JPH04134224A - Light detection device - Google Patents

Light detection device

Info

Publication number
JPH04134224A
JPH04134224A JP25828390A JP25828390A JPH04134224A JP H04134224 A JPH04134224 A JP H04134224A JP 25828390 A JP25828390 A JP 25828390A JP 25828390 A JP25828390 A JP 25828390A JP H04134224 A JPH04134224 A JP H04134224A
Authority
JP
Japan
Prior art keywords
current
amplification means
voltage
voltage conversion
photocurrent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25828390A
Other languages
Japanese (ja)
Other versions
JP2928616B2 (en
Inventor
Yoshitaka Terada
由孝 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP25828390A priority Critical patent/JP2928616B2/en
Publication of JPH04134224A publication Critical patent/JPH04134224A/en
Application granted granted Critical
Publication of JP2928616B2 publication Critical patent/JP2928616B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To output signal light at high sensitivity by dividing photoelectric current, using one side for signal detection to input in a first current-voltage conversion amplification means, and using the other side for low frequency detection to flow into a first amplification means from a second current-voltage conversion amplification means. CONSTITUTION:When the frequency band of a current-voltage conversion amplification means 4 is set sufficiently low to the frequency band of an A.C. component by signal light with feedback capacity 10, the output voltage V02 of the amplification means 4 includes a non-A.C. component by the signal light to become output voltage having only D.C. and low frequency components by disturbance light, consequently current Ic, flowing into a current-voltage conversion amplification means 3 via a resistance 5, becomes current having only the D.C. and the low frequency components. This can actually exclude current having only the D.C. and the low frequency components out of the divided current I1 of photoelectric current Ip from a photoelectric transfer element 11 by the current Ic. Thus only photoelectric current, having an A.C. component by the light signal out of the photoelectric current I1, is added to the input end of the amplification means 3, consequently only the photoelectric current by the light signal can be outputted without need for lessening a gain in the first amplification means 3, permitting the extreme improvement of sensitivity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、フォトダイオードなどの光電変換素子によっ
て光電変換された光電流のうち、信号光によるもののみ
を増幅して出力する光検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a photodetection device that amplifies and outputs only signal light of photocurrent photoelectrically converted by a photoelectric conversion element such as a photodiode. .

〔従来の技術〕[Conventional technology]

一般に、フォトダイオードなどの光電変換素子と、これ
によって光電変換された光電流を電流・電圧変換して増
幅する増幅器とから成る光検出装置では、検出されるべ
き信号光と同時に、太陽光などの外乱光が光電変換素子
に入射する。この場合に、信号光による光電流のみを増
幅して出力する必要かある。特に信号光が交流変調光あ
るいはパルス変調光であり、外乱光が直流光あるいは信
号光の周波数よりもかなり低い周波数の光である場合に
は、増幅回路において、光電変換された光電流から直流
成分および低周波数成分を取り除くことで、信号光によ
る光電流のみを抽出して出力することができる。
In general, a photodetection device consisting of a photoelectric conversion element such as a photodiode and an amplifier that converts the photocurrent photoelectrically converted into current and voltage and amplifies it, simultaneously detects the signal light to be detected and detects sunlight, etc. Disturbing light enters the photoelectric conversion element. In this case, is it necessary to amplify and output only the photocurrent caused by the signal light? In particular, when the signal light is AC modulated light or pulse modulated light and the disturbance light is DC light or light with a frequency considerably lower than the frequency of the signal light, the DC component is extracted from the photoelectrically converted photocurrent in the amplifier circuit. By removing the low frequency components, only the photocurrent caused by the signal light can be extracted and output.

このような従来装置としては、例えば特開昭64−20
418号公報に開示されるものかある。
As such a conventional device, for example, Japanese Patent Application Laid-Open No. 64-20
There is one disclosed in Publication No. 418.

この装置では、光電変換素子として2個のフォトダイオ
ードが用いられ、一方のフォトダイオードの出力側に設
けられる増−回路については、低周波成分のみを取り出
すようにし、この低周波成分によって他方のフォトダイ
オードの出力中の低周波成分を相殺するようにしている
。このようにすれば、低周波成分は外乱光などの雑音に
対応しているので、結果として外乱光の影響を受けない
光検出が可能になっている。
In this device, two photodiodes are used as photoelectric conversion elements, and the amplifier circuit provided on the output side of one photodiode is designed to extract only low frequency components, and this low frequency component is used to convert the other photodiode. The low frequency components in the output of the diode are canceled out. In this way, the low frequency component corresponds to noise such as disturbance light, and as a result, light detection that is not affected by disturbance light becomes possible.

この場合、2個のフォトダイオードは例えば第3図のよ
うに構成される。同図はその平面図で、信号光検出用の
第1のフォトダイオード31と外乱光検出用の第2のフ
ォトダイオード32は、不感領域33を挟んで同心に近
接して設けられる。
In this case, the two photodiodes are configured as shown in FIG. 3, for example. The figure is a plan view thereof, and a first photodiode 31 for detecting signal light and a second photodiode 32 for detecting disturbance light are provided concentrically and close to each other with a dead area 33 in between.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、電灯などの像か外乱光の像として第3図の点線
領域34のように結像されると、正確な外乱光の検出か
できなくなる。すなわち、電灯などの明るい像が第1の
フォトダイオード31を中心に結像されると、信号出力
中の直流あるいは低周波の雑音成分は多くなるのに対し
て第2のフォトダイオード32では雑音はあまり検出で
きず、逆に第2のフォトダイオード32を中心に結像す
ると、第1のフォトダイオード31の信号出力中には雑
音はあまり含まれていないのに、第2のフォトダイオー
ド32では大きな雑音に対応する出力が現れる。このた
め、例えば上記の光検出装置をカメラのオートフォーカ
ス回路に用いると、撮影しようとする被写体の明暗の分
布状態、背景の明るさなどに伴って、信号検出が正確に
出来たり出来なかったりする。
However, if an image of an electric light or other disturbance light is formed as shown in the dotted line area 34 in FIG. 3, accurate detection of the disturbance light becomes impossible. In other words, when a bright image such as a light is focused on the first photodiode 31, the DC or low frequency noise component in the signal output increases, whereas the second photodiode 32 produces less noise. If the image is focused on the second photodiode 32, the signal output from the first photodiode 31 does not contain much noise, but the second photodiode 32 detects a large amount of noise. An output corresponding to the noise appears. For this reason, for example, if the above-mentioned photodetection device is used in a camera's autofocus circuit, the signal may or may not be detected accurately depending on the distribution of light and darkness of the subject to be photographed, the brightness of the background, etc. .

そこで本発明は、信号光による成分のみを安定して正確
に検出できる光検出装置を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a photodetection device that can stably and accurately detect only the component of signal light.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る光検出装置は、光電変換素子と、この素子
からの光電流を第1および第2の光電流に分配して出力
する抵抗手段と、第1の光電流を電圧に変換して増幅す
る第1の電流・電圧変換増幅手段と、この第1の電流・
電圧変換増幅手段の周波数帯域幅よりも狭い帯域幅をも
ち第2の光電流の低周波数の成分に応答しこれを電流に
変換して増幅する第2の電流・電圧変換増幅手段と、こ
の第2の電流・電圧変換増幅手段からの出力電圧を所定
の利得で電流に変換して前記第1の電流・電圧変換増幅
手段の入力端に加える電圧・電流変換増幅手段とを備え
、電圧・電流変換増幅手段からの電流は、第1の光電流
を相殺する方向に第1の電流・電圧変換増幅手段の入力
端に流入するようになっていることを特徴とする。
A photodetection device according to the present invention includes a photoelectric conversion element, a resistance means that divides the photocurrent from the element into a first and a second photocurrent, and outputs the divided photocurrent, and a resistor that converts the first photocurrent into a voltage. a first current/voltage conversion amplification means for amplifying;
a second current/voltage conversion amplification means that has a frequency bandwidth narrower than the frequency bandwidth of the voltage conversion amplification means and responds to the low frequency component of the second photocurrent, converts it into a current, and amplifies it; voltage/current conversion/amplification means which converts the output voltage from the second current/voltage conversion/amplification means into a current with a predetermined gain and applies the converted voltage to the input terminal of the first current/voltage conversion/amplification means; The present invention is characterized in that the current from the conversion and amplification means flows into the input terminal of the first current/voltage conversion and amplification means in a direction that cancels out the first photocurrent.

二こで、光電変換素子に入射する光量に対する第2の電
流・電圧変換増幅手段のダイナミックレンジは、電圧・
電流変換手段から第1の電流・電圧変換増幅手段の入力
端に電流か流入しないとしたときの光電変換素子に入射
する光量に対する第1の電流・電圧変換増幅手段のダイ
ナミックレンジよりも大きくなっていてもよい。
Second, the dynamic range of the second current/voltage conversion/amplification means with respect to the amount of light incident on the photoelectric conversion element is
The dynamic range of the first current/voltage conversion/amplification means is larger than the dynamic range of the first current/voltage conversion/amplification means with respect to the amount of light incident on the photoelectric conversion element when no current flows from the current conversion means to the input terminal of the first current/voltage conversion/amplification means. You can.

〔作用〕[Effect]

本発明では、入射した光により光電変換素子から出力さ
れる光電流を、抵抗手段により第1および第2の光電流
に分配し、第1の光電流を第1の電流・電圧変換増幅手
段によって電圧に変換し増幅して出力する。ところで本
発明では、さらに第2の光電流を電圧に変換して増幅す
る第2の電流・電圧変換増幅手段と、この出力電圧を電
流に変換して第1の電流・電圧変換増幅手段の入力端に
加える電圧・電流変換手段とを備えている。この第2の
電流・電圧変換増幅手段は、第1の電流・電圧変換増幅
手段の周波数帯域幅よりも狭い帯域幅をもち、第2の光
電流の低周波成分だけに応答するので、これから出力さ
れる電圧は、光電変換素子に入射する光のうち、外乱光
によるものたけとなり、これか第1の光電流を相殺する
方向に流入する。これにより、第1の電流・電圧変換増
幅手段に流入する第1の光電流のうち、外乱光による直
流電圧成分、低周波成分を減少させ、信号光による交流
成分を感度よく出力させることかできる。このとき、第
1および第2の光電流は単一の光電変換素子の出力(光
電流)を抵抗手段で分配することにより得られるので、
光電変換素子の受光面での外乱光による像の形状、明暗
の分布等にかかわりなく、安定した信号検出か可能にな
る。
In the present invention, a photocurrent output from a photoelectric conversion element due to incident light is divided into a first and a second photocurrent by a resistance means, and the first photocurrent is divided by a first current/voltage conversion amplification means. Convert to voltage, amplify and output. By the way, the present invention further includes a second current/voltage conversion amplification means that converts the second photocurrent into a voltage and amplifies it, and a second current/voltage conversion amplification means that converts this output voltage into a current and inputs it to the first current/voltage conversion amplification means. It is equipped with a voltage/current conversion means to be applied at the end. This second current/voltage conversion/amplification means has a frequency bandwidth narrower than that of the first current/voltage conversion/amplification means and responds only to the low frequency component of the second photocurrent, so it will be output from now on. The resulting voltage is due to the disturbance light among the light incident on the photoelectric conversion element, and this voltage flows in a direction that cancels out the first photocurrent. Thereby, of the first photocurrent flowing into the first current/voltage conversion/amplification means, the DC voltage component and low frequency component caused by the disturbance light can be reduced, and the AC component caused by the signal light can be outputted with high sensitivity. . At this time, the first and second photocurrents are obtained by distributing the output (photocurrent) of a single photoelectric conversion element using resistance means.
Stable signal detection becomes possible regardless of the shape of the image, brightness distribution, etc. caused by disturbance light on the light receiving surface of the photoelectric conversion element.

また、分配された第2の光電流に対する第2の電流・電
圧変換増幅手段のダイナミックレンジを、分配された第
1の光電流に対する第1の電流・電圧変換増幅手段のダ
イナミックレンジよりも大きく設定することにより、強
い外乱光の場合にも、第1の電流・電圧変換増幅手段を
何ら飽和させずに、信号光による交流成分たけを感度良
くかつ精度良く出力させることかできる。
Further, the dynamic range of the second current/voltage conversion/amplification means for the distributed second photocurrent is set to be larger than the dynamic range of the first current/voltage conversion/amplification means for the distributed first photocurrent. By doing so, even in the case of strong disturbance light, the AC component of the signal light can be outputted with high sensitivity and accuracy without saturating the first current/voltage conversion/amplification means.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明に係る光検出装置の実施例の構成図であ
る。図示の光検出装置は、1つの光電変換素子11と、
光電変換素子11によって光電変換された光電流を第1
および第2の光電流11I2に分配する抵抗1.2と、
これら分配された光電流1  、I  をそれぞれ電圧
に変換する第1および第2の電流・電圧変換増幅手段3
,4と、第2の電流・電圧変換増幅手段4の出力端と第
1の電流・電圧変換増幅手段3の入力端とを接続する電
流・電圧変換手段としての抵抗5とを備えている。
FIG. 1 is a block diagram of an embodiment of a photodetecting device according to the present invention. The illustrated photodetection device includes one photoelectric conversion element 11,
The photocurrent photoelectrically converted by the photoelectric conversion element 11 is
and a resistor 1.2 distributing to the second photocurrent 11I2,
First and second current/voltage conversion and amplification means 3 that convert these distributed photocurrents 1 and I into voltages, respectively.
.

光電変換素子11はフォトダイオードからなっており、
これは並列接続された充電流分配用の抵抗1,2に接続
される。ここで、抵抗1.2の抵抗値をそれぞれR、R
とすると、 B RA/RBく1         ・・・(1)の関係
を満たすように構成されている。
The photoelectric conversion element 11 consists of a photodiode,
This is connected to parallel-connected resistors 1 and 2 for charge current distribution. Here, the resistance values of resistor 1.2 are R and R, respectively.
Then, B RA/RB 1 It is configured to satisfy the relationship (1).

また電流・電圧変換増幅手段3は、高ケインの反転増幅
器6と、この出力をその入力側に帰還させる帰還抵抗7
とからなっており、電流・電圧変換増幅手段4は、高ゲ
インの反転増幅器8と、この出力をその入力側に帰還さ
せる帰還抵抗9および帰還容量10とからなっている。
The current/voltage conversion amplification means 3 includes a high-cane inverting amplifier 6 and a feedback resistor 7 for feeding back the output to its input side.
The current/voltage conversion amplification means 4 consists of a high gain inverting amplifier 8, a feedback resistor 9 and a feedback capacitor 10 for feeding back the output to its input side.

電流・電圧変換増幅手段3.4における直流の電流・電
圧変換利得すなわちゲインは、それぞれの帰還抵抗79
の抵抗値R、Hによって決定される。すなPi    
 F2 わち電流・電圧変換増幅手段3,4のゲインはそれぞれ
、R、Rとなる。また、電流・電圧変FI     F
2 換増幅手段4は帰還容量10を有しているが、この帰還
容量10の容量値Crによって、電流・電圧変換増幅手
段4のカットオフ周波数f。は、fo−1/2πCFR
F2     −(2)となり、第2図に示すように、
電流・電圧変換増幅手段4の帯域幅f2は、電流・電圧
変換増幅手段3の帯域幅f1よりもかなり小さくなって
いる。
The DC current/voltage conversion gain in the current/voltage conversion amplification means 3.4 is determined by each feedback resistor 79.
It is determined by the resistance values R and H of. SunaPi
F2 That is, the gains of the current/voltage conversion amplification means 3 and 4 are R and R, respectively. In addition, current/voltage change FI F
The cutoff frequency f of the current/voltage conversion amplification means 4 is determined by the capacitance Cr of the feedback capacitance 10. is fo-1/2πCFR
F2 - (2), as shown in Figure 2,
The bandwidth f2 of the current/voltage conversion/amplification means 4 is considerably smaller than the bandwidth f1 of the current/voltage conversion/amplification means 3.

電流・電圧変換増幅手段4の出力端と電流・電圧変換増
幅手段3の入力端とを接続する抵抗5は、電流・電圧変
換増幅手段4からの出力電圧を電流に変換して電流・電
圧変換増幅手段3の人力に加えるためのものであり、前
述のように電圧・電流変換手段として機能する。なお、
この抵抗5の抵抗値をR8とすると、この抵抗5による
電圧・電流変換利得は、1/Rとなる。このような構成
の光検出装置ては、光電変換素子11に外乱光を含んだ
信号光を入射させると、抵抗1,2には分配された第1
および第2の光電流I  、I  がそれそれ流れる。
A resistor 5 connecting the output end of the current/voltage conversion/amplification means 4 and the input end of the current/voltage conversion/amplification means 3 converts the output voltage from the current/voltage conversion/amplification means 4 into a current to perform current/voltage conversion. It is used to add to the human power of the amplification means 3, and functions as a voltage/current conversion means as described above. In addition,
Assuming that the resistance value of this resistor 5 is R8, the voltage/current conversion gain due to this resistor 5 is 1/R. In a photodetecting device having such a configuration, when a signal light containing disturbance light is made incident on the photoelectric conversion element 11, the resistors 1 and 2 are divided into the first
and second photocurrents I 1 and I 2 flow respectively.

抵抗1,2の抵抗値R、Rは、B 前述ノ(1) 式の関係のようになっているので、光電
流1.■2間には、kを定数として、■ I、−、−に−12・・・(3) の関係か成立する。第2の光電流■2が第2の電流・電
圧変換増幅手段4に加わると、この電流・電圧変換増幅
手段4の出力電圧V。2は、V  −−1−R−−1−
RF2/k・・・(4)02     2     F
2     1となり、この出力電圧V。2により抵抗
5を介して電流・電圧変換増幅手段3の入力端に流入す
る電流I は、 I −vo2/R8 C −−I   −R,/(k−Ro)   −・・(5)
■ となる。いま、帰還抵抗9の抵抗値RF2と抵抗5の抵
抗値Rとを RF2/Ro−k           、、・(6)
の関係を満たすように選定すると、(5)式から、抵抗
5を介して電流・電圧変換増幅手段3の入力端に流入す
る電流I は、 I  −−11・・・(7) となり、光電変換素子11から出力されて分配された第
1の光電流11を相殺し、第1の電流・電圧変換増幅手
段3に流入する電流を零にすることができる。
Since the resistance values R and R of resistors 1 and 2 are as shown in equation (1) above, the photocurrent 1. (3) Between (2) and (3), where k is a constant, (3) I, -, and -12. When the second photocurrent (2) is applied to the second current/voltage conversion/amplification means 4, the output voltage V of this current/voltage conversion/amplification means 4. 2 is V −-1-R--1-
RF2/k...(4)02 2F
2 1, and this output voltage V. 2, the current I flowing into the input terminal of the current/voltage conversion amplification means 3 via the resistor 5 is: I −vo2/R8 C −−I −R,/(k−Ro) − (5)
■ It becomes. Now, the resistance value RF2 of the feedback resistor 9 and the resistance value R of the resistor 5 are expressed as RF2/Ro-k,... (6)
If the selection is made so as to satisfy the relationship, from equation (5), the current I flowing into the input terminal of the current/voltage conversion and amplification means 3 through the resistor 5 becomes I--11...(7), and the photovoltaic The first photocurrent 11 outputted and distributed from the conversion element 11 can be canceled out, and the current flowing into the first current/voltage conversion/amplification means 3 can be made zero.

但し、全ての帯域において電流を相殺すると、外乱光に
よる直流成分、低周波成分のみならず、信号光による交
流成分も失われてしまうので、本実施例では、帰還容量
10によって外乱光による直流成分、低周波成分の電流
だけを相殺するようにしている。すなわち、第2図に示
すように帰還容量10によって電流・電圧変換増幅手段
4の周波数帯域(帯域幅f、)を信号光による交流成分
の周波数帯域(帯域幅f2)に対して十分低く設定すれ
ば、電流・電圧変換増幅手段4の出力電圧vo2は、信
号光による交流成分を含ます外乱光による直流成分、低
周波成分だけのものとなり、従って抵抗5を介して電流
、電圧変換増幅手段3に流入する電流■ も、直流成分
、低周波成分だけのものとなる。これにより、光電変換
素子11からの光電流I の分流■1のうち直流成分、
低周波成分のものだけを電流I により実質的に取除く
ことができる。
However, if the currents are canceled in all bands, not only the DC component and low frequency component due to the disturbance light but also the AC component due to the signal light will be lost. , only the current with low frequency components is canceled out. That is, as shown in FIG. 2, the frequency band (bandwidth f) of the current/voltage conversion/amplification means 4 should be set sufficiently lower than the frequency band (bandwidth f2) of the AC component due to the signal light using the feedback capacitor 10. For example, the output voltage vo2 of the current/voltage conversion/amplification means 4 includes an AC component due to the signal light, a DC component due to the disturbance light, and only low frequency components. The current flowing into the circuit ■ also has only DC and low frequency components. As a result, the DC component of the shunt (1) of the photocurrent I from the photoelectric conversion element 11,
Only the low frequency components can be substantially removed by the current I.

このようにして電流・電圧変換増幅手段3の入力端には
、光電流11のうち信号光による交流成分のもののみが
加わるので、第1の電流・電圧変換増幅手段3は、この
信号光による光電流だけをゲインを小さくする必要なく
利得R11で電流・電圧変換して出力することかできる
ので、感度を著しく向上させることが可能となる。
In this way, only the AC component of the photocurrent 11 due to the signal light is applied to the input terminal of the current/voltage conversion/amplification means 3, so that the first current/voltage conversion/amplification means 3 is Since only the photocurrent can be converted into a voltage with the gain R11 and output without the need to reduce the gain, the sensitivity can be significantly improved.

このとき、2つの光電流1  、I  は単一の光電変
換素子11の出力光電流I を、抵抗1.2により分配
することにより得られるので、外乱光の状態が第3図の
ようになっていても低周波成分は光電流1.12に所定
割合で分配される。言■ い換えれば、外乱光による低周波成分が光電流■ 側の
みで多くなったり、逆に光電流I2側でのみ多くなるこ
とは、単一の光電変換素子を用いているため、原理上あ
り得ない。このため、安定した信号検出が可能になる。
At this time, the two photocurrents 1 and I are obtained by distributing the output photocurrent I of the single photoelectric conversion element 11 using the resistor 1.2, so the state of the disturbance light becomes as shown in Figure 3. However, the low frequency component is distributed to the photocurrent at a predetermined ratio of 1.12. ■ In other words, it is theoretically possible that the low frequency component due to the disturbance light increases only on the photocurrent ■ side or conversely only on the photocurrent I2 side because a single photoelectric conversion element is used. impossible. Therefore, stable signal detection becomes possible.

また第1図の光検出装置において、抵抗1,2、電流・
電圧変換増幅手段4、抵抗5を設けず、電流・電圧変換
増幅手段3の入力端に抵抗5からの電流■ を流入させ
ない場合には、飽和出力電圧vlHの反転増幅器6を飽
和させずに動作させる限界の光電流■  は、 HT 1−V/R・・・(8) IT)I   THPi となる。これに対して、本実施例のように、電流・電圧
変換増幅手段3の入力端に抵抗5からの電流I を流入
させる場合には、電流I を流入さCC せない場合に比べてダイナミックレンジは著しく広くな
る。すなわち、反転増幅器8が反転増幅器6と同じ飽和
出力電圧VTHをもっているとすると、反転増幅器8を
飽和させずに正常に動作させる限界の光電流I  は、 TH 1−V/R・・・(9) 2THTHF2 となる。(9)式を(8)式と比較するとわかるように
電流・電圧変換増幅手段4のダイナミックレンジは、電
流・電圧変換増幅手段3単体のダイナミックレンジに比
べて、 (1−R)/(1−R) ITHPl     2THF2 = k” RFl/RF2           ・・
・(10)倍、増加することになる。
In addition, in the photodetector shown in Fig. 1, resistors 1 and 2, current and
When the voltage conversion amplification means 4 and the resistor 5 are not provided and the current from the resistor 5 is not allowed to flow into the input terminal of the current/voltage conversion amplification means 3, the inverting amplifier 6 with the saturated output voltage vlH operates without being saturated. The limit photocurrent (■) for which the voltage is applied is HT 1-V/R (8) IT)I THPi. On the other hand, when the current I from the resistor 5 is caused to flow into the input terminal of the current/voltage conversion and amplification means 3 as in this embodiment, the dynamic range becomes significantly wider. That is, assuming that the inverting amplifier 8 has the same saturation output voltage VTH as the inverting amplifier 6, the limit photocurrent I that allows the inverting amplifier 8 to operate normally without saturating is TH 1-V/R (9 ) 2THTHF2. As can be seen by comparing equation (9) with equation (8), the dynamic range of current/voltage conversion/amplification means 4 is (1-R)/(1 -R) ITHPl 2THF2 = k" RFl/RF2...
・It will increase by (10) times.

このように、本実施例の光検出装置では、外乱光に対す
るダイナミックレンジが大きくかつ交流変調光としての
信号光に対する電流・電圧変換利得が大きいので、信号
光とともに強い外乱光が入射したとしても、信号光によ
る光信号のみを感度良く増幅することができて、これに
より電流・電圧変換増幅手段3の後段に接続される信号
処理回路を簡素化することが可能となり、全体の回路規
模を小さくすることができる。
In this way, the photodetector of this embodiment has a large dynamic range with respect to disturbance light and a large current/voltage conversion gain with respect to signal light as AC modulated light, so even if strong disturbance light is incident along with signal light, Only the optical signal generated by the signal light can be amplified with high sensitivity, which makes it possible to simplify the signal processing circuit connected to the latter stage of the current/voltage conversion amplification means 3, thereby reducing the overall circuit scale. be able to.

また、本実施例の装置は全体負帰還を有しておらす、外
乱光の直流成分、低周波成分を負帰還しないので、装置
全体を安定して動作させことかてきる。このため、容;
10の容量値Cpを小さな値にしても良く、これにより
容量10を光電変換素子11、分配抵抗1,2、反転増
幅器6,8、抵抗7.9および信号処理回路(図示せず
)とともに1つのモノリンツクIC内に集積化して形成
することかできる。
Further, since the device of this embodiment has an overall negative feedback, and does not give negative feedback to the DC component and low frequency component of the disturbance light, it is possible to stably operate the entire device. For this reason, Yong;
The capacitance value Cp of 10 may be set to a small value, so that the capacitance 10 is combined with the photoelectric conversion element 11, the distribution resistors 1 and 2, the inverting amplifiers 6 and 8, the resistor 7.9, and the signal processing circuit (not shown). It can be integrated into a single monolink IC.

なお、電流・電圧変換増幅手段3は、(3)式乃至(7
)式の条件が満たされれば、外乱光の直流成分、低周波
成分に対して全く応答しないか、分配抵抗1,2の抵抗
比R/RBのずれ、あるいは抵抗値R−Rの抵抗比RF
2/RoのすれF2     c によって、電流・電圧変換増幅手段3が外乱光の直流成
分、低周波成分に対し僅かに応答することも考えられる
。このために電流・電圧変換増幅手段3とこの後段の信
号処理回路(図示せず)との間に結合容量を直列に接続
し、電流・電圧変換増幅手段3から出力される恐れのあ
る外乱光のわずかな直流成分、低周波成分を結合容量に
より取除いて後段の信号処理回路に人力させるようにし
ても良い。
Note that the current/voltage conversion amplification means 3 is based on equations (3) to (7).
) If the condition of the equation is satisfied, there is no response at all to the DC component and low frequency component of the disturbance light, or there is a difference in the resistance ratio R/RB of the distribution resistors 1 and 2, or the resistance ratio RF of the resistance value RR.
It is also conceivable that the current/voltage conversion and amplification means 3 slightly responds to the DC component and low frequency component of the disturbance light due to the deviation F2 c of 2/Ro. For this purpose, a coupling capacitor is connected in series between the current/voltage conversion/amplification means 3 and a signal processing circuit (not shown) at the subsequent stage, and disturbance light that may be output from the current/voltage conversion/amplification means 3 is connected in series. The slight direct current component and low frequency component may be removed by a coupling capacitance and manually applied to a subsequent signal processing circuit.

第1図に示す実施例では、抵抗1,2値は固定としてき
たが、可変抵抗として光電流I の分配比を調整できる
ようにしてもよい。この場合には、外乱光と信号光のレ
ベルの比に応じて、分配比を製品(光検出装置)として
の出荷時に、あるいは実使用時にダイナミックに設定す
ることか考えられる。すなわち、信号光の周波数が高く
なると入力インピーダンスか高くなるので、使用したい
信号の周波数帯域に合せて、出荷時に抵抗1,2を調整
することが考えられる。また、装置の実使用時の外乱光
のレベルに応じて、ダイナミックに抵抗1,2を調整す
ることも考えられる。
In the embodiment shown in FIG. 1, the values of the resistors 1 and 2 are fixed, but variable resistors may be used to adjust the distribution ratio of the photocurrent I. In this case, it may be possible to dynamically set the distribution ratio at the time of shipment as a product (photodetector) or during actual use, depending on the ratio of the levels of the disturbance light and the signal light. That is, since the input impedance increases as the frequency of the signal light increases, it is conceivable to adjust the resistors 1 and 2 at the time of shipment according to the frequency band of the signal to be used. It is also conceivable to dynamically adjust the resistors 1 and 2 according to the level of ambient light during actual use of the device.

抵抗2,3の値の変更、調整については、その比たけで
なく絶対値を対象にしてもよい。すなわち、信号光のレ
ベル自体の高低に応じて、抵抗1゜2の値を共に高低調
整してもよい。
The values of the resistors 2 and 3 may be changed or adjusted not only in their relative values but also in their absolute values. That is, the values of the resistors 1.degree.2 may be adjusted in height depending on the level of the signal light itself.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明したように本発明によれば、同一の光
電変換素子の出力(光電流)を第1および第2の光電流
に分流し、一方を信号検出用に用いて第1の電流・電圧
変換増幅手段に入力し、他方を低周波検出用に用いて第
2の充電圧変換増幅手段に入力し、低周波成分に応答し
た電流を、信号検出用の光電流を相殺する方向で第1の
電流・電圧変換増幅手段の入力端に流入させるようにし
ているので、外乱光の入射される情況にかかわりなく、
信号光による交流成分のみを安定した状態で高感度に出
力することができる。
As described in detail above, according to the present invention, the output (photocurrent) of the same photoelectric conversion element is divided into first and second photocurrents, one of which is used for signal detection, and the first current - Input the current into the voltage conversion amplification means, use the other one for low frequency detection and input it into the second charge voltage conversion amplification means, and use the current in response to the low frequency component in a direction that cancels out the photocurrent for signal detection. Since it is made to flow into the input terminal of the first current/voltage conversion and amplification means, regardless of the circumstances in which the disturbance light is incident,
Only the alternating current component of the signal light can be output in a stable state with high sensitivity.

6.8・−反転増幅器、7,9・・・帰還抵抗、10・
・帰還容量、31・・第1のフォトダイオード、32・
・・第2のフォトダイオード、fo・・・カットオフ周
波数、f、f2・・・周波数帯域幅。
6.8--inverting amplifier, 7,9... feedback resistor, 10-
- Feedback capacitance, 31... First photodiode, 32.
...Second photodiode, fo...Cutoff frequency, f, f2...Frequency bandwidth.

Claims (1)

【特許請求の範囲】 1、光電変換素子と、この光電変換素子からの光電流を
第1および第2の光電流に分配して出力する抵抗手段と
、前記第1の光電流を電圧に変換して増幅する第1の電
流・電圧変換増幅手段と、この第1の電流・電圧変換増
幅手段の周波数帯域幅よりも狭い帯域幅をもち前記第2
の光電流の低周波数の成分に応答しこれを電流に変換し
て増幅する第2の電流・電圧変換増幅手段と、この第2
の電流・電圧変換増幅手段からの出力電圧を所定の利得
で電流に変換して前記第1の電流・電圧変換増幅手段の
入力端に対して前記第1の光電流を相殺する方向に加え
る電圧・電流変換増幅手段とを備えることを特徴とする
光検出装置。 2、前記光電変換素子に入射する光量に対する前記第2
の電流・電圧変換増幅手段のダイナミックレンジは、前
記電圧・電流変換手段から前記第1の電流・電圧変換増
幅手段の入力端に電流が流入しないとしたときの前記光
電変換素子に入射する光量に対する前記第1の電流・電
圧変換増幅手段のダイナミックレンジよりも大きくなっ
ていることを特徴とする請求項1記載の光検出装置。
[Scope of Claims] 1. A photoelectric conversion element, a resistance means for distributing the photocurrent from the photoelectric conversion element into first and second photocurrents, and converting the first photocurrent into a voltage. a first current/voltage conversion/amplification means for amplifying the current/voltage;
a second current/voltage conversion/amplification means that responds to the low frequency component of the photocurrent, converts it into a current, and amplifies it;
converting the output voltage from the current/voltage conversion/amplification means into a current with a predetermined gain, and applying a voltage to the input end of the first current/voltage conversion/amplification means in a direction that cancels out the first photocurrent; - A photodetection device characterized by comprising current conversion and amplification means. 2. The second ratio with respect to the amount of light incident on the photoelectric conversion element
The dynamic range of the current/voltage conversion amplification means is defined as the dynamic range of the current/voltage conversion/amplification means with respect to the amount of light incident on the photoelectric conversion element when no current flows from the voltage/current conversion means to the input terminal of the first current/voltage conversion/amplification means. 2. The photodetecting device according to claim 1, wherein the dynamic range is larger than the dynamic range of said first current/voltage conversion/amplification means.
JP25828390A 1990-09-27 1990-09-27 Photodetector Expired - Fee Related JP2928616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25828390A JP2928616B2 (en) 1990-09-27 1990-09-27 Photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25828390A JP2928616B2 (en) 1990-09-27 1990-09-27 Photodetector

Publications (2)

Publication Number Publication Date
JPH04134224A true JPH04134224A (en) 1992-05-08
JP2928616B2 JP2928616B2 (en) 1999-08-03

Family

ID=17318101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25828390A Expired - Fee Related JP2928616B2 (en) 1990-09-27 1990-09-27 Photodetector

Country Status (1)

Country Link
JP (1) JP2928616B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666634A (en) * 1992-08-19 1994-03-11 Omron Corp Photoelectric sensor
JP2000139862A (en) * 1998-11-10 2000-05-23 Nec Corp Photoelectric plethysmogram wave meter
WO2004102168A1 (en) * 2003-05-15 2004-11-25 Niles Co., Ltd. Signal detection circuit and signal detection method for rain sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666634A (en) * 1992-08-19 1994-03-11 Omron Corp Photoelectric sensor
JP2000139862A (en) * 1998-11-10 2000-05-23 Nec Corp Photoelectric plethysmogram wave meter
WO2004102168A1 (en) * 2003-05-15 2004-11-25 Niles Co., Ltd. Signal detection circuit and signal detection method for rain sensor
US7507982B2 (en) 2003-05-15 2009-03-24 Niles Co. Ltd. Rain sensor with ambient light compensation

Also Published As

Publication number Publication date
JP2928616B2 (en) 1999-08-03

Similar Documents

Publication Publication Date Title
EP1137916B1 (en) Detection circuit
US5644385A (en) Distance measuring device using position sensitive light detector
US7889249B2 (en) System and method for canceling dark photocurrent in a color sensor circuit
JP6238333B2 (en) Amplification type photoelectric conversion element variable gain method and variable gain photoelectric conversion element
TW202249418A (en) Differential active pixel
US5929689A (en) Photodetector quiescent current compensation method and apparatus
US4639134A (en) Process and circuit arrangement for amplifying an input current
JPH04134224A (en) Light detection device
JPS6215909A (en) Optical reception circuit
JPH0451774B2 (en)
US5821528A (en) Two light intensities difference convert into frequency modulator for parallel photodiodes
JPH04174566A (en) Photodetector
JP2674110B2 (en) Temperature compensation circuit for avalanche photodiode bias circuit
JPH03296309A (en) Optical reception circuit
JPS6388871A (en) Optical hybrid integrated circuit device
JPS6276329A (en) Optical reception circuit
JP2558691B2 (en) AC light component amplifier
JPH1019675A (en) Photometry circuit
JP2918738B2 (en) Photoelectric conversion circuit for distance measuring device
JPS63108808A (en) Preamplifier incorporating photodetector
JPH01173440A (en) Error detecting device in optical disk driving device
JPH09266414A (en) Logarithmic amplifier for very small current and color identification sensor circuit using it
CN116545390A (en) Operational amplifier circuit and photoelectric detection system
SU1200813A1 (en) Photodetector device
JPH0690083B2 (en) Bias automatic variable metering circuit

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees