US4449091A (en) Power controlling circuit for automatic regulating apparatus
JPH04134506A (en) Method for controlling phase controller
EP0449543B1 (en) Digital pulse-width-modulation generator for current control
US4890291A (en) Laser oscillator control circuit
JPH0998600A (en) Excitation controller for generator
JP3412020B2 (en) Fluid temperature controller
JPS5875472A (en) Switching regulator
JP2004164432A (en) Ac power control device
JPS61226803A (en) Process control device
RU2214618C2 (en) Control method using pulse-width modulation
JP2001075606A (en) Controller
JPS62212803A (en) Pid constant determining device
JPH0554123B2 (en)
JPH06110571A (en) Feeding system utilizing solar battery
RU2025763C1 (en) Method of tracking discrete regulation of voltage
JPH07184368A (en) Method and apparatus for controlling phase shift of power converter
JPS6083103A (en) Controller
JPS59209088A (en) Controller of ac motor
SU993149A1 (en) Phase inverter
JPH0816686B2 (en) Corrective electronic power measuring device
JP4455850B2 (en) Inverter output voltage correction device
JPS6318425B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees