JPH04134292A - Embedded object locating process in underground ahead detection with shield method - Google Patents

Embedded object locating process in underground ahead detection with shield method

Info

Publication number
JPH04134292A
JPH04134292A JP2260104A JP26010490A JPH04134292A JP H04134292 A JPH04134292 A JP H04134292A JP 2260104 A JP2260104 A JP 2260104A JP 26010490 A JP26010490 A JP 26010490A JP H04134292 A JPH04134292 A JP H04134292A
Authority
JP
Japan
Prior art keywords
dimensional image
image memory
buried object
picture element
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2260104A
Other languages
Japanese (ja)
Other versions
JP2543246B2 (en
Inventor
Toshiaki Morii
俊明 森井
Masao Kinoshita
正生 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP26010490A priority Critical patent/JP2543246B2/en
Publication of JPH04134292A publication Critical patent/JPH04134292A/en
Application granted granted Critical
Publication of JP2543246B2 publication Critical patent/JP2543246B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To sense the location of any embedded object three-dimensionally with high precision by feeding the concentration values obtained from the reflexion intensity into each picture element of a two-dimensional image memory, and displaying as a three-dimensional image. CONSTITUTION:Two-dimensional image memories 16 having a plurality of picture elements storing concentration values in the direction to the left and right and in the vertical direction are installed fore and aft as corresponding to the natural ground ahead a shield excavating machine 11, and thus a three-dimensional image memory 17 is provided. It is assumed that there is embedded object 15 in every two-dimensional image memory 16, and the concentration values of the processing data position corresponding to the distance of picture element of each two-dimensional image memory 16 from a signal transmitter 13 and receiver 14 are fed to picture element of each two-dimensional image memory 16. By this processing, a rotational ellipse focusing at the transmitter 13 and receiver 14 appears in three-dimensional image at measurement for one place, and the concentration value of the picture element of a part overlapped with the ellipse from other measuring point will be heightened. This permits judgement that an embedded object 5 exists in the natural ground position corresponding to the picture element position where concentration value is high.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はシールド工法によりI・ンネルを掘削する際に
、シールド掘進機前方の地山中埋設物の位置決定する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for determining the position of buried objects in the ground in front of a shield excavator when excavating an I-channel using the shield method.

従来の技術 従来、地中の前方探査は、たとえば特開昭和61−19
3090号公報に音波反射法による埋設物検出法が開示
されている。
Conventional technology Conventionally, forward exploration underground has been conducted, for example, in Japanese Patent Application Laid-open No.
Japanese Patent No. 3090 discloses a buried object detection method using a sound wave reflection method.

発明が解決しようとする課題 しかし、上記埋設物検出法は地中埋設物の有無をチエツ
クするのみて、その位置を正確に三次元的に把握するの
はむづかしかった。これは音波反射法により埋設物を三
次元的に検出するには、バラツキのない正確なデータが
必要であり、音波反射法ではそのようなデータを得るの
がむづかしいためである。
Problems to be Solved by the Invention However, the above-mentioned buried object detection method merely checks the presence or absence of underground objects, but it is difficult to accurately determine their position three-dimensionally. This is because accurate data with no variation is required to three-dimensionally detect a buried object using the sound wave reflection method, and it is difficult to obtain such data using the sound wave reflection method.

本発明は上記問題点を解決して、埋設物の存在する位置
を三次元画像として高精度で得られろシルドエ法におけ
ろ前方の埋設物位置決定方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide a method for determining the position of a buried object in front of the Schild's method, which allows the position of the buried object to be obtained as a three-dimensional image with high precision.

課題を解決するための手段 上記問題点を解決するために本発明は、シールド掘進機
のカッターへ・ントに設けられて前方の地山中に音波を
発信する送波器および地山からの反射波を受信する受波
器を使用して前方の埋設物の位置を決定するに際し、シ
ールド掘進機前方の他山に対応して、左右方向および上
下方向にそれぞれ濃度値を記憶する複数の画素を有する
二次元画像メモリーを前後方向に複数面配置した三次元
画像メモリーを設定し、受信した反射波データの反射波
到達時間から得られた前記送受波器と埋設物との距離に
等しい二次元画像メモリーの各画素に、反射波データの
反射強度から得られた濃度値をそれぞれ入力して三次元
画像を表示し、−ヒ記一連の検出処理を複数カ所て行っ
て同一の各二次元画像メモリーにそれぞれ濃度値を加え
、濃度値が重なり合って濃度の高くな−た位置を埋設物
の存在位置とするものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a transmitter that is installed in the cutter of a shield excavation machine and transmits sound waves into the ground in front, and a transmitter that transmits sound waves from the ground that is reflected from the ground. When determining the position of a buried object in front using a receiver that receives A three-dimensional image memory in which a plurality of two-dimensional image memories are arranged in the front and rear directions is set, and the two-dimensional image memory is equal to the distance between the transducer and the buried object obtained from the reflected wave arrival time of the received reflected wave data. A three-dimensional image is displayed by inputting the density value obtained from the reflection intensity of the reflected wave data into each pixel of The density values are added to each, and the position where the density values overlap and the density becomes high is determined as the location of the buried object.

作用 上記方法によれは、−点から得られた反射波データによ
り1発信器、受信器と埋設物との距離に等しい二次元画
像メモリーの画素に、濃度値をそれぞれ入力して三次元
画像として表示し、複数点から得られた反射波データの
濃度値を前記各二次元画像メモリーの画素に加え、濃度
値か重なり合って濃度の高くなった位置を埋設物の存在
位置とするので、音波反射法であっても埋設物の位置を
次元的に高精度で決定することができる。
Operation According to the above method, density values are input into pixels of a two-dimensional image memory equal to the distance between one transmitter and receiver and the buried object using the reflected wave data obtained from the - point, and a three-dimensional image is created. The density values of the reflected wave data obtained from multiple points are added to the pixels of each two-dimensional image memory, and the position where the density values overlap and the density becomes high is determined as the location of the buried object, so the sound wave reflection The position of buried objects can be determined dimensionally with high accuracy even when using the method.

実施例 以下本発明の一実施例を図面に基づいて説明する。Example An embodiment of the present invention will be described below based on the drawings.

第1図に示すように、シールド掘進機11のカッターヘ
ッド12には、半径方向に所定間隔をあけて発信器13
および受信器I4がそれぞれ取り付けられ、カッターヘ
ッド12が回転した複数位置で、発信器13から直方地
山中に音波を発信し、埋設物15に反射した反射波を受
信器14て受信するように構成される。
As shown in FIG. 1, the cutter head 12 of the shield tunneling machine 11 is provided with transmitters 13 at predetermined intervals in the radial direction.
and a receiver I4 are respectively attached, and the transmitter 13 transmits sound waves into the underground ground at multiple positions where the cutter head 12 rotates, and the receiver 14 receives the reflected waves reflected from the buried object 15. be done.

この反射波データは、第1図に示すように、発信器13
と埋設物15の距離aと、埋設物15と受信器14の距
離すとの和は、反射波の到達時間t×土中の音速fと等
しく、また反射波の強度はたとえばO〜1て表される。
This reflected wave data is transmitted to the transmitter 13 as shown in FIG.
The sum of the distance a between the buried object 15 and the distance between the buried object 15 and the receiver 14 is equal to the arrival time t of the reflected wave x the speed of sound in the soil f, and the intensity of the reflected wave is, for example, 0 to 1. expressed.

以下にこの反射波データの処理を順に説明する。The processing of this reflected wave data will be explained in order below.

■反射波データの前処理〔第3図〕 前記反射波データが図示するように加工される。■Preprocessing of reflected wave data [Figure 3] The reflected wave data is processed as shown.

hは濃度値で、反射波の強度により決定されるとともに
、Wは前後方向の距離(たとえば埋設物15の推定長さ
)を適当に選択することにより、その距離に比例して決
定される。
h is a density value and is determined by the intensity of the reflected wave, and W is determined in proportion to the distance by appropriately selecting the distance in the front-back direction (for example, the estimated length of the buried object 15).

■濃淡画像メモリーの設定〔第4図(a) 、 (b)
 〕シールド掘進機11前方の地山に対応し、左右方向
および上下方向にそれぞれ濃度値を記憶する複数の画素
を有する二次元画像メモリー16を前後方向に複数面配
置した三次元画像メモリー17として設定する。すなわ
ち、三次元画像メモリー17を左右方向の複数画素と上
下方向の複数画素7前後方向の複数面で三次元空間を構
成し、シールド掘進機11のカッターヘッド12から所
定距離り離れた前方の地山空間(左右方向の範囲AX上
下方向の範囲B×前後方向の範囲C)を三次元画像メモ
リー17に割り当てる。
■ Setting the grayscale image memory [Figure 4 (a), (b)
] Corresponding to the ground in front of the shield excavator 11, a two-dimensional image memory 16 is set as a three-dimensional image memory 17 in which a plurality of pixels are arranged in the front-rear direction and have a plurality of pixels that store density values in the left-right direction and the up-down direction. do. In other words, the three-dimensional image memory 17 is configured with a plurality of pixels in the horizontal direction, a plurality of pixels in the vertical direction, and a plurality of planes in the front-rear direction, and the ground is located in front of the cutter head 12 of the shield excavator 11 by a predetermined distance. A mountain space (range AX in the left-right direction, range B in the vertical direction x range C in the front-rear direction) is assigned to the three-dimensional image memory 17.

■濃度の分布〔第5図(a)、 (b)) 、  (第
6図〕発信器13と濃度値を分布する位置18との距離
a1、受信器14と濃度値を分布する位置18との距離
b1とを演算する。第5図(a)、 (b)においてX
、Y、Zを濃度値を分布する位置18の座標とすると、 つぎに、第6図に示すように、a、 +b、は発信器1
3から埋設物15に反射して受信機14に至る音波の通
過距離を示し、距離a++b、に対応する二次元画像メ
モリー16の各画素に、距離al+blに対応する濃度
値h1を入力する。〔実際には、全ての二次元画像メモ
リー16についてそれぞれ埋設物15があると考えて、
各二次元画像メモリー16の画素と発信器13.受信器
14との距離に対応する加工データ位置の濃度値をそれ
ぞれの二次元画像メモリー16の画素に入力する。たと
えは第6図において、a++b:に対応する全ての画素
(発信器13と受信器14とを焦点とする楕円面上に位
置する画素)にhが入力され、al +blよりも短い
あるいは長い距離の画素については濃度値0が人力され
る。〕 以上のように1カ所の計測につき、上記の処理を行う。
■Concentration distribution [Fig. 5 (a), (b)), (Fig. 6) Distance a1 between the transmitter 13 and the position 18 where concentration values are distributed, and distance a1 between the receiver 14 and the position 18 where the concentration values are distributed. Calculate the distance b1 of
, Y, and Z are the coordinates of the position 18 where the concentration values are distributed. Next, as shown in FIG. 6, a, +b are the transmitter 1
The density value h1 corresponding to the distance al+bl is input to each pixel of the two-dimensional image memory 16 corresponding to the distance a++b. [Actually, considering that there is a buried object 15 for every two-dimensional image memory 16,
Pixels of each two-dimensional image memory 16 and transmitter 13. The density value of the processed data position corresponding to the distance from the receiver 14 is input into each pixel of the two-dimensional image memory 16. For example, in Fig. 6, h is input to all pixels corresponding to a++b: (pixels located on the ellipsoid surface with the emitter 13 and receiver 14 as focal points), and the distance is shorter or longer than al + bl. For the pixel, a density value of 0 is manually input. ] As described above, the above processing is performed for each measurement at one location.

上記の計測をカッターヘッド12の1回転中に複数カ所
で行い、それぞれの加工データを各二次元画像メモリー
16の画素に加える。(濃度値が加算される。)ここで
、各画素に入力される濃度値りの最大値は、メモリーの
記憶容量を考慮して決定され、たとえば各計測点の最大
濃度値を全て加えた場合でも、オーバーフローしない値
に設定されている。
The above measurements are performed at a plurality of locations during one rotation of the cutter head 12, and each processed data is added to each pixel of the two-dimensional image memory 16. (The density values are added.) Here, the maximum value of the density values input to each pixel is determined by taking into account the storage capacity of the memory. For example, when adding up all the maximum density values of each measurement point, However, it is set to a value that does not overflow.

上記処理により、第7図に示すよ・うに、1カ所の計測
において三次元画像には発信器13δよび受信器14を
焦点とする回転楕円体か表れ、他の計測地点からの楕円
(本と重なっ1こ部分の画素の濃度値が高くなる。これ
(二より、濃度値か高い画素位置に対応する地山位置に
埋設物15か存在すると判断される。
As a result of the above processing, as shown in Fig. 7, a spheroid with the transmitter 13δ and receiver 14 as focal points appears in the three-dimensional image when measuring one location, and an ellipsoid (with a book and a book) from other measurement locations appears. The density value of the pixel in the overlapping part becomes high.From this (2), it is determined that the buried object 15 exists at the position of the ground corresponding to the pixel position with the high density value.

なお、カッターへ・ラド12に複数の受信器14あるい
は複数の発信器13と受信機1・1を設けることにより
、カッターヘット12の同一の回転角度位置でも複数地
点の計測が可能となる。
By providing the cutter head 12 with a plurality of receivers 14 or a plurality of transmitters 13 and receivers 1.1, it is possible to measure a plurality of points even at the same rotation angle position of the cutter head 12.

次に上記の具体例を第8図〜第13図により説明する。Next, the above specific example will be explained with reference to FIGS. 8 to 13.

第8図は埋設物検出装置の構成を示す。発信器13およ
び受信器14は前方探査装置19に接続され、前方探査
装置19からの信号は本発明に係る位置決定装置20に
より信号処理され、画像表示装置21により表示される
FIG. 8 shows the configuration of the buried object detection device. The transmitter 13 and the receiver 14 are connected to a forward search device 19, and the signal from the forward search device 19 is processed by a position determination device 20 according to the invention and displayed on an image display device 21.

その画像表示例を第9図〜第11図により説明する。第
9図は前後方向の任意距離Eにおける横断面画像で、進
行方向任意距離Eにおける断面と力、ツタ−・\ラド1
2からの距離か表示されて、埋設物15の方向が推定さ
れる。第10図は左右方向任意距離Fにおける縦断面画
像で、幅方向任意距離Fにおける断面とシールド掘進機
11中心からの距離が表示されて、埋設物15まての距
離が推定される。第1I図は2値化画像で、上記で求め
た濃淡画像を任意の濃度閾値て2値化する。閾値は連続
的に変更可能とし、埋設物15の存在する可能性の高い
所のみを表示する。また濃度域毎に色分けして表示すれ
ば、埋設物15の存在する可能性を色によって判りてき
る。
Examples of the image display will be explained with reference to FIGS. 9 to 11. Figure 9 is a cross-sectional image at an arbitrary distance E in the forward and backward direction, and the cross section and force at an arbitrary distance E in the traveling direction.
2 is displayed, and the direction of the buried object 15 is estimated. FIG. 10 is a longitudinal cross-sectional image at an arbitrary distance F in the left-right direction, the cross-section at an arbitrary distance F in the width direction and the distance from the center of the shield excavator 11 are displayed, and the distance to the buried object 15 is estimated. FIG. 1I shows a binarized image, in which the grayscale image obtained above is binarized using an arbitrary density threshold. The threshold value can be changed continuously, and only the locations where the buried object 15 is likely to exist are displayed. Furthermore, if the density areas are displayed in different colors, the possibility of the existence of the buried object 15 can be determined by the color.

距離計算の具体例を第12図、第13図により説明する
A specific example of distance calculation will be explained with reference to FIGS. 12 and 13.

ここで、左右方向Aの画素数を128、上下方向Bの画
素数を108の二次元画像メモリー16を前後方向に2
0面配置して構成する。シールド掘進機12の中心Oを
原点とすると、発信器13の座標は(r +sinθ、
rlcO5θ、0)、受信器14の座標は(r 2si
nθ、  r2cO3θ、0)第O面、第O画素の座標
は 座標Xニー〔l\72−A 座標y二  B、、’2−B・ 座標z =   D 十Cy’ (2 1画素幅(X方向) 1画素幅(X方向) 1画素幅(Z方向)・ 第a画面、X方向m画素目。
Here, the two-dimensional image memory 16, which has 128 pixels in the horizontal direction A and 108 pixels in the vertical direction B, is
Configure by arranging 0 sides. If the center O of the shield tunneling machine 12 is the origin, the coordinates of the transmitter 13 are (r + sin θ,
rlcO5θ, 0), the coordinates of the receiver 14 are (r 2si
nθ, r2cO3θ, 0) The coordinates of the Oth pixel on the Oth surface are the coordinates Direction) 1 pixel width (X direction) 1 pixel width (Z direction) / A-th screen, m-th pixel in the X direction.

標は 座標x =−:A/2−A/(128X2)−m XA
/128]座標y=  B/2−B/(]08X2) 
−n XB/’108座標z =  D +C/ (’
、20X2)+ l XC/20m、=0〜127 n=0〜107 ff=0〜19 原点Oから発信器13まての距離・r 原点Oから受信器14まての距離、r2カッターヘッド
12の回転色量〇とすると、発信器13から高濃度値分
布位置18まての距離: a2”  (、r+slnθ
−x +(、r+CO3θ−Y)2+Z2受信器14か
ら高濃度値分布位置18まての距(l 28\2)〕 (’108X2) 0 × 2) A  ′128 B、108 C/   20 y方向n画素目の座 離 :  b:=   (r2sinθ−x)”(r 
 2cosθ−v)2−1”この距離a2+b2に対応
する二次元画像メモリー16の各画素に、距離a、+b
、、に対応する濃度値h2を人力する。
The mark is the coordinate x =-: A/2-A/(128X2)-m XA
/128] Coordinate y=B/2-B/(]08X2)
-n XB/'108 coordinate z = D +C/ ('
, 20X2)+l Assuming that the rotation color amount is 〇, the distance from the transmitter 13 to the high density value distribution position 18: a2'' (, r+slnθ
-x + (,r+CO3θ-Y)2+Z2 Distance from receiver 14 to high concentration value distribution position 18 (l 28\2)] ('108X2) 0 × 2) A '128 B, 108 C/ 20 y direction Dislocation of n-th pixel: b:= (r2sinθ−x)”(r
2 cos θ-v) 2-1'' Distances a, +b are added to each pixel of the two-dimensional image memory 16 corresponding to this distance a2+b2.
The density value h2 corresponding to , , is manually generated.

発明の効果 以上に述へたごどく本発明によれば、−点から得られた
反射波データにより、発信器、受信器と埋設物との距離
に等しい二次元画像メモリーの各画素に、反射強度から
得られた濃度値をそれぞれ入力して三次元画像として表
示し、複数点から得られた反射波データの濃度値を前記
各二次元画像メモリーの画素に加え、濃度値が重なり合
って濃度の高くなった位置を埋設物の存在位置とするの
で、音波反射法てあっても埋設物の位置を高精度で三次
元的に検出することができる。
Effects of the Invention As described above, according to the present invention, the reflected wave data obtained from the - point is used to generate reflected waves at each pixel of the two-dimensional image memory equal to the distance between the transmitter, the receiver, and the buried object. The density values obtained from the intensity are input and displayed as a three-dimensional image, and the density values of reflected wave data obtained from multiple points are added to the pixels of each two-dimensional image memory, and the density values are overlapped and displayed as a three-dimensional image. Since the elevated position is defined as the location of the buried object, the position of the buried object can be detected three-dimensionally with high accuracy even if the sound wave reflection method is used.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示し、第1図〜第3図は反射
波データの前処理を示す説明図、第4図(a)(b)は
それぞれ三次元画像メモリーの説明図、第5図(a)(
b) 、第6図は距離計算および濃度割当てを示す説明
図、第7図は濃度分布の説明図、第8図は埋設物検出装
置の概略構成図、第9図(a)(b)〜第11図(a)
(b)はそれぞれ画像表示例を示す説明図、第12図、
第13図はそれぞれ座標計算の説明図である。 11・・・シールド掘進機、12・・・カッターヘット
、13・・・発信器、14・・・受信器、15・・・埋
設物、I6゛・・二次元画像メモリー 17・・・三次
元画像メモリー 18・・・高濃度分布位置、19・・
・前方探査装置、20・・・位置決定装置、21・・・
画像表示装置。
The drawings show one embodiment of the present invention, and FIGS. 1 to 3 are explanatory diagrams showing preprocessing of reflected wave data, and FIGS. 4(a) and 4(b) are explanatory diagrams of a three-dimensional image memory, respectively. Figure 5 (a) (
b), Fig. 6 is an explanatory diagram showing distance calculation and concentration assignment, Fig. 7 is an explanatory diagram of concentration distribution, Fig. 8 is a schematic configuration diagram of the buried object detection device, and Fig. 9 (a) (b) - Figure 11(a)
(b) is an explanatory diagram showing an example of image display, FIG.
FIG. 13 is an explanatory diagram of each coordinate calculation. 11... Shield excavator, 12... Cutter head, 13... Transmitter, 14... Receiver, 15... Buried object, I6゛... Two-dimensional image memory 17... Three-dimensional Image memory 18... High density distribution position, 19...
・Forward exploration device, 20...Positioning device, 21...
Image display device.

Claims (1)

【特許請求の範囲】[Claims] 1、シールド掘進機のカッターヘッドに設けられて前方
の地山中に音波を発信する送波器および他山からの反射
波を受信する受波器を使用して前方の埋設物の位置を決
定するに際し、シールド掘進機前方の他山に対応して、
左右方向および上下方向にそれぞれ濃度値を記憶する複
数の画素を有する二次元画像メモリーを前後方向に複数
面配置した三次元画像メモリーを設定し、受信した反射
波データの反射波到達時間から得られた前記送受波器と
埋設物との距離に等しい二次元画像メモリーの各画素に
、反射波データの反射強度から得られた濃度値をそれぞ
れ入力して三次元画像を表示し、上記一連の検出処理を
複数ヵ所で行って同一の各二次元画像メモリーにそれぞ
れ濃度値を加え、濃度値が重なり合って濃度の高くなっ
た位置を埋設物の存在位置とすることを特徴とするシー
ルド工法における地中前方探査の埋設物位置決定方法。
1. Determine the position of the buried object in front using a transmitter installed on the cutter head of the shield excavator that sends out sound waves into the ground ahead, and a receiver that receives reflected waves from other mountains. In response to the other mountain in front of the shield excavator,
A three-dimensional image memory is set in which two-dimensional image memories each having a plurality of pixels that store density values in the horizontal and vertical directions are arranged on multiple sides in the front-rear direction. The density value obtained from the reflection intensity of the reflected wave data is input into each pixel of the two-dimensional image memory, which is equal to the distance between the transducer and the buried object, to display a three-dimensional image, and the series of detections described above is performed. Underground in the shield construction method, which is characterized by performing processing at multiple locations and adding density values to the same two-dimensional image memory, and determining the position where the density values overlap and the density is high as the location of the buried object. A buried object location determination method for forward exploration.
JP26010490A 1990-09-27 1990-09-27 Method for determining the position of buried objects in the underground forward exploration in the shield method Expired - Lifetime JP2543246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26010490A JP2543246B2 (en) 1990-09-27 1990-09-27 Method for determining the position of buried objects in the underground forward exploration in the shield method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26010490A JP2543246B2 (en) 1990-09-27 1990-09-27 Method for determining the position of buried objects in the underground forward exploration in the shield method

Publications (2)

Publication Number Publication Date
JPH04134292A true JPH04134292A (en) 1992-05-08
JP2543246B2 JP2543246B2 (en) 1996-10-16

Family

ID=17343347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26010490A Expired - Lifetime JP2543246B2 (en) 1990-09-27 1990-09-27 Method for determining the position of buried objects in the underground forward exploration in the shield method

Country Status (1)

Country Link
JP (1) JP2543246B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6313853B1 (en) * 1998-04-16 2001-11-06 Nortel Networks Limited Multi-service user interface
JP2002243841A (en) * 2001-02-16 2002-08-28 Koden Electronics Co Ltd Ultrasonic measuring device
JP2013174505A (en) * 2012-02-24 2013-09-05 Taisei Corp Device and method for investigating adjacent underground structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6313853B1 (en) * 1998-04-16 2001-11-06 Nortel Networks Limited Multi-service user interface
JP2002243841A (en) * 2001-02-16 2002-08-28 Koden Electronics Co Ltd Ultrasonic measuring device
JP2013174505A (en) * 2012-02-24 2013-09-05 Taisei Corp Device and method for investigating adjacent underground structure

Also Published As

Publication number Publication date
JP2543246B2 (en) 1996-10-16

Similar Documents

Publication Publication Date Title
Riquelme et al. Automatic mapping of discontinuity persistence on rock masses using 3D point clouds
ES2906815T3 (en) System and method for analyzing drill core samples
EP0269283B1 (en) Position sensing apparatus
JP4646243B2 (en) Method and apparatus for determining the current position of a geodetic instrument
EP1548402A1 (en) Position measuring system of working machine
KR930701726A (en) Spatial positioning system
US4446538A (en) Marine cable location system
CN108139755A (en) The abnormal detector and vehicle of oneself location estimation system
JP2007506076A5 (en)
CN104199109B (en) Method and equipment for determining apparent dip angles of target layers of drill wells
Alameda-Hernández et al. Weak foliated rock slope stability analysis with ultra-close-range terrestrial digital photogrammetry
GB2219076A (en) Method of optically measuring relative axial alignment
JP2022051770A (en) Map generation system, map generation method and map generation program
CN110531414B (en) Reflection seismic fault fine detection method for high-dip-angle multilayer interface
KR101998140B1 (en) 3D geological mapping system using apparatus for indicating boundary of geologic elements and method thereof
JPH04134292A (en) Embedded object locating process in underground ahead detection with shield method
KR20190114781A (en) Apparatus for mapping buried object and ground cavity through electromagneticwave analysis
JP2020172784A (en) Mountain tunnel concrete thickness measuring method and measuring device
CA2920270A1 (en) Device for assisting in the detection of objects placed on the ground from images of the ground taken by a wave reflection imaging device
JPH02157681A (en) Underground surveying method for shield method
JP2000352297A (en) System and method for detecting position of tunnel excavator
JP3759281B2 (en) Underground excavator position measurement device
JPH09288188A (en) Method and apparatus for detecting object buried underground
JP2000356684A (en) Investigation data display method and device therefor
JP2016080482A (en) Survey method