JPH04133708A - Manufacture of fiber-reinforced resin sheet - Google Patents

Manufacture of fiber-reinforced resin sheet

Info

Publication number
JPH04133708A
JPH04133708A JP2258210A JP25821090A JPH04133708A JP H04133708 A JPH04133708 A JP H04133708A JP 2258210 A JP2258210 A JP 2258210A JP 25821090 A JP25821090 A JP 25821090A JP H04133708 A JPH04133708 A JP H04133708A
Authority
JP
Japan
Prior art keywords
fiber bundle
resin
resin powder
reinforcing fiber
monofilaments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2258210A
Other languages
Japanese (ja)
Other versions
JP2991470B2 (en
Inventor
Kiyoyasu Fujii
藤井 清康
Masahiro Ishii
正裕 石居
Masami Nakada
中田 雅己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2258210A priority Critical patent/JP2991470B2/en
Publication of JPH04133708A publication Critical patent/JPH04133708A/en
Application granted granted Critical
Publication of JP2991470B2 publication Critical patent/JP2991470B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

PURPOSE:To make a distribution of resin and a fiber uniform, by a method wherein a cut fiber bundle is dropped and accumulated onto an endless belt while separating the same into filaments by blowing gas against the cut fiber bundle, which is heated while conveying by placing between a pair of a top and bottom endless belts. CONSTITUTION:Gas such as air or nitrogen is blown against a reinforcing fiber bundle which is cut and in the course of falling through a slitlike nozzle 90 and the reinforcing fiber bundle is separated favorably into monofilaments by pressure of the gas. Since an accumulated matter 3 dropped and accumulated onto an endless belt is conveyed while the same is being placed between a pair of a top and bottom endless belts 60, 61, fed to heating device 70 and heated at even a temperature of at least the melting point of a resin powder body 2, molten resin is infiltrated sufficiently among the filaments. Hereupon, since a clearance between the top and bottom endless belts 60, 61 is adjusted by a guide roll 71, the accumulated matter 3 is pressured in a thicknesswise direction and the molten resin powder body 2 is caused to flow by this pressurization, air gaps among the filaments are filled with the molten resin powder and the resin and the fiber are unified favorably.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、強化繊維間に熱可塑性樹脂が含浸一体化され
た繊維強化樹脂シートの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a fiber-reinforced resin sheet in which reinforcing fibers are integrally impregnated with a thermoplastic resin.

(従来の技術) 繊維強化樹脂シートを製造する方法として、熱可塑性樹
脂粉体と強化繊維との混合物を、コンベアベルトで搬送
しながら加熱加圧して熱可塑性樹脂を溶融させるととも
に、その樹脂を強化繊維間に含浸させ、その後加圧下で
冷却し、樹脂と繊維とが一体化したシートとすることは
知られている(例えば、特開昭59−49929号公報
及び特開昭62−208914号公報参照)。
(Prior art) As a method for manufacturing fiber-reinforced resin sheets, a mixture of thermoplastic resin powder and reinforcing fibers is heated and pressurized while being conveyed on a conveyor belt to melt the thermoplastic resin and strengthen the resin. It is known that resin is impregnated between fibers and then cooled under pressure to form a sheet in which the resin and fibers are integrated (for example, Japanese Patent Laid-Open No. 59-49929 and Japanese Patent Laid-Open No. 62-208914) reference).

(発明が解決しようとする課a) ところが、このような従来方法にあって、前者の公報に
記載の方法は、比重の異なる樹脂粉体と強化繊維とをジ
ェット気流下で混合し落下集積させるため、樹脂と繊維
との分布が不均一となり、物性のばらつきが大きくなる
という問題がある。また、後者の公報に記載の方法は、
樹脂粉体と強化繊維とを混合容器中で混合するため、バ
ッチ方式となりシートを連続的に得ることができず生産
性が悪いという問題がある。
(Problem to be solved by the invention a) However, among such conventional methods, the method described in the former publication mixes resin powder and reinforcing fibers with different specific gravities under a jet stream and causes them to fall and accumulate. Therefore, there is a problem in that the distribution of the resin and fibers becomes non-uniform and the physical properties vary widely. In addition, the method described in the latter publication is
Since the resin powder and reinforcing fibers are mixed in a mixing container, it is a batch method, and sheets cannot be obtained continuously, resulting in poor productivity.

本発明は、上記の問題点を解決するもので、その目的と
するところは、強化繊維がモノフィラメント単位で分散
し、且つ強化繊維のモノフィラメント間にまで樹脂が充
分に含浸し、しかも樹脂と繊維との分布が均一で、物性
のばらつきの少ない繊維強化樹脂シートを連続的で良好
な生産性でもって製造する方法を提供することにある。
The present invention is intended to solve the above-mentioned problems, and its purpose is to disperse the reinforcing fibers in monofilament units, to sufficiently impregnate the spaces between the monofilaments of the reinforcing fibers, and to create a structure in which the resin and the fibers are fully impregnated. An object of the present invention is to provide a method for manufacturing a fiber-reinforced resin sheet with a uniform distribution of fibers and less variation in physical properties, continuously and with good productivity.

(課題を解決するための手段) 本発明の繊維強化樹脂シートの製造方法は、多数の連続
するモノフィラメントより構成される強化繊維束を、流
動化された熱可塑性樹脂粉体の中を通過させて繊維束の
モノフィラメントに樹脂粉体を付着させ、この樹脂粉体
が付着した繊維束をカッターロールで所望長さに切断し
、この切断された繊維束に気体を吹き付けてモノフィラ
メントに分離させながら無端ベルト上に落下集積させ、
この集積物を上下一対の無端ベルトで挟持し搬送しなが
ら加熱することを特徴としており、そのことにより上記
の目的が達成される。
(Means for Solving the Problems) The method for producing a fiber-reinforced resin sheet of the present invention involves passing a reinforcing fiber bundle composed of a large number of continuous monofilaments through fluidized thermoplastic resin powder. Resin powder is attached to the monofilaments of the fiber bundle, the fiber bundle with the resin powder attached is cut to a desired length using a cutter roll, and the cut fiber bundles are sprayed with gas to separate them into monofilaments while forming an endless belt. let it fall and accumulate on top,
The present invention is characterized in that the accumulated material is heated while being held and conveyed by a pair of upper and lower endless belts, thereby achieving the above object.

本発明で用いられる強化繊維束としては、連続するモノ
フィラメントが数百〜数千から構成されたストランド状
或いはロービング状の繊維束が好適に用いられる。そし
て、この強化繊維束は、製造する繊維強化樹脂シートの
幅、厚み、製造速度等を考慮して、一般に多数本が並列
に使用される。
As the reinforcing fiber bundle used in the present invention, a strand-like or roving-like fiber bundle composed of several hundred to several thousand continuous monofilaments is preferably used. A large number of reinforcing fiber bundles are generally used in parallel in consideration of the width, thickness, manufacturing speed, etc. of the fiber-reinforced resin sheet to be manufactured.

強化繊維としては、使用する熱可塑性樹脂粉体の溶融温
度において熱的に安定な繊維が用いられる。例えば、ガ
ラス繊維、炭素繊維、シリコン・チタン・炭素繊維、ボ
ロン繊維、微細な金属繊維等の無機繊維、アラミド繊維
、ポリエステル繊維、ポリアミド繊維等の有機繊維が好
適に用いられる。
As the reinforcing fibers, fibers that are thermally stable at the melting temperature of the thermoplastic resin powder used are used. For example, inorganic fibers such as glass fibers, carbon fibers, silicon/titanium/carbon fibers, boron fibers, and fine metal fibers, and organic fibers such as aramid fibers, polyester fibers, and polyamide fibers are preferably used.

モノフィラメントの直径は1〜50μmが好ましい。ま
た、モノフィラメントが収束剤により収束された状態の
強化繊維束を使用する場合には、収束剤の付着量が1重
量%以下が好ましく、さらに好ましくは0.5以下であ
る。収束剤の付着量が1重量%を上回ると、樹脂の流動
床中で強化繊維束をモノフィラメント単位に分離するの
が困難となり、樹脂のモノフィラメント間への含浸性が
低下する。
The monofilament preferably has a diameter of 1 to 50 μm. Further, when a reinforcing fiber bundle in which monofilaments are bundled with a binding agent is used, the amount of the binding agent attached is preferably 1% by weight or less, more preferably 0.5% or less. If the adhesion amount of the sizing agent exceeds 1% by weight, it becomes difficult to separate the reinforcing fiber bundle into monofilament units in the fluidized bed of the resin, and the impregnation of the resin between the monofilaments decreases.

本発明において、カッターロールで所望長さに切断され
る強化繊維束の長さは、通常0.5〜500 rmであ
り、特に5〜150 mが好ましい。切断された強化繊
維束の長さが0.5awを下回ると補強効果が少なく、
また500 mを上回ると均質な繊維強化樹脂シートを
得ることが困難となる。
In the present invention, the length of the reinforcing fiber bundle cut into a desired length by a cutter roll is usually 0.5 to 500 rm, particularly preferably 5 to 150 m. If the length of the cut reinforcing fiber bundle is less than 0.5 aw, the reinforcing effect will be small;
Moreover, if the length exceeds 500 m, it becomes difficult to obtain a homogeneous fiber-reinforced resin sheet.

また、本発明で用いられる熱可塑性樹脂粉体は、加熱に
より軟化溶融する樹脂はすべて使用可能である。例えば
、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポ
リスチレン、ポリアミド、ポリエチレンテレフタレート
、ポリブチレンテレフタレート、ポリカーボネート、ポ
リフッ化ビニリデン、ポリフェニレンサルファイド、ポ
リフェニレンオキサイド、ポリエーテルスルホン、ポリ
エーテルエーテルケトン等カ使用される。
Further, as the thermoplastic resin powder used in the present invention, any resin that softens and melts when heated can be used. For example, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyamide, polyethylene terephthalate, polybutylene terephthalate, polycarbonate, polyvinylidene fluoride, polyphenylene sulfide, polyphenylene oxide, polyether sulfone, polyether ether ketone, etc. are used.

また、上記の樹脂を主成分とする共重合体やグラフト樹
脂やブレンド樹脂、例えばエチレン塩化ビニル共重合体
、酢酸ビニル−エチレン共重合体、酢酸ビニル−塩化ビ
ニル共重合体、ウレタン−塩化ビニル共重合体、アクリ
ロニトリル−ブタジェン−スチレン共重合体、アクリル
酸変成ポリプロピレン、マレイン酸変成ポリエチレン等
も使用される。
In addition, copolymers, graft resins, and blend resins containing the above resins as main components, such as ethylene vinyl chloride copolymers, vinyl acetate-ethylene copolymers, vinyl acetate-vinyl chloride copolymers, urethane-vinyl chloride copolymers, etc. Polymers such as acrylonitrile-butadiene-styrene copolymer, acrylic acid-modified polypropylene, maleic acid-modified polyethylene, etc. are also used.

そして、これらの樹脂には、安定剤、滑剤、加工助剤、
可塑剤、着色剤のような添加剤が配合されてもよい。ま
た、重合時に粉体状で得られる樹脂及び粉砕機により粉
体状とした樹脂のいずれも使用できる。粒子径としては
、平均粒径が2000μ讃以下が好ましい。平均粒径が
2000μ園を超えると、樹脂の流動床中で強化繊維束
のモノフィラメント間に均一に付着させにくくなる。
These resins also contain stabilizers, lubricants, processing aids,
Additives such as plasticizers and colorants may be added. Further, both resins obtained in powder form during polymerization and resins made into powder form by a pulverizer can be used. As for the particle size, it is preferable that the average particle size is 2000 μm or less. When the average particle size exceeds 2000 μm, it becomes difficult to uniformly adhere the particles between the monofilaments of the reinforcing fiber bundle in a fluidized bed of resin.

本発明において、樹脂粉体と強化繊維束との混合割合は
、繊維強化樹脂シートの必要とする物性により適宜決定
されるが、シート中の強化繊維が5〜70重量%である
ことが好ましい。強化繊維が70重量%を上回ると樹脂
が均一に含浸したシートが得にくくなり、逆に5重量%
を下回るとシートの機械的強度が低下する。
In the present invention, the mixing ratio of the resin powder and the reinforcing fiber bundle is appropriately determined depending on the required physical properties of the fiber-reinforced resin sheet, but it is preferable that the amount of reinforcing fibers in the sheet is 5 to 70% by weight. If the reinforcing fiber content exceeds 70% by weight, it becomes difficult to obtain a sheet uniformly impregnated with resin;
If it is less than that, the mechanical strength of the sheet will decrease.

以下、図面を参照しながら、本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は、本発明に用いられる製造装置の一例を示す概
略側面図である。この装置は、強化繊維束1が巻回され
たロールをセットする巻戻しロール10と、熱可塑性樹
脂粉体2が供給されている容器20と、容器20を通過
した強化繊維束1に付着した樹脂粉体2の付着量をほぼ
一定に調整するためのスリッター30と、巻戻しロール
lOから強化繊維束lを巻き戻すためのゴム製の引取り
駆動ロール40及びピンチロール41と、樹脂粉体2が
付着した強化繊維束を所望長さに切断するカッターロー
ル50と、切断された強化繊維束に気体を吹き付けるた
めのノズル90と、気体が吹き付けられた強化繊維束を
落下集積させ、この集積物3を挟持し搬送するための上
下一対の無端ベルト60.61と、加熱手段70及び冷
却手段80とを備えている。
FIG. 1 is a schematic side view showing an example of a manufacturing apparatus used in the present invention. This device includes an unwinding roll 10 in which a roll on which a reinforcing fiber bundle 1 is wound is set, a container 20 in which thermoplastic resin powder 2 is supplied, and a reinforcing fiber bundle 1 that has passed through the container 20. A slitter 30 for adjusting the adhesion amount of the resin powder 2 to be almost constant, a rubber take-up driving roll 40 and a pinch roll 41 for rewinding the reinforcing fiber bundle l from the unwinding roll lO, and the resin powder A cutter roll 50 that cuts the reinforcing fiber bundles to which No. 2 is attached to a desired length, a nozzle 90 that sprays gas onto the cut reinforcing fiber bundles, and a nozzle 90 that allows the reinforcing fiber bundles onto which the gas has been sprayed to fall and accumulate. It includes a pair of upper and lower endless belts 60, 61 for holding and conveying the object 3, a heating means 70, and a cooling means 80.

上記容器20の底部には多数の通気孔が設けられていて
、気体供給路から送られた空気や窒素などの気体が矢印
方向に通気孔を通って容器20内へ供給されるように構
成されており、容器20内に供給された樹脂粉体2はそ
の気体の噴出によって流動化した状態となり流動床2a
が形成される。容器20の内部及び壁部上端には、強化
繊維束1を案内するためのガイドロール21が設けられ
ている。
A large number of ventilation holes are provided at the bottom of the container 20, and a gas such as air or nitrogen sent from the gas supply path is supplied into the container 20 through the ventilation holes in the direction of the arrow. The resin powder 2 supplied into the container 20 becomes fluidized by the jetting of the gas, forming a fluidized bed 2a.
is formed. A guide roll 21 for guiding the reinforcing fiber bundle 1 is provided inside the container 20 and at the upper end of the wall.

カッターロール50としては、金属製のロールの周面に
一定の配置で設けられた多数の切断刃を有し、引取り駆
動ロール40と組み合わされて構成された公知のロータ
リーカッターが使用される。
As the cutter roll 50, a known rotary cutter is used, which has a large number of cutting blades provided at a constant arrangement on the peripheral surface of a metal roll, and is configured in combination with the take-up drive roll 40.

ノズル90としては、スリット状の吹出口を有するノズ
ルが好適に使用される。このノズル90のスリット長さ
は、カッターロール50の軸方向(図面に対して垂直方
向)の長さとほぼ同じ長さであり、カッターロール50
の軸方向に平行で且つカッターロール50の下方に設置
されている。
As the nozzle 90, a nozzle having a slit-shaped outlet is preferably used. The slit length of this nozzle 90 is approximately the same length as the length of the cutter roll 50 in the axial direction (perpendicular to the drawing).
It is installed parallel to the axial direction of the cutter roll 50 and below the cutter roll 50.

ノズル90のスリット状の気体吹出口は、一般に斜め下
向き或いは水平向きに設定される。
The slit-shaped gas outlet of the nozzle 90 is generally set diagonally downward or horizontally.

なお、91は遮蔽板であって、ノズル90から吹き付け
られる気体により、強化繊維束が吹き飛ばされるのを防
止するために設けられている。
Note that a shielding plate 91 is provided to prevent the reinforcing fiber bundle from being blown away by the gas blown from the nozzle 90.

しかし、吹き付けられる気体の看及び圧力を適当に調節
すれば、遮蔽板91は必ずしも必要としない。また、ノ
ズル90としては、円状の吹出口を有するノズルを多数
並列させたものも使用され得る。いずれにしても、切断
されて落下中の多数の強化繊維束に気体が均一に吹き付
けられようにすることが肝要である。
However, the shielding plate 91 is not necessarily required if the volume and pressure of the blown gas are adjusted appropriately. Moreover, as the nozzle 90, one in which a large number of nozzles having circular air outlets are arranged in parallel may also be used. In any case, it is important to uniformly spray the gas onto the numerous reinforcing fiber bundles that are being cut and falling.

前記の無端ベルト60.61は、図外のモーターで駆動
ロール62.63を駆動することにより、連続して同方
向へほぼ同速度で回転移動する移動するように設定され
ている。上側無端ベルト61と下側無端ベルト60には
それぞれ移送部60a、61aが形成され、移送部60
a 、61aは間隙を介して上下に対向して配置されて
いる。
The endless belts 60, 61 are set to continuously rotate in the same direction at substantially the same speed by driving drive rolls 62, 63 with a motor (not shown). Transfer parts 60a and 61a are formed on the upper endless belt 61 and the lower endless belt 60, respectively.
a and 61a are arranged vertically facing each other with a gap in between.

下側無端ベルト61の移送部61aは、上側無端ベルト
60の移送部6’Oaよりも長く、且つ移送部61aの
前端よりも前方へ延設され、上方が開放された移送部6
1bが形成されている。この下側無端ベルト61の移送
部61bは、場合によっては、下側無端ベルト61の移
送部61aを延長することなく別の無端ベルトを下側に
配置することにより形成することもできる。このような
無端ベルト60.61は、高強度で耐熱性のあるもの、
例えばスチールベルト、ステンレスベルト、ガラス布強
化テフロンベルト等で形成することができる。
The transfer section 61a of the lower endless belt 61 is longer than the transfer section 6'Oa of the upper endless belt 60, extends forward from the front end of the transfer section 61a, and is open at the top.
1b is formed. In some cases, the transfer portion 61b of the lower endless belt 61 may be formed by arranging another endless belt below the transfer portion 61a of the lower endless belt 61, without extending the transfer portion 61a. Such endless belts 60, 61 are of high strength and heat resistance,
For example, it can be formed of a steel belt, a stainless steel belt, a glass cloth reinforced Teflon belt, or the like.

上側無端ベルト60と下側無端ベルト61の移送部60
a 、61aの対向する箇所にはそれぞれ加熱手段70
が配置され、加熱手段70に引き続く後方には冷却手段
80がそれぞれ配置されている。加熱手段70は、図示
のように熱風循環式或いは電熱式の加熱炉で構成し、こ
れらの中を無端ベルト60.61を通過させる方式のも
のが好適に採用される。その他、加熱ロールで構成して
無端ベルト60.61を挟持しつつ直接ベルトを加熱す
る方式のものも採用され得る。
Transfer section 60 of upper endless belt 60 and lower endless belt 61
Heating means 70 are provided at opposing locations of a and 61a, respectively.
are arranged, and a cooling means 80 is arranged at the rear following the heating means 70. As shown in the figure, the heating means 70 preferably includes a hot air circulation type or an electric heating type heating furnace, through which an endless belt 60, 61 is passed. In addition, a system in which heating rolls are used to directly heat the endless belt 60, 61 while sandwiching the belt may also be adopted.

加熱手段70内には上下で対応する位置に複数対のガイ
ドロール71が配設されている。また、冷却手段80は
、ブロアー等により空気を吹き付けて冷却するように構
成され、さらに上下で対応する位置に複数対のガイドロ
ール81が配設されている。そして、上下に対応するガ
イドロール71とガイドロール81のクリアランスはそ
れぞれ調整可能になされている。なお、冷却手段80と
して、ガイドロール81を水冷する方式のものも採用さ
れ得る。
Inside the heating means 70, a plurality of pairs of guide rolls 71 are disposed at corresponding positions above and below. The cooling means 80 is configured to cool by blowing air using a blower or the like, and is further provided with a plurality of pairs of guide rolls 81 at corresponding positions above and below. The clearances between the guide rolls 71 and 81 corresponding to the upper and lower sides can be adjusted respectively. Note that as the cooling means 80, a method of cooling the guide roll 81 with water may also be adopted.

次ぎに、上記の装置を用いて本発明の繊維強化樹脂シー
トの製造方法を説明する。
Next, a method for manufacturing a fiber-reinforced resin sheet of the present invention will be explained using the above-mentioned apparatus.

第1図に示すように、多数のモノフィラメントより構成
される強化繊維束1は、引取り駆動ロール40とビンチ
ロール41とにより引き取られながら、強化繊維束lが
巻回されたロールからひねりが掛からないように巻き戻
される。そして、この強化繊維束1はガイドロール21
で案内されながら流動床2a中へ導かれる。なお、図に
おいて、強化繊維束1は便宜上ただ一本のみを図示して
説明しているが、一般に多数本の強化繊維束1が並列に
用いられる。
As shown in FIG. 1, a reinforcing fiber bundle 1 composed of a large number of monofilaments is taken up by a take-up drive roll 40 and a vinyl roll 41, and is not twisted from the roll around which the reinforcing fiber bundle l is wound. It will be rewound so that it doesn't exist. Then, this reinforcing fiber bundle 1 is attached to a guide roll 21.
is guided into the fluidized bed 2a. In addition, although only one reinforcing fiber bundle 1 is shown and explained in the figure for convenience, generally a large number of reinforcing fiber bundles 1 are used in parallel.

この流動床2a中で、強化繊維束1は空気や窒素などの
気体の噴出や流動床2a中に発生する静電気や樹脂粉体
2の擦り揉み効果等によって、モノフィラメント単位に
分離、開繊され、このモノフィラメント間に樹脂粉体2
が侵入し静電気的に捕捉されて付着する。この場合、強
化繊維束1の幅は、モノフィラメント単位に分離、開繊
されるためある程度広くなる。樹脂粉体2が付着した強
化繊維束1はスリッター30間を通過することで、過剰
に付着した樹脂粉体2が除去される。スリッター30の
間隙を調整することにより、樹脂粉体2の付着量が調節
される。
In this fluidized bed 2a, the reinforcing fiber bundle 1 is separated and opened into monofilament units by the ejection of gas such as air or nitrogen, static electricity generated in the fluidized bed 2a, the rubbing effect of the resin powder 2, etc. Resin powder 2 is placed between this monofilament.
enters and is electrostatically captured and attached. In this case, the width of the reinforcing fiber bundle 1 increases to some extent because it is separated and opened into monofilament units. The reinforcing fiber bundle 1 to which the resin powder 2 has adhered passes between the slitters 30, thereby removing the excessively adhered resin powder 2. By adjusting the gap between the slitters 30, the amount of resin powder 2 deposited is adjusted.

樹脂粉体2が付着した強化繊維束1は、引取す駆動ロー
ル40とピンチロール41とを通過した後、カッターロ
ール50で所望の長さの短寸法に切断され、下側無端ベ
ルト61の移送部40b上に落下供給されて所定の厚み
に集積される。この際、切断されて落下中の強化繊維束
にはスリット状ノズル90がら空気や窒素などの気体が
吹き付けられ、この気体の圧力により強化繊維束がモノ
フィラメントに良好に分離される。
The reinforcing fiber bundle 1 with the resin powder 2 attached thereto passes through a drive roll 40 and a pinch roll 41 to be taken up, and then is cut into short dimensions of a desired length by a cutter roll 50 and transported by a lower endless belt 61. The material is dropped onto the portion 40b and accumulated to a predetermined thickness. At this time, a gas such as air or nitrogen is blown through the slit-shaped nozzle 90 onto the reinforcing fiber bundle that has been cut and is falling, and the reinforcing fiber bundle is separated into monofilaments by the pressure of this gas.

無端ベルト上に落下集積した集積物3は上下一対の無端
ベルト60.61で挟持されながら移送され加熱手段7
0へ供給されて、樹脂粉体2の融点以上の温度で加熱さ
れることによりフィラメント間に溶融樹脂が充分に含浸
される。
The accumulated material 3 that has fallen onto the endless belt is transferred while being held between a pair of upper and lower endless belts 60 and 61 to the heating means 7.
0 and heated at a temperature higher than the melting point of the resin powder 2, so that the molten resin is sufficiently impregnated between the filaments.

ここで、ガイドロール71により上下の無端ベルト60
.61間のクリアランスが調節され、集積物3が厚み方
向に加圧され、この加圧により溶融した樹脂粉体2を流
動させることによりモノフィラメント間の空隙が埋られ
、樹脂と強化繊維とが良好に一体化される。引き続いて
、冷却手段の冷却ガイトロ −ル80により上下の無端
ベルト60.61間のクリアランスが調節され、加熱さ
れている集積物3が加圧されながら冷却される。かくし
て、所定厚みの繊維強化樹脂シート4が製造される。
Here, the upper and lower endless belts 60 are
.. The clearance between the monofilaments 61 is adjusted, the aggregate 3 is pressurized in the thickness direction, and this pressurization causes the melted resin powder 2 to flow, thereby filling the gaps between the monofilaments and ensuring good interaction between the resin and the reinforcing fibers. be integrated. Subsequently, the clearance between the upper and lower endless belts 60, 61 is adjusted by the cooling guide roller 80 of the cooling means, and the heated stack 3 is cooled while being pressurized. In this way, a fiber-reinforced resin sheet 4 having a predetermined thickness is manufactured.

(作用) このように、流動床中で強化繊維束のフィラメント間に
樹脂粉体を付着させ、これを所望長さに切断し、この切
断された強化繊維束に気体を吹き付けてモノフィラメン
トに分離させながら無端ベルト上に落下集積させ、この
集積物を上下一対の無端ベルト間に供給して加熱一体化
させると、流動床中での強化繊維束の開繊効果と、切断
された強化繊維束への気体吹付は効果とが相俟って、フ
ィラメント単位への分離が充分に行われ、フィラメント
間に樹脂が充分にして且つ均一な分布で含浸される。ま
た、その全工程が連続的に行える。
(Operation) In this way, resin powder is attached between the filaments of a reinforcing fiber bundle in a fluidized bed, this is cut to a desired length, and gas is blown onto the cut reinforcing fiber bundle to separate it into monofilaments. When the accumulated material is fed between a pair of upper and lower endless belts and heated and integrated, the reinforcing fiber bundles are opened in the fluidized bed and the cut reinforcing fiber bundles are separated. The effect of the gas spraying is that the separation into filament units is sufficiently performed, and the resin is impregnated between the filaments in a sufficient and uniform distribution. Moreover, the entire process can be performed continuously.

(実施例) 以下、本発明の実施例に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on examples.

l差■1 第1図に示す装置を用いて繊維強化樹脂シートを製造し
た。
Difference ■1 A fiber-reinforced resin sheet was manufactured using the apparatus shown in FIG.

熱可塑性樹脂粉体2として、下記配合をスーパーミキサ
ーで混合した樹脂配合粉体を用いた。
As thermoplastic resin powder 2, a resin blended powder obtained by mixing the following formulation in a super mixer was used.

・ポリ塩化ビニル樹脂(平均重合度400、平均粒径1
50μm)    ・・・・・・・・・・・・100重
量部・ブチル錫マレエート ・・・・・・・・・・・・
 3重量部・ポリエチレンワックス・・・・・・・・・
・・・0.5重量部・ステアリルアルコール・・・・・
・・・・・・・ 1重量部強化繊維束1として、直径2
3μ−のモノフィラメント4000本が収束されてなる
ロービング状ガラス繊維束(収束剤付着量約0.3重量
%)を用いた。
・Polyvinyl chloride resin (average degree of polymerization 400, average particle size 1
50μm) ・・・・・・・・・・・・100 parts by weight・Butyltin maleate ・・・・・・・・・・・・
3 parts by weight polyethylene wax・・・・・・・・・
...0.5 parts by weight, stearyl alcohol...
...... 1 part by weight reinforcing fiber bundle 1, diameter 2
A roving-like glass fiber bundle (approximately 0.3% by weight of sizing agent attached) was used, which was formed by converging 4,000 3 μm monofilaments.

無端ベルト60.61として、ガラス布強化テフロンベ
ルト(幅600 wa、厚さ約1■)を用い、また、ス
リット状ノズル90は、斜め下向きに約45度の角度で
空気が吹き出すように設定した。
A glass cloth-reinforced Teflon belt (width: 600 wa, thickness: approximately 1 cm) was used as the endless belt 60, 61, and the slit-shaped nozzle 90 was set to blow air diagonally downward at an angle of approximately 45 degrees. .

強化繊維束1の12本を上記樹脂配合粉体2の流動床2
a中を連続的に通過させ、モノフィラメント間に樹脂配
合粉体2を付着させた後、スリッター30により過剰の
樹脂配合粉体を除去し、樹脂配合粉体と強化繊維の重量
割合が7=3となるように調整し、これをカッターロー
ル50により長さ約25m+に切断しつつ無端ベル) 
61bの上に落下供給した。供給量は、幅600 wn
の無端ベルト61bの中央部の約500 waの範囲に
3320 g/イとなるように供給集積した。この時の
集積物3の見掛は厚みは約32閣であった。
Twelve reinforcing fiber bundles 1 are placed in a fluidized bed 2 of the resin blended powder 2.
After passing through the monofilament continuously and adhering the resin blended powder 2 between the monofilaments, excess resin blended powder is removed by the slitter 30, and the weight ratio of the resin blended powder and reinforcing fibers is 7=3. Then cut it into a length of about 25m+ with a cutter roll 50 and cut it into an endless bell)
61b. Supply amount is 600 wn width
It was supplied and accumulated at a rate of 3320 g/i to a range of about 500 wa at the center of the endless belt 61b. At this time, the apparent thickness of Accumulation 3 was approximately 32 temples.

この際、スリット状ノズル90がら空気をスリット状に
噴出させ、落下中の切断された強化繊維束に向けて空気
をほぼ均一に吹き付け、それにより強化繊維束をモノフ
ィラメントに分離させた。次いで、無端ベル) 61b
上の集積物3を、580閣/分の速度で移動する上下の
無端ベルト60.61の間に挟持しつつ、この無端ベル
ト60.61の間の最小間隙をガイドロール71により
約2.1 mに調節し、長さ約1500閣で約200℃
の熱風が循環している加熱炉70中を通過させて樹脂配
合粉体2を溶融させた。
At this time, air was ejected in a slit shape from the slit-shaped nozzle 90, and the air was sprayed almost uniformly toward the falling reinforcing fiber bundle, thereby separating the reinforcing fiber bundle into monofilaments. Then, endless bell) 61b
While the above stack 3 is held between the upper and lower endless belts 60.61 moving at a speed of 580 km/min, the minimum gap between the endless belts 60.61 is set by the guide rolls 71 to approximately 2.1 mm. Adjust to 200℃ with a length of about 1,500m.
The resin compound powder 2 was melted by passing through a heating furnace 70 in which hot air was circulated.

引き続いて、樹脂配合粉体2が溶融状態にある集積物3
を、無端ベル)60.61の間の最小間隙をガイドロー
ル81により約2■に調節し、冷却ブロアー80により
冷却して繊維強化樹脂シート4を製造した。この繊維強
化樹脂シート4は幅約500 m、厚み約21111で
あり、フィラメント間に樹脂がよく含浸し、フィラメン
トが均一に分散したシートであった。
Subsequently, an aggregate 3 in which the resin blended powder 2 is in a molten state is produced.
The minimum gap between the endless bells) 60 and 61 was adjusted to about 2 cm by a guide roll 81, and the fiber-reinforced resin sheet 4 was produced by cooling with a cooling blower 80. This fiber-reinforced resin sheet 4 had a width of about 500 m and a thickness of about 21,111 mm, and was a sheet in which the resin was well impregnated between the filaments and the filaments were uniformly dispersed.

このシートの500閣X 2000朧の範囲のランダム
な5箇所より、30■×30閣の試験片を切り出し、7
00°C中で5時間処理して樹脂分を燃焼除去し、ガラ
ス繊維の含有量を測定した。また、幅20閣×長さ15
0■の試験片を切り出し、支点間距離120■で三点曲
げ試験を行い、曲げ強度を測定した。その試験結果を第
1表に示す。
Cut out test pieces of 30 x 30 squares from 5 random locations in the range of 500 squares x 2,000 squares of this sheet, and
The resin was treated at 00°C for 5 hours to burn off the resin, and the glass fiber content was measured. Also, width 20 x length 15
A test piece of 0 mm was cut out, and a three-point bending test was conducted with a distance between supports of 120 mm to measure the bending strength. The test results are shown in Table 1.

第1表 第1図に示す装置を用いて繊維強化樹脂シートを製造し
た。
A fiber reinforced resin sheet was manufactured using the apparatus shown in Table 1 and Figure 1.

熱可塑性樹脂粉体2として、ペレット状ポリプロピレン
樹脂の冷凍粉砕粉体(平均粒径200μm)を用い、ま
た強化繊維束1として、直径23μ請のモノフィラメン
ト4000本が収束されてなるロービング状ガラス繊維
束(収束剤付着量約0.3重量%)を用いた。
As the thermoplastic resin powder 2, frozen pulverized powder of pellet-like polypropylene resin (average particle size 200 μm) was used, and as the reinforcing fiber bundle 1, a roving-shaped glass fiber bundle formed by converging 4000 monofilaments with a diameter of 23 μm was used. (approximately 0.3% by weight of sizing agent) was used.

無端ベルト60.61として、ガラス布強化テフロンベ
ルト(輻600閣、厚さ約1閣)を用い、また、スリッ
ト状ノズル90は、斜め下向きに約45度の角度で空気
が吹き出すように設定した。
A glass cloth-reinforced Teflon belt (600 mm diameter, approximately 1 mm thick) was used as the endless belt 60, 61, and the slit-shaped nozzle 90 was set to blow air diagonally downward at an angle of about 45 degrees. .

強化繊維束1の10本を上記樹脂粉体2の流動床2a中
を連続的に通過させ、モノフィラメント間に樹脂配合粉
体2を付着させた後、スリッター30により過剰の樹脂
粉体を除去し、樹脂粉体と強化繊維の重量割合が6:4
となるように調整し、これをカッターロール50により
長さ約25閣に切断しつつ無端ベルト61bの上に落下
供給した。供給量は、幅600■の無端ベルト61bの
中央部の約500閣の範囲に3600 g #Ifとな
るように供給集積した。この時の集積物3の見掛は厚み
は約45閣であった。
Ten reinforcing fiber bundles 1 are continuously passed through the fluidized bed 2a of the resin powder 2 to adhere the resin blended powder 2 between the monofilaments, and then excess resin powder is removed by a slitter 30. , the weight ratio of resin powder and reinforcing fiber is 6:4.
This was cut into approximately 25 mm lengths using a cutter roll 50 and fed onto an endless belt 61b. The supply amount was 3600 g #If in a range of approximately 500 mm in the center of the endless belt 61b having a width of 600 mm. At this time, the apparent thickness of Accumulation 3 was approximately 45 temples.

この際、スリ・7ト状ノズル90から空気をスリット状
に噴出させ、落下中の切断された強化繊維束に向けて空
気をほぼ均一に吹き付け、それにより強化繊維束をモノ
フィラメントに分離させた。次いで、無端ベルト61b
上の集積物3を、500m/分の速度で移動する上下の
無端ベルト60.61の間に挟持しつつ、この無端ベル
ト60.61の間の最小間隙をガイドロール71により
約3.1 waに調節し、長さ約1500mで約210
°Cの熱風が循環している加熱炉70中を通過させて樹
脂粉体2を溶融させた。
At this time, air was ejected in a slit shape from the slit-like nozzle 90, and the air was blown almost uniformly toward the falling reinforcing fiber bundle, thereby separating the reinforcing fiber bundle into monofilaments. Next, the endless belt 61b
While the upper stack 3 is held between upper and lower endless belts 60.61 moving at a speed of 500 m/min, the minimum gap between the endless belts 60.61 is set by a guide roll 71 to approximately 3.1 wa. 210 at a length of approximately 1,500 m.
The resin powder 2 was melted by passing through a heating furnace 70 in which hot air of °C was circulated.

引き続いて、樹脂粉体2が溶融状態にある集積物3を、
無端ヘルド60.61の間の最小間隙をガイドロール8
1により約3閣に調節し、冷却ブロアー80により冷却
して繊維強化樹脂シート4を製造した。この繊維強化樹
脂シート4は幅約500 m、厚み約3mmであり、フ
ィラメント間に樹脂がよく含浸し、フィラメントが均一
に分散したシートであった。
Subsequently, the aggregate 3 in which the resin powder 2 is in a molten state is
The minimum gap between the endless healds 60 and 61 is the guide roll 8.
1 to about 3 degrees, and cooled with a cooling blower 80 to produce a fiber-reinforced resin sheet 4. This fiber-reinforced resin sheet 4 had a width of about 500 m and a thickness of about 3 mm, and was a sheet in which the resin was well impregnated between the filaments and the filaments were uniformly dispersed.

このシートについて、実施例1と同様にしてガラス繊維
含有量及び曲げ強度を測定した。その試験結果を第2表
に示す。
Regarding this sheet, the glass fiber content and bending strength were measured in the same manner as in Example 1. The test results are shown in Table 2.

第1図に示す装置を用いて繊維強化樹脂シートを製造し
た。
A fiber-reinforced resin sheet was manufactured using the apparatus shown in FIG.

熱可塑性樹脂粉体2として、ナイロン−6樹脂粉体(平
均粒径約80μm)を用い、また強化繊維束10として
、直径7μlのモノフィラメント6000本が収束され
てなる幅約6mのロービング状ポリアクリロニトリル系
炭素繊維束を用いた。
As the thermoplastic resin powder 2, nylon-6 resin powder (average particle size of about 80 μm) was used, and as the reinforcing fiber bundle 10, a roving-shaped polyacrylonitrile with a width of about 6 m formed by converging 6000 monofilaments with a diameter of 7 μl was used. carbon fiber bundles were used.

無端ベルト60.61として、ガラス布強化テフロンベ
ルト(幅600■、厚さ約1m)を用い、また、スリッ
ト状ノズル90は、斜め下向きに約45度の角度で空気
が吹き出すように設定した。
A glass cloth-reinforced Teflon belt (width: 600 mm, thickness: approximately 1 m) was used as the endless belt 60, 61, and the slit-shaped nozzle 90 was set to blow air diagonally downward at an angle of approximately 45 degrees.

強化繊維束1の10本を上記樹脂粉体2の流動床2a中
を連続的に通過させ、モノフィラメント間に樹脂配合粉
体2を付着させた後、スリッター30により過剰の樹脂
粉体を除去し、樹脂粉体と強化繊維の重量割合が7.5
 :2.5となるように調整し、これをカッターロール
50により長さ約50閣に切断しつつ無端ベル) 61
bの上に落下供給した。供給量は、幅600閣の無端ベ
ルト61bの中央部の約500閣の範囲に3750 g
 /rrfとなるように供給集積した。この時の集積物
3の見掛は厚みは約30■であった。
Ten reinforcing fiber bundles 1 are continuously passed through the fluidized bed 2a of the resin powder 2 to adhere the resin blended powder 2 between the monofilaments, and then excess resin powder is removed by a slitter 30. , the weight ratio of resin powder and reinforcing fiber is 7.5
: 2.5, and cut it into lengths of about 50 cm using a cutter roll 50 and making an endless bell) 61
It was supplied dropwise onto b. The amount of supply is 3750 g in a range of approximately 500 mm in the center of the endless belt 61b with a width of 600 mm.
Supply and accumulation were carried out so that /rrf. At this time, the apparent thickness of the aggregate 3 was about 30 cm.

この際、スリット状ノズル90がら空気をスリット状に
噴出させ、落下中の切断された強化繊維束に向けて空気
をほぼ均一に吹き付け、それにより強化繊維束をモノフ
ィラメントに分離させた。次いで、無端ベルt−61b
上の集積物3を、500■/分の速度で移動する上下の
無端ベルト60.61の間に挟持しつつ、この無端ベル
ト60.61の間の最小間隙をガイドロール71により
約3.2閣に調節し、長さ約1500amで約240°
Cの熱風が循環している加熱炉70中を通過させて樹脂
粉体2を溶融させた。
At this time, air was ejected in a slit shape from the slit-shaped nozzle 90, and the air was sprayed almost uniformly toward the falling reinforcing fiber bundle, thereby separating the reinforcing fiber bundle into monofilaments. Next, endless bell t-61b
While the upper stack 3 is held between the upper and lower endless belts 60.61 moving at a speed of 500 cm/min, the minimum gap between the endless belts 60.61 is set by the guide rolls 71 to approximately 3.2 mm. It is adjusted to the height of about 240 degrees with a length of about 1500 am.
The resin powder 2 was melted by passing through a heating furnace 70 in which hot air of C was circulated.

引き続いて、樹脂粉体2が溶融状態にある集積物3を、
無端ベルト60.61の間の最小間隙をガイドロール8
1により約3閣に調節し、冷却ブロアー80により冷却
して繊維強化樹脂シート4を製造した。この繊維強化樹
脂シート4は幅約500園、厚み約3mであり、フィラ
メント間に樹脂がよく含浸し、フィラメントが均一に分
散したシートであった。
Subsequently, the aggregate 3 in which the resin powder 2 is in a molten state is
The minimum gap between the endless belt 60 and 61 is the guide roll 8.
1 to about 3 degrees, and cooled with a cooling blower 80 to produce a fiber-reinforced resin sheet 4. This fiber-reinforced resin sheet 4 had a width of approximately 500 mm and a thickness of approximately 3 m, and was a sheet in which the resin was well impregnated between the filaments and the filaments were uniformly dispersed.

このシートについて、実施例1と同様にしてガラス繊維
含有量及び曲げ強度を測定した。その試験結果を第3表
に示す。
Regarding this sheet, the glass fiber content and bending strength were measured in the same manner as in Example 1. The test results are shown in Table 3.

第3表 上煎眉 実施例Iにおいて、切断した強化繊維束に空気を吹き付
けなかった。それ以外は実施例1と同様に行った。
In Example I of Table 3, air was not blown onto the cut reinforcing fiber bundles. Other than that, the same procedure as in Example 1 was carried out.

得られたシートについて、実施例1と同様にしてガラス
繊維含有量及び曲げ強度を測定した。
Regarding the obtained sheet, the glass fiber content and bending strength were measured in the same manner as in Example 1.

その試験結果を第4表に示す。The test results are shown in Table 4.

(発明の効果) 上述の通り、本発明方法によれば、強化繊維がモノフィ
ラメント単位で良好に分散し、且つ強化繊維のノフィラ
メント間にまで樹脂が充分に含浸されるため、強化繊維
の補強効果が高く優れた物性を有し、しかも強化繊維と
樹脂の分布が均一となるので、物性の均一な繊維強化樹
脂シートが得られる。また、工程が連続的に行えるので
生産性が良い。
(Effects of the Invention) As described above, according to the method of the present invention, the reinforcing fibers are well dispersed in monofilament units, and the resin is sufficiently impregnated even between the nofilaments of the reinforcing fibers, so that the reinforcing effect of the reinforcing fibers is improved. It has excellent physical properties with high properties, and since the distribution of the reinforcing fibers and resin is uniform, a fiber-reinforced resin sheet with uniform physical properties can be obtained. Furthermore, since the process can be performed continuously, productivity is good.

そして、本発明方法により得られる繊維強化樹脂シート
は、特に強靭なプレート材料として有用であるばかりで
なく、各種製品を得るためのプレス成形用の素材である
所謂スタンパブルシートとしても好適に使用され得る。
The fiber-reinforced resin sheet obtained by the method of the present invention is not only useful as a particularly strong plate material, but also suitably used as a so-called stampable sheet, which is a material for press molding to obtain various products. obtain.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法に用いる装置の一例を示す概略側面
図である。 1・・・強化繊維束、2・・・熱可塑性樹脂粉体、2a
・・・樹脂粉体の流動床、3・・・集積物、4・・・繊
維強化樹脂シート、50・・・カッターロール、60.
61・・・上下一対の無端ベルト、70・・・加熱手段
、80・・・冷却手段、90・・・ノズル。
FIG. 1 is a schematic side view showing an example of an apparatus used in the method of the present invention. 1... Reinforcing fiber bundle, 2... Thermoplastic resin powder, 2a
...Fluidized bed of resin powder, 3. Accumulate, 4. Fiber-reinforced resin sheet, 50. Cutter roll, 60.
61... A pair of upper and lower endless belts, 70... Heating means, 80... Cooling means, 90... Nozzle.

Claims (1)

【特許請求の範囲】[Claims] 1、多数の連続するモノフィラメントより構成される強
化繊維束を、流動化された熱可塑性樹脂粉体の中を通過
させて繊維束のモノフィラメントに樹脂粉体を付着させ
、この樹脂粉体が付着した繊維束をカッターロールで所
望長さに切断し、この切断された繊維束に気体を吹き付
けてモノフィラメントに分離させながら無端ベルト上に
落下集積させ、この集積物を上下一対の無端ベルトで挟
持し搬送しながら加熱することを特徴とする繊維強化樹
脂シートの製造方法。
1. A reinforcing fiber bundle consisting of a large number of continuous monofilaments is passed through fluidized thermoplastic resin powder to adhere resin powder to the monofilaments of the fiber bundle, and this resin powder is attached to the monofilaments of the fiber bundle. The fiber bundle is cut to the desired length with a cutter roll, and gas is blown onto the cut fiber bundle to separate it into monofilaments, which are then dropped and accumulated on an endless belt.This aggregate is then conveyed by being held between a pair of upper and lower endless belts. A method for producing a fiber-reinforced resin sheet, characterized by heating the sheet while heating.
JP2258210A 1990-09-26 1990-09-26 Method for producing fiber reinforced resin sheet Expired - Lifetime JP2991470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2258210A JP2991470B2 (en) 1990-09-26 1990-09-26 Method for producing fiber reinforced resin sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2258210A JP2991470B2 (en) 1990-09-26 1990-09-26 Method for producing fiber reinforced resin sheet

Publications (2)

Publication Number Publication Date
JPH04133708A true JPH04133708A (en) 1992-05-07
JP2991470B2 JP2991470B2 (en) 1999-12-20

Family

ID=17317048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2258210A Expired - Lifetime JP2991470B2 (en) 1990-09-26 1990-09-26 Method for producing fiber reinforced resin sheet

Country Status (1)

Country Link
JP (1) JP2991470B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102010824B1 (en) * 2017-12-15 2019-08-14 주식회사 라지 Method Of Producing Thermoplastic Composite With Excellent Impregnation Property

Also Published As

Publication number Publication date
JP2991470B2 (en) 1999-12-20

Similar Documents

Publication Publication Date Title
JP5996320B2 (en) Random mat manufacturing method
JP5722732B2 (en) Method for producing isotropic random mat for forming thermoplastic composite material
KR101516132B1 (en) Method for manufacturing shaped product by low-pressure molding
CZ295147B6 (en) Process of making spun-bonded web and apparatus for making the same
JPH04133708A (en) Manufacture of fiber-reinforced resin sheet
WO1998031535A1 (en) Method and apparatus for treating strands with pulverulent material
JPWO2018173619A1 (en) Method of manufacturing prepreg and method of manufacturing fiber reinforced composite material
JP3043121B2 (en) Method for producing fiber composite sheet
JPH04133704A (en) Manufacture of fiber-reinforced resin sheet
JPH04135714A (en) Manufacture of fiber composite sheet
JPH04135713A (en) Manufacture of fiber composite sheet
EP2610383B1 (en) Method for manufacturing glass chopped strand mat
JP2003192911A (en) Long-glass-fiber-reinforced thermoplastic resin molding material and method for producing the same
JPH01214408A (en) Molding material
JPH06200048A (en) Production of fiber-reinforced thermoplastic resin sheet
JPH04133725A (en) Manufacture of fiber-reinforced resin sheet
JPH0516138A (en) Fiber reinforced sheet and its manufacture
JPH04366627A (en) Fiber-reinforced sheet
JPH05318472A (en) Fiber-reinforced thermoplastic resin sheet
JPH06182765A (en) Manufacture of fiber-reinforced thermoplastic resin sheet
JPH05154837A (en) Production of fiber reinforced thermoplastic resin sheet
JPH0839560A (en) Manufacture of fiber composite sheet
JPH0516139A (en) Fiber composite sheet and its manufacture
JPH02252534A (en) Production of fiber-reinforced resin sheet
JPH0596536A (en) Fiber reinforced thermoplastic resin sheet and production thereof