JPH0516139A - Fiber composite sheet and its manufacture - Google Patents

Fiber composite sheet and its manufacture

Info

Publication number
JPH0516139A
JPH0516139A JP3175189A JP17518991A JPH0516139A JP H0516139 A JPH0516139 A JP H0516139A JP 3175189 A JP3175189 A JP 3175189A JP 17518991 A JP17518991 A JP 17518991A JP H0516139 A JPH0516139 A JP H0516139A
Authority
JP
Japan
Prior art keywords
resin
fiber
attached
fiber bundle
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3175189A
Other languages
Japanese (ja)
Inventor
Masahiro Ishii
正裕 石居
Kiyoyasu Fujii
清康 藤井
Masami Nakada
雅己 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP3175189A priority Critical patent/JPH0516139A/en
Publication of JPH0516139A publication Critical patent/JPH0516139A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a fiber composite sheet of high strength and little unevenness of physical properties. CONSTITUTION:Fiber reinforced resin layers comprising reinforcing fibers f5 of 5-10mm length disposed at random in the length direction on thermoplastic resin B are laminated integrally into the sandwich shape on both faces of a fiber reinforced resin layer in which continuous reinforcing fibers 3 are disposed in the state of being arranged in one direction on thermoplastic resin A.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、強靭なプレート材料、
各種製品を得るためのプレス成形用材料であるいゆわる
スタンパブルシートにおいて、一方向に機械的強度が要
求される成形部品、たとえば自動車のバンパーの補強材
やドアの補強材をスタンピング成形するのに好適な繊維
複合シート及びその製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a tough plate material,
For stamping sheet, which is a press forming material for obtaining various products, is used for stamping forming molded parts that require mechanical strength in one direction, such as reinforcing materials for automobile bumpers and doors. And a method for producing the same.

【0002】[0002]

【従来の技術】繊維複合シートとして、従来(イ)一方
向にそろえた強化長繊維と、長繊維マットとの積層体に
熱可塑性樹脂を含浸せしめてなるものは知られている
(特開昭62−240514号公報参照)。
2. Description of the Related Art As a fiber composite sheet, there is known a conventional composite sheet (a) obtained by impregnating a laminate of reinforced long fibers aligned in one direction and a long fiber mat with a thermoplastic resin. No. 62-240514).

【0003】また繊維複合シートの製造方法として、
(ロ)圧縮空気のジェット気流下で強化短繊維と粉体状
熱可塑性樹脂を混合して網上に落下させて集積したの
ち、集積物を移動する無端ベルト上へ移し、加熱加圧後
冷却してシート状となす方法(特開昭59−49929
号公報参照)、及び(ハ)強化短繊維と粉体状熱可塑性
樹脂を流動状態に保ちながら容器内で混合し、これを容
器から取り出し、移動する無端ベルト上に落下させて集
積したのち、所定間隔をおいて対向せしめられた移動す
る上下無端ベルトの間隙へ送り込み、加熱加圧後冷却し
てシート状となす方法は知られている(特開昭62−2
08914号公報参照)。
Further, as a method for producing a fiber composite sheet,
(B) Mixing reinforced short fibers and powdered thermoplastic resin in a jet stream of compressed air and dropping them on a net to accumulate them, and then transferring the aggregates to a moving endless belt, heating and pressurizing and cooling. To form a sheet (JP-A-59-49929)
(See Japanese Patent Publication No. 2), and (c) reinforced short fibers and powdered thermoplastic resin are mixed in a container while keeping them in a fluidized state, taken out of the container, dropped on a moving endless belt, and accumulated, A method is known in which a sheet is fed into a gap between moving upper and lower endless belts which are opposed to each other at a predetermined interval, heated and pressed, and then cooled to form a sheet (JP-A-62-2).
08914 publication).

【0004】[0004]

【発明が解決しようとする課題】上記(イ)の繊維複合
シートでは、強化長繊維の各フィラメント間に樹脂が十
分含浸しておらず、そのため強度が劣る。
In the fiber composite sheet of the above (a), the resin is not sufficiently impregnated between the filaments of the reinforced long fibers, so that the strength is poor.

【0005】また上記(ロ)の繊維複合シートの製造方
法では、比重の異なる強化短繊維と粉体状熱可塑性樹脂
を気流下で混合して落下集積するものであるから、繊維
と樹脂との分布が不均一となり、得られたシートの物性
のばらつきが大きくなるという問題がある。さらに上記
(ハ)の繊維複合シートの製造方法では、強化短繊維と
粉体状熱可塑性樹脂を容器中で混合するものであるか
ら、シートを連続的に得ることができず、生産性が悪い
という問題がある。
Further, in the above-mentioned method (2) for producing a fiber composite sheet, reinforced short fibers having different specific gravities and a powdery thermoplastic resin are mixed under an air stream and fall-assembled. There is a problem that the distribution becomes non-uniform and the physical properties of the obtained sheet vary greatly. Further, in the method for producing a fiber composite sheet according to the above (c), since the reinforced short fibers and the powdery thermoplastic resin are mixed in a container, the sheet cannot be continuously obtained, resulting in poor productivity. There is a problem.

【0006】本発明の目的は、強度とくに一方向の強度
が大でかつ物性のばらつきの少ない繊維複合シートと、
このシートを生産性よく製造しうる方法を提供すること
にある。
An object of the present invention is to provide a fiber composite sheet which has high strength, particularly strength in one direction, and has little variation in physical properties,
It is to provide a method capable of producing this sheet with high productivity.

【0007】[0007]

【課題を解決するための手段】請求項1の発明は、繊維
複合シートであり、熱可塑性樹脂(A)に連続強化繊維
が一方向にそろえられた状態で配されている繊維強化樹
脂層(あ)と、熱可塑性樹脂(B)に長さ5〜100m
m、好ましくは5〜50mmの強化繊維が長さ方向のラン
ダムな状態で配されている繊維強化樹脂層(い)とが積
層一体化されてなるものである。
According to a first aspect of the present invention, there is provided a fiber composite sheet, which comprises a thermoplastic resin (A) and continuous fiber reinforcements arranged in one direction. A) and thermoplastic resin (B) with a length of 5 to 100 m
The fiber-reinforced resin layer (i) in which reinforcing fibers of m, preferably 5 to 50 mm are arranged in a random state in the longitudinal direction are laminated and integrated.

【0008】また請求項2の発明は、請求項1の繊維複
合シートの製造方法であり、多数の連続モノフィラメン
トよりなる強化繊維束を、上位、中位及び下位に配置さ
れた粉体状熱可塑性樹脂流動層中を通過させ、それぞれ
繊維束の各フィラメントに粉体状熱可塑性樹脂を付着さ
せる工程と、中位の連続樹脂付着繊維束を、所定間隔を
おいて対向せしめられた上下無端ベルトの間隙へ連続的
に送り込む工程と、上位及び下位の樹脂付着繊維をそれ
ぞれ5〜100mm、好ましくは5〜50mmに切断し、上
位の切断樹脂付着繊維を中位の連続樹脂付着繊維束上に
落下させて集積するとともに、下位の切断樹脂付着繊維
を上下無端ベルトの間隙への送り込み部上に落下させて
集積し、両者の集積物を中位の連続樹脂付着繊維束の移
動とともに上下無端ベルトの間隙へ連続的に送り込む工
程と、中位の連続樹脂付着繊維束を介して上位及び下位
の切断樹脂付着繊維集積物を移動する両無端ベルトで挾
みながら、加熱領域及び冷却領域を通過させてシート状
となす工程とを含むものである。
A second aspect of the present invention is the method for producing the fiber composite sheet according to the first aspect, in which a reinforcing fiber bundle composed of a large number of continuous monofilaments is arranged in upper, middle, and lower powdery thermoplastics. The step of passing the resin fluidized bed through each of the filaments of the fiber bundle and adhering the powdery thermoplastic resin to the respective filaments of the fiber bundle, and the intermediate continuous resin-attached fiber bundle of the upper and lower endless belts which are opposed at a predetermined interval. The step of continuously feeding into the gap and cutting the upper and lower resin-attached fibers to 5 to 100 mm, preferably 5 to 50 mm, and dropping the upper cut resin-attached fibers onto the middle continuous resin-attached fiber bundle In addition, the lower cut resin-attached fibers are collected by dropping onto the feeding part of the upper and lower endless belts into the gap, and both aggregates are moved up and down endlessly as the middle continuous resin-attached fiber bundle moves. The process of continuously feeding into the gap of the belt, and passing through the heating region and the cooling region while sandwiching with both endless belts that move the upper and lower cut resin-attached fiber aggregates through the medium-sized continuous resin-attached fiber bundle And a step of forming into a sheet shape.

【0009】なお、請求項1の繊維複合シートの製造方
法は、請求項2の製造方法に限定されるものではない。
The method for producing the fiber composite sheet according to claim 1 is not limited to the method according to claim 2.

【0010】即ち、請求項1記載の繊維強化樹脂層
(あ)と、繊維強化樹脂層(い)とを構成することとな
るそれぞれのシートを別途作成しておいて、両シートを
重ね合わせた状態で加熱炉等に送給し、加熱溶融した後
加圧して積層一体化してもよく、或いは、各シートを加
熱してから重ね合わせて加圧一体化してもよい。
That is, the respective sheets for forming the fiber-reinforced resin layer (a) and the fiber-reinforced resin layer (ii) according to claim 1 are separately prepared, and the both sheets are superposed. In this state, it may be fed to a heating furnace or the like, heated and melted, and then pressed to laminate and integrate it, or each sheet may be heated and then laminated and integrated under pressure.

【0011】繊維強化樹脂層(あ)の両面に繊維強化樹
脂層(い)が存在している三層構造が好ましいが、層数
は限定されるものではない(ほとんどの場合2〜5層で
ある)。
A three-layer structure in which the fiber-reinforced resin layer (a) is present on both sides of the fiber-reinforced resin layer (a) is preferable, but the number of layers is not limited (in most cases, 2 to 5 layers are used). is there).

【0012】さらに、場合によっては、請求項2の製造
方法において、上位もしくは下位のいずれか一方の粉体
状熱可塑性樹脂流動層を設けずに、他は同様の工程を経
て二層構造の繊維複合シートを得ることもできる。
Further, in some cases, in the manufacturing method of claim 2, the powdery thermoplastic resin fluidized bed of either one of the upper and lower layers is not provided, and the other steps are the same, and the fiber having a two-layer structure is subjected. It is also possible to obtain a composite sheet.

【0013】強化繊維としては、使用せられる熱可塑性
樹脂の溶融温度において熱的に安定な繊維が用いられ
る。具体的には、ガラス繊維、炭素繊維、シリコン・チ
タン・炭素繊維、ボロン繊維、微細な金属繊維、アラミ
ド繊維、液晶ポリマー繊維、ポリエステル繊維、ポリア
ミド繊維等の有機繊維をあげることができる。
As the reinforcing fibers, fibers that are thermally stable at the melting temperature of the thermoplastic resin used are used. Specific examples thereof include glass fibers, carbon fibers, silicon / titanium / carbon fibers, boron fibers, fine metal fibers, aramid fibers, liquid crystal polymer fibers, polyester fibers, and polyamide fibers.

【0014】モノフィラメントの直径は1〜50μmが
好ましい。多数の連続フィラメントを強化繊維束とする
さいに集束剤を使用しても使用しなくてもよいが、使用
する場合には、集束剤の付着量が1重量%を超えると、
流動層中で繊維束をモノフィラメント単位に分離するの
が困難となり、熱可塑性樹脂のモノフィラメント相互間
への含浸性が低下する。
The diameter of the monofilament is preferably 1 to 50 μm. When using a large number of continuous filaments as a reinforcing fiber bundle, a sizing agent may or may not be used. However, when the sizing agent is used, if the amount of the sizing agent attached exceeds 1% by weight,
It becomes difficult to separate the fiber bundles into monofilament units in the fluidized bed, and the impregnating ability of the thermoplastic resin between the monofilaments decreases.

【0015】強化繊維束は、連続するモノフィラメント
が数百〜数千から構成されたストランド状又はロービン
グ状のものである。そしてこの強化繊維束は、製造する
繊維複合シートの幅、厚み、製造速度などを考慮して、
通常多数並列にして使用される。
The reinforcing fiber bundle is in the form of a strand or a roving in which hundreds to thousands of continuous monofilaments are formed. And this reinforcing fiber bundle, considering the width, thickness, production speed, etc. of the fiber composite sheet to be produced,
Usually used in parallel.

【0016】繊維強化樹脂層(あ)中の強化繊維と繊維
強化樹脂層(い)中の強化繊維は、同種であっても異種
であってもよく、またその含有割合も機械的強度、シー
トから成形すべき成形品の形状等により適宜決定され
る。
The reinforcing fibers in the fiber-reinforced resin layer (a) and the reinforcing fibers in the fiber-reinforced resin layer (ii) may be of the same kind or of different kinds, and the content ratios thereof may be different from those of the mechanical strength and the sheet. Is appropriately determined according to the shape of the molded product to be molded.

【0017】熱可塑性樹脂(A)(B)は、加熱により
溶融軟化する樹脂すべてが使用可能である。たとえば、
ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ
スチレン、ポリアミド、ポリエチレンテレフタレート、
ポリブチレンテレフタレート、ポリカーボネート、ポリ
フッ化ビニリデン、ポリフェニレンサルファイド、ポリ
フェニレンオキサイド、ポリエーテルスルホン、ポリエ
ーテルエーテルケトン等が使用される。また上記熱可塑
性樹脂を主成分とする共重合体やグラフト樹脂やブレン
ド樹脂、たとえばエチレン−塩化ビニル共重合体、酢酸
ビニル−エチレン共重合体、酢酸ビニル−塩化ビニル共
重合体、ウレタン−塩化ビニル共重合体、アクリロニト
リル−ブタジエン−スチレン共重合体、アクリル酸変性
ポリプロピレン、マレイン酸変性ポリエチレン等も使用
しうる。そして上記熱可塑性樹脂には、安定剤、滑剤、
加工助剤、可塑剤、着色剤のような添加剤が配合されて
もよい。また重合時に粉体状で得られる熱可塑性樹脂及
び粉砕機により粉体状となされる熱可塑性樹脂のいずれ
も使用できる。粒子径としては、平均粒径が2mm未満が
好ましい。平均粒径が2mmを超えると、流動層中で強化
繊維束のモノフィラメント間に均一に含浸させにくくな
る。熱可塑性樹脂(A)と熱可塑性樹脂(B)とは、同
種であっても異種であってもよい。
As the thermoplastic resins (A) and (B), all resins which are melted and softened by heating can be used. For example,
Polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyamide, polyethylene terephthalate,
Polybutylene terephthalate, polycarbonate, polyvinylidene fluoride, polyphenylene sulfide, polyphenylene oxide, polyether sulfone, polyether ether ketone and the like are used. Further, copolymers or graft resins or blend resins containing the above thermoplastic resin as a main component, for example, ethylene-vinyl chloride copolymer, vinyl acetate-ethylene copolymer, vinyl acetate-vinyl chloride copolymer, urethane-vinyl chloride. Copolymers, acrylonitrile-butadiene-styrene copolymers, acrylic acid-modified polypropylene, maleic acid-modified polyethylene and the like can also be used. And the thermoplastic resin, stabilizer, lubricant,
Additives such as processing aids, plasticizers and colorants may be incorporated. Further, both a thermoplastic resin obtained in powder form at the time of polymerization and a thermoplastic resin made into powder form by a pulverizer can be used. The average particle size is preferably less than 2 mm. When the average particle size exceeds 2 mm, it becomes difficult to uniformly impregnate the monofilaments of the reinforcing fiber bundle in the fluidized bed. The thermoplastic resin (A) and the thermoplastic resin (B) may be the same or different.

【0018】熱可塑性樹脂と強化繊維の割合は、繊維複
合シートの必要とする物性により適宜決定されるが、シ
ート中の強化繊維が5〜70重量%であることが好まし
い。強化繊維が5重量%未満ではシートの機械的強度が
十分でなく、70重量%を超えると熱可塑性樹脂が均一
に含浸したシートが得にくい。
The proportion of the thermoplastic resin and the reinforcing fiber is appropriately determined according to the required physical properties of the fiber composite sheet, but the reinforcing fiber in the sheet is preferably 5 to 70% by weight. If the reinforcing fiber content is less than 5% by weight, the mechanical strength of the sheet will not be sufficient, and if it exceeds 70% by weight, it will be difficult to obtain a sheet uniformly impregnated with a thermoplastic resin.

【0019】[0019]

【作用】請求項1の発明による繊維複合シートは、熱可
塑性樹脂(A)に連続強化繊維が一方向にそろえられた
状態で配されている繊維強化樹脂層(あ)と、熱可塑性
樹脂(B)に長さ5〜100mmの強化繊維が長さ方向の
ランダムな状態で配されている繊維強化樹脂層(い)と
が積層一体化されてなるものであるから、この繊維複合
シートは、繊維強化樹脂層(あ)の存在により、一方向
に機械的強度が要求される成形部品を成形するのに適
し、また繊維強化樹脂層(い)の存在により、シート全
体の強度が向上する。また強化繊維の長さが5〜100
mmであるから、繊維強化樹脂層(い)側面には繊維の浮
き出しが生じない。強化繊維の長さが5mm未満である
と、繊維の補強効果がなく、100mmを超えると、繊維
の浮き出しが発生する。
In the fiber composite sheet according to the invention of claim 1, the fiber-reinforced resin layer (a) in which the continuous reinforcing fibers are aligned in one direction in the thermoplastic resin (A) and the thermoplastic resin ( Since the fiber-reinforced resin layer (i) in which reinforcing fibers having a length of 5 to 100 mm are randomly arranged in the longitudinal direction are laminated on B), this fiber composite sheet is The presence of the fiber reinforced resin layer (a) is suitable for molding a molded part which requires mechanical strength in one direction, and the presence of the fiber reinforced resin layer (i) improves the strength of the entire sheet. Moreover, the length of the reinforcing fiber is 5 to 100.
Since it is mm, the fibers do not rise on the side surface of the fiber reinforced resin layer. When the length of the reinforcing fiber is less than 5 mm, the reinforcing effect of the fiber is not obtained, and when it exceeds 100 mm, the fiber is raised.

【0020】また請求項2の発明による請求項1の繊維
複合シートの製造方法は、多数の連続モノフィラメント
よりなる強化繊維束を、上位、中位及び下位に配置され
た粉体状熱可塑性樹脂流動層中を通過させ、それぞれ繊
維束の各フィラメントに粉体状熱可塑性樹脂を付着させ
る工程と、中位の連続樹脂付着繊維束を、所定間隔をお
いて対向せしめられた上下無端ベルトの間隙へ連続的に
送り込む工程と、上位及び下位の樹脂付着繊維束をそれ
ぞれ5〜100mmに切断し、上位の切断樹脂付着繊維を
中位の連続樹脂付着繊維束上に落下させて集積するとと
もに、下位の切断樹脂付着繊維を上下無端ベルトの間隙
への送り込み部上に落下させて集積し、両者の集積物を
中位の連続樹脂付着繊維束の移動とともに上下無端ベル
トの間隙へ連続的に送り込む工程と、中位の連続樹脂付
着繊維束を介して上位及び下位の切断樹脂付着繊維集積
物を移動する両無端ベルトで挾みながら、加熱領域及び
冷却領域を通過させてシート状となす工程とを含むもの
であるから、請求項1の繊維複合シートを連続的にうる
ことができる。
According to a second aspect of the present invention, there is provided a method for producing a fiber composite sheet according to the first aspect, in which a reinforcing fiber bundle composed of a large number of continuous monofilaments is arranged in upper, middle, and lower powdery thermoplastic resin flows. Passing through the layer and adhering the powdery thermoplastic resin to each filament of the fiber bundle, and the intermediate continuous resin-adhered fiber bundle to the gap between the upper and lower endless belts facing each other at a predetermined interval. The step of continuously feeding and cutting the upper and lower resin-attached fiber bundles into 5 to 100 mm, respectively, and dropping the upper cut resin-attached fiber bundles onto the intermediate continuous resin-attached fiber bundles and accumulating them, The cut resin-adhered fibers are dropped onto the feeding part into the gap between the upper and lower endless belts and accumulated, and both aggregates are continuously transferred to the gap between the upper and lower endless belts as the middle continuous resin-adhered fiber bundle moves. A step of feeding and a step of passing the upper and lower cut resin-adhered fiber aggregates through a medium-sized continuous resin-adhered fiber bundle with both endless belts and passing them through a heating area and a cooling area to form a sheet. Therefore, the fiber composite sheet according to claim 1 can be continuously obtained.

【0021】また最初に、多数の連続モノフィラメント
よりなる強化繊維束を、上位、中位及び下位に配置され
た粉体状熱可塑性樹脂流動層中を通過させ、それぞれ繊
維束の各フィラメントに粉体状熱可塑性樹脂を付着させ
るから、後工程における加熱と相俟って強化繊維のモノ
フィラメント相互間にまで樹脂が十分に含浸せられる。
[0021] First, a reinforcing fiber bundle composed of a large number of continuous monofilaments is passed through a powdery thermoplastic resin fluidized bed arranged in upper, middle and lower layers, and each filament of the fiber bundle is powdered. Since the thermoplastic resin is adhered, the resin is sufficiently impregnated between the monofilaments of the reinforcing fibers in combination with the heating in the subsequent step.

【0022】また上位及び下位の樹脂付着繊維束をそれ
ぞれ5〜100mmに切断し、上位の切断樹脂付着繊維を
中位の連続樹脂付着繊維束上に落下させて集積するとと
もに、下位の切断樹脂付着繊維を上下無端ベルトの間隙
への送り込み部上に落下させて集積するから、強化繊維
がモノフィラメント単位で繊維強化樹脂層(い)内に良
好に分散する。そして、樹脂付着繊維束を5〜100mm
に切断するものであるから、繊維強化樹脂層(い)内の
強化繊維は前記長さ範囲内であって流動性がよく、得ら
れたシートをプレス成形するさい、成形品の端まで強化
繊維がいきわたる。樹脂付着繊維束を5mm未満に切断す
ると、必然的に繊維の長さが5mm未満となり、上述のよ
うに繊維の補強効果がなく、100mmを超えて切断する
と、落下集積するさい塊となってしまい繊維強化樹脂層
に均一に分散されない。
Further, the upper and lower resin-attached fiber bundles are each cut into 5 to 100 mm, and the upper cut resin-attached fiber bundles are dropped and accumulated on the intermediate continuous resin-attached fiber bundle, and the lower cut resin-attached resin bundle is attached. Since the fibers are dropped and accumulated on the feeding part into the gap between the upper and lower endless belts, the reinforcing fibers are well dispersed in the fiber-reinforced resin layer (i) in units of monofilaments. And the resin-attached fiber bundle is 5 to 100 mm
Since it is cut into pieces, the reinforcing fibers in the fiber-reinforced resin layer (i) are within the length range and have good fluidity, and when the obtained sheet is press-molded, the reinforcing fibers are extended to the end of the molded product. Go across. If the resin-attached fiber bundle is cut to less than 5 mm, the length of the fiber inevitably becomes less than 5 mm, and there is no reinforcing effect of the fiber as described above, and if cut over 100 mm, it becomes a lump that falls and accumulates. Not evenly dispersed in the fiber reinforced resin layer.

【0023】[0023]

【実施例】まず、本発明の繊維複合シートの製造に使用
する装置につき、図1を参照して説明する。以下の説明
において、前とは図1の右方向をいうものとする。
EXAMPLES First, an apparatus used for producing the fiber composite sheet of the present invention will be described with reference to FIG. In the following description, the term “front” means the right direction in FIG. 1.

【0024】図1に示す繊維複合シートの製造装置は、
上位、中位及び下位の3つの流動層装置(1) と、各流動
層装置(1) の後方に配された巻き戻しロール(2) と、各
流動層装置(1) の前方に配された上下一対のスクレーパ
ー(3) と、上位のスクレーパー(3) の斜め下方及び下位
のスクレーパー(3) の前方にそれぞれ配された引き取り
駆動ロール(4) と、各引き取り駆動ロール(4) と対をな
すように上に配されたピンチ・ロール(5) と、各引き取
り駆動ロール(4) の前にこれと対峙せしめられたロータ
リー・カッター(6) と、所定間隔をおいて対向せしめら
れた上下無端ベルト(7)(8)と、両無端ベルト(7)(8)の対
向移送部(7a)(8a)に対して後側から順次配された加熱手
段(9) 及び冷却手段(10)とを備えており、下無端ベルト
(8) の後部が上無端ベルト(7) より後方に突出せしめら
れ、その移送部(8a)の後方延長部分が上位及び中位のロ
ータリー・カッター(6) の下方に位置せしめられ、両無
端ベルト(7)(8)の間隙への送り込み部(8b)となされてい
る。なお、上記移送部(8a)を延長して送り込み部(8b)と
する代わりに、別の無端ベルトを同じ場所に配置して送
り込み部を設けてもよい。
The fiber composite sheet manufacturing apparatus shown in FIG.
Three upper, middle and lower fluidized bed units (1), a rewinding roll (2) placed behind each fluidized bed unit (1) and a front of each fluidized bed unit (1). A pair of upper and lower scrapers (3), a take-up drive roll (4) disposed diagonally below the upper scraper (3) and in front of the lower scraper (3), and a pair of take-up drive rolls (4). The pinch rolls (5) are arranged above the rotary cutters (6) facing each take-up drive roll (4) at predetermined intervals. The upper and lower endless belts (7) and (8), and the heating means (9) and cooling means (10) sequentially arranged from the rear side with respect to the opposed transfer parts (7a) and (8a) of the both endless belts (7) and (8) ) And, the lower endless belt
(8) The rear part of the upper endless belt (7) is made to project rearward, and the rearward extension of the transfer part (8a) is positioned below the upper and middle rotary cutters (6). It serves as a feeding portion (8b) into the gap between the belts (7) and (8). Instead of extending the transfer part (8a) to form the feeding part (8b), another endless belt may be arranged at the same place to provide the feeding part.

【0025】流動層装置(1) の槽底は多孔板(11)で形成
せられており、気体供給路から送られてきた空気や窒素
などの気体(G) が多孔板(11)の下方からこれの多数の孔
を通って上方に噴出せしめられる。その結果、流動層装
置(1) の槽内に満たされた粉体状熱可塑性樹脂は噴出気
体(G) によって流動化状態となり中位の流動層装置(1)
には熱可塑性樹脂(A)の流動層(a) が、上位及び下位
の流動層装置(1) には熱可塑性樹脂(B)の流動層(b)
がそれぞれ形成される。中位の巻き戻しロール(2) には
強化繊維束(F1)が、上位及び下位の巻き戻しロール(2)
には強化繊維束(f1)がそれぞれ巻回されている。なお、
強化繊維束(F1)(f1)は、便宜上1本のみ図示したが、実
際には多数本並列状に用いる。各流動層装置(1) の槽内
及びその前後壁上端には、繊維束(F1)(f1)を案内するた
めのガイド・ロール(12)が設けられている。中位の強化
繊維束(F1)は流動層(a) 中を通過せしめられることによ
り、樹脂付着繊維束(F2)となるが、これを連続して上下
無端ベルト(7)(8)の間隙に導くためのガイド・ロール(1
3)がスクレーパー(3) の前方に、ガイド・ロール(14)が
送り込み部(8b)の上方にそれぞれ設けられている。上位
及び下位の強化繊維束(f1)も流動層(b) 中を通過せしめ
られることにより、樹脂付着繊維束(f2)となるが、両樹
脂付着繊維束(f2)をロータリー・カッター(6) に導くた
めのガイド・ロール(15)がそれぞれスクレーパー(3) の
前方に設けられている。
The tank bottom of the fluidized bed apparatus (1) is formed by a perforated plate (11), and gas (G) such as air or nitrogen sent from the gas supply passage is below the perforated plate (11). It is ejected upwards through a large number of holes. As a result, the powdery thermoplastic resin filled in the tank of the fluidized bed apparatus (1) is fluidized by the jetted gas (G) and is in the middle fluidized bed apparatus (1).
The fluidized bed (a) of the thermoplastic resin (A) is in the upper and lower fluidized bed units (1) of the thermoplastic resin (B) in the lower fluidized bed device (1).
Are formed respectively. Reinforcing fiber bundle (F1) is on the middle rewinding roll (2), and upper and lower rewinding rolls (2)
A reinforcing fiber bundle (f1) is wound around each. In addition,
Although only one reinforcing fiber bundle (F1) (f1) is shown for the sake of convenience, many reinforcing fiber bundles (F1) (f1) are actually used in parallel. A guide roll (12) for guiding the fiber bundles (F1) (f1) is provided inside the tank of each fluidized bed apparatus (1) and at the upper ends of the front and rear walls thereof. The medium-strength fiber bundle (F1) is passed through the fluidized bed (a) to become a resin-attached fiber bundle (F2), which is continuously formed between the upper and lower endless belts (7) (8). Guide roll (1
3) is provided in front of the scraper (3), and a guide roll (14) is provided above the feeding section (8b). The upper and lower reinforcing fiber bundles (f1) are also passed through the fluidized bed (b) to become resin-attached fiber bundles (f2), but both resin-attached fiber bundles (f2) are rotary cutters (6). Guide rolls (15) for guiding to the front are provided in front of the scraper (3).

【0026】この装置では、強化繊維束(F1)(f1)に対す
る粉体状熱可塑性樹脂の付着量を調整するため、上下一
対のスクレーパー(3) を配し、両者の間隙を調節しうる
ようにしているが、強化繊維束(F1)(f1)に振動を与え、
過剰に付着した粉体状熱可塑性樹脂を除去してもよい。
この場合には与える振動の強弱により、粉体状熱可塑性
樹脂の付着量を調整することができる。
In this apparatus, a pair of upper and lower scrapers (3) are arranged to adjust the gap between the reinforcing fiber bundles (F1) and (f1) in order to adjust the adhesion amount of the powdery thermoplastic resin. However, vibration is applied to the reinforcing fiber bundle (F1) (f1),
Excessively adhered powdery thermoplastic resin may be removed.
In this case, the adhesion amount of the powdery thermoplastic resin can be adjusted depending on the strength of vibration applied.

【0027】両無端ベルト(7)(8)は、モーター(図示
略)で上下各複数のプーリー(16)(17)のうち上下各1つ
を駆動することにより、連続して同方向へほぼ同速度で
移動するようになされている。また上無端ベルト(7) の
移送部(7a)の後部は、後上向きに傾斜せしめられてお
り、上下移送部(7a)(8a)の間隙が後方に向かって広がっ
ている。上下無端ベルト(7)(8)は、高強度で耐熱性のあ
る、たとえばスチール、ステンレス、ガラス布強化テフ
ロンなどで形成される。
Both endless belts (7) and (8) are continuously driven in the same direction by driving one of upper and lower pulleys (16) and (17) respectively by a motor (not shown). It is designed to move at the same speed. The rear portion of the transfer portion (7a) of the upper endless belt (7) is inclined rearward and upward, and the gap between the vertical transfer portions (7a) and (8a) is widened rearward. The upper and lower endless belts (7) and (8) are formed of high strength and heat resistant materials such as steel, stainless steel, and glass cloth reinforced Teflon.

【0028】加熱手段(9) としては、電熱式または熱風
循環式の加熱炉が用いられ、これらの中を上下無端ベル
ト(7)(8)を通過させてもよいし、或いは上下無端ベルト
(7)(8)の移送部(7a)(8a)を上下より押さえかつ直接加熱
する複数対の加熱ロールが用いられてもよい。加熱手段
(9) 内には、複数対の上下ガイド・ロール(18)が、また
上下冷却手段(10)の対応位置には複数対の上下ガイド・
ロール(19)がそれぞれ配設されており、上下のガイド・
ロール(18)(19)の間隙は、それぞれ調整可能となされて
いる。冷却手段(10)としては、上下無端ベルト(7)(8)の
移送部(7a)(8a)に対し、空気を吹き付けて冷却するブロ
アーが用いられる。なお、ガイド・ロール(19)自体が冷
却されるようにしてもよい。
As the heating means (9), an electric heating type or hot air circulating type heating furnace is used, and the upper and lower endless belts (7) and (8) may be passed through them, or the upper and lower endless belts may be passed.
(7) A plurality of pairs of heating rolls may be used that press the transfer portions (7a) and (8a) of (7) and (8) from above and below and directly heat them. Heating means
Inside the (9) there are multiple pairs of upper and lower guide rolls (18), and at the corresponding positions of the upper and lower cooling means (10) there are multiple pairs of upper and lower guide rolls.
Rolls (19) are provided, and upper and lower guides
The gaps between the rolls (18) and (19) are adjustable. As the cooling means (10), there is used a blower for blowing air to cool the transfer parts (7a), (8a) of the upper and lower endless belts (7), (8). The guide roll (19) itself may be cooled.

【0029】つぎに、上記装置を用い、繊維複合シート
を製造する方法について説明する。各巻き戻しロール
(2) から多数の連続モノフィラメントよりなる強化繊維
束(F1)(f1)を、引き取り駆動ロール(4) とピンチ・ロー
ル(5) によりひねりが生じないようにしながら巻き戻
し、粉体状熱可塑性樹脂(A)(B)の流動層(a)(b)中
を通過させる。流動層(a)(b)中で、強化繊維束(F1)(f1)
は気体の噴出や流動層(a)(b)中に発生する靜電気や擦り
揉み効果等によって、モノフィラメント単位に分離、開
繊され、モノフィラメント相互間に粉体状熱可塑性樹脂
が侵入するとともにこれがモノフィラメントに付着す
る。
Next, a method for producing a fiber composite sheet using the above apparatus will be described. Each rewind roll
Reinforcing the reinforced fiber bundle (F1) (f1) consisting of a large number of continuous monofilaments from (2) with the take-up drive roll (4) and the pinch roll (5) without twisting, and powdery thermoplastic The resins (A) and (B) are passed through the fluidized beds (a) and (b). Reinforced fiber bundle (F1) (f1) in fluidized bed (a) (b)
Is separated into monofilament units and opened by the jetting of gas and the static electricity generated in the fluidized beds (a) and (b) and the rubbing effect, and the powdery thermoplastic resin invades between the monofilaments. Attach to monofilament.

【0030】樹脂付着強化繊維束(F2)(f2)を、上下一対
のスクレーパー(3) 間を通過させ、スクレーパー(3) に
より過剰の粉体状熱可塑性樹脂を除去し、粉体状熱可塑
性樹脂と強化繊維の割合を調整する。
The resin-adhesion-reinforced fiber bundle (F2) (f2) is passed between a pair of upper and lower scrapers (3), and the scraper (3) removes excess powdery thermoplastic resin to obtain powdery thermoplastic resin. Adjust the ratio of resin and reinforcing fiber.

【0031】そして、中位の連続樹脂付着繊維束(F2)
を、上下無端ベルト(7)(8)の間隙へ連続的に送り込み、
他方、上位及び下位の樹脂付着繊維束(f2)をロータリー
・カッター(6) によりそれぞれ5〜100mmに切断し、
上位の切断樹脂付着繊維(f3)を中位の連続樹脂付着繊維
束(F2)上に落下させて集積するとともに、下位の切断樹
脂付着繊維(f3)を上下無端ベルト(7)(8)の間隙への送り
込み部(8b)上に落下させて集積し、両者を中位の連続樹
脂付着繊維束(F2)の移動とともに上下無端ベルト(7)(8)
の間隙へ連続的に送り込む。中位の連続樹脂付着繊維束
(F2)を介して上位及び下位の切断樹脂付着繊維集積物(f
4)を移動する両無端ベルト(7)(8)で挾みながら、両無端
ベルト(7)(8)の間の最小間隙を上下ガイド・ロール(18)
によりに調節し、三者を厚み方向に加圧して熱風が循環
している加熱手段としての加熱炉(9) 中を通過させ一体
化する。このさいの温度は熱可塑性樹脂(B)の溶融温
度以上である。
Then, a medium continuous resin-attached fiber bundle (F2)
Is continuously fed into the gap between the upper and lower endless belts (7) and (8),
On the other hand, the upper and lower resin-attached fiber bundles (f2) are each cut into 5 to 100 mm by a rotary cutter (6),
The upper cut resin-adhered fiber (f3) is dropped onto the middle continuous resin-adhered fiber bundle (F2) and accumulated, and the lower cut resin-adhered fiber (f3) is attached to the upper and lower endless belts (7) (8). The endless belts (7) and (8) are dropped and accumulated on the feeding part (8b) into the gap, and both are moved along with the middle continuous resin-attached fiber bundle (F2).
Continuously feed into the gap. Medium continuous resin-attached fiber bundle
Upper and lower cut resin-attached fiber aggregates (f
4) While moving through the two endless belts (7) and (8), set the minimum gap between the two endless belts (7) and (8) to the upper and lower guide rolls (18).
Then, the three are pressurized in the thickness direction and passed through a heating furnace (9) as a heating means in which hot air circulates to be integrated. The temperature at this time is equal to or higher than the melting temperature of the thermoplastic resin (B).

【0032】引き続いて、溶融状態にある樹脂と強化繊
維の混合物を、上下無端ベルト(7)(8)間の最小間隙を上
下ガイド・ロール(19)により調節して加圧しつつ、冷却
手段としての冷却ブロアー(10)により冷却し、繊維複合
シート(S)を得た。
Subsequently, the mixture of the resin and the reinforcing fiber in the molten state is adjusted by the upper and lower guide rolls (19) with a minimum gap between the upper and lower endless belts (7) and (8) to be pressurized, and as a cooling means. The fiber composite sheet (S) was obtained by cooling with a cooling blower (10).

【0033】得られた繊維複合シート(S)は、図2に
示されているように、熱可塑性樹脂(A)に連続強化繊
維(F3)が一方向にそろえられた状態で配されている繊維
強化樹脂層(あ)を介し、熱可塑性樹脂(B)に長さ5
〜100mmの強化繊維(f5)が長さ方向のランダムな状態
で配されている2つの繊維強化樹脂層(い)がサンドイ
ッチ状に積層一体化されてなるものである。
The fiber composite sheet (S) obtained is, as shown in FIG. 2, arranged with the thermoplastic resin (A) and the continuous reinforcing fibers (F3) aligned in one direction. The length of the thermoplastic resin (B) is 5 through the fiber reinforced resin layer (a).
Two fiber reinforced resin layers (i) in which reinforcing fibers (f5) of -100 mm are randomly arranged in the longitudinal direction are laminated and integrated in a sandwich form.

【0034】実施例1 粉体状熱可塑性樹脂(A)(B)としては、重合度80
0の塩化ビニル樹脂(平均粒径150μm)100重量
部に、ブチル錫マレエート3重量部及びグリシジルメタ
クリレート共重合体5重量部を配合したものを用いた。
Example 1 The powdery thermoplastic resins (A) and (B) had a polymerization degree of 80.
A mixture of 100 parts by weight of a vinyl chloride resin of 0 (average particle size 150 μm) with 3 parts by weight of butyltin maleate and 5 parts by weight of a glycidyl methacrylate copolymer was used.

【0035】強化繊維束(F1)(f1)としては、ロービング
状ガラス繊維束(モノフィラメントの直径14μm、1
100g/km)を用いた。
As the reinforcing fiber bundles (F1) and (f1), roving glass fiber bundles (monofilament diameter 14 μm, 1
100 g / km) was used.

【0036】上下無端ベルト(7)(8)には、幅600mm、
厚み1mmのガラス繊維強化テフロンベルトを用いた。
The upper and lower endless belts (7) and (8) have a width of 600 mm,
A glass fiber reinforced Teflon belt having a thickness of 1 mm was used.

【0037】中位の強化繊維束(F1)を、粉体状熱可塑性
樹脂(A)の流動層(a) 中を連続的に通過させ、モノフ
ィラメント相互間に粉体状熱可塑性樹脂(A)を含浸さ
せるとともに各モノフィラメントに付着させたのち、ス
クレーパー(3) によりその過剰分を除去し、樹脂と強化
繊維の重量割合が1:1となるように調節した。このと
きの樹脂付着量調節後の強化繊維束(F2)は、1970g
/m2 であった。この連続樹脂付着繊維束(F2)を、ガイ
ド・ロール(13)(14)の案内により上下無端ベルト(7)(8)
の間隙へ連続的に送り込む。
The medium-strength fiber bundle (F1) is continuously passed through the fluidized bed (a) of the powdery thermoplastic resin (A), and the powdery thermoplastic resin (A) is placed between the monofilaments. Was impregnated and attached to each monofilament, the excess was removed by a scraper (3), and the weight ratio of the resin and the reinforcing fiber was adjusted to 1: 1. At this time, the reinforcing fiber bundle (F2) after adjusting the resin adhesion amount is 1970 g
/ M 2 . The continuous resin-attached fiber bundle (F2) is guided by guide rolls (13) (14) to the upper and lower endless belts (7) (8).
Continuously feed into the gap.

【0038】上位及び下位の強化繊維束(f1)を粉体状熱
可塑性樹脂(B)の流動層(b) 中を連続的に通過させ、
粉体状熱可塑性樹脂(B)をモノフィラメント相互間に
含浸させるとともに各モノフィラメントに付着させたの
ち、スクレーパー(3) によりその過剰分を除去し、樹脂
と強化繊維の重量割合が8:2となるように調節した。
樹脂付着量調節後の強化繊維束(f2)をロータリー・カッ
ター(6) によりそれぞれ25mmに切断し、上位の切断樹
脂付着繊維(f3)を中位の連続樹脂付着繊維束(F2)上に落
下させて集積するとともに、下位の切断樹脂付着繊維(f
3)を上下無端ベルト(7)(8)の間隙への送り込み部(8b)上
に落下させて集積する。中位の連続樹脂付着繊維束(F2)
及び送り込み部(8b)の幅は600mmであり、これらの幅
全体に上位及び下位の切断樹脂付着繊維束(f3)がそれぞ
れ1740g/m2 となるように落下集積した。このと
きの両切断樹脂付着繊維集積物(f4)の見かけ厚みは、そ
れぞれ約15mmであった。
The upper and lower reinforcing fiber bundles (f1) are continuously passed through the fluidized bed (b) of the powdery thermoplastic resin (B),
After the powdery thermoplastic resin (B) is impregnated between the monofilaments and attached to each monofilament, the excess is removed by the scraper (3), and the weight ratio of the resin and the reinforcing fiber becomes 8: 2. Was adjusted.
The reinforced fiber bundle (f2) after adjusting the resin adhesion amount is cut into 25 mm each by the rotary cutter (6), and the upper cut resin adhesion fiber (f3) is dropped onto the middle continuous resin adhesion fiber bundle (F2). And collect them, and the lower cut resin-attached fibers (f
3) is dropped and accumulated on the feeding portion (8b) into the gap between the upper and lower endless belts (7) and (8). Medium continuous resin-attached fiber bundle (F2)
The width of the feeding part (8b) was 600 mm, and the upper and lower cut resin-adhered fiber bundles (f3) were dropped and accumulated on the entire width so that they were 1740 g / m 2 . At this time, the apparent thickness of the both cut resin-adhered fiber assembly (f4) was about 15 mm.

【0039】両者の集積物(f4)を中位の連続樹脂付着繊
維束(F2)の移動とともに上下無端ベルト(7)(8)の間隙へ
連続的に送り込み、中位の連続樹脂付着繊維束(F2)を介
して上位及び下位の切断樹脂付着繊維集積物(f4)を58
0mm/分で移動する両無端ベルト(7)(8)で挾みながら、
約200℃の熱風が循環している長さ1500mmの熱風
加熱炉(9) 中を通過させた。このさいガイド・ロール(1
8)により上下の無端ベルト(7)(8)の間隙を3.1mmに調
節して加圧し、引き続いて、ガイド・ロール(19)により
上下の無端ベルト(7)(8)の間隙を3mmに調節して加圧し
ながら、冷却ブロア(10)により冷却する。
The accumulated product (f4) of both is continuously fed into the gap between the upper and lower endless belts (7) and (8) together with the movement of the medium-position continuous resin-attached fiber bundle (F2), and the intermediate-position continuous resin-attached fiber bundle is Through the (F2), the upper and lower cut resin-adhered fiber aggregates (f4)
While sandwiching between the two endless belts (7) (8) that move at 0 mm / min,
It was passed through a 1500 mm long hot air heating furnace (9) in which hot air of about 200 ° C. was circulated. This guide roll (1
Adjust the gap between the upper and lower endless belts (7) and (8) to 3.1 mm with 8) and pressurize, and then use the guide roll (19) to reduce the gap between the upper and lower endless belts (7) and (8) to 3 mm. It is cooled by a cooling blower (10) while being adjusted to and pressurized.

【0040】このようにして、図2に示すような連続強
化繊維(F3)が一方向に揃えられた状態で配されている1
mm厚の繊維強化樹脂層(あ)の両面に長さ25mmの強化
繊維(f5)が方向のランダムな状態で配されている各1mm
厚の繊維強化樹脂層(い)が積層され、幅600mm、厚
み3mmで、フィラメント相互間に樹脂がよく含浸し、フ
ィラメントが繊維強化樹脂層(い)中に均一に分散した
シート(S)を得た。このシートの500mm×500mm
の範囲のランダムな5箇所より30mm×30mmの試験片
を切り出し、700℃中で5時間処理して樹脂分を燃焼
除去し、ガラス繊維の含有量を測定した。また幅20mm
×長さ150mmの試験片を切り出し、支点間距離120
mmで3点曲げ試験を行ない、曲げ弾性率を測定した。そ
の結果を表1に示す。
In this way, the continuous reinforcing fibers (F3) as shown in FIG. 2 are arranged in one direction.
1 mm each with 25 mm long reinforcing fibers (f5) arranged in random directions on both sides of a mm-thick fiber reinforced resin layer (a)
A sheet (S) in which a thick fiber-reinforced resin layer (i) is laminated, a width of 600 mm, a thickness of 3 mm, a resin is well impregnated between the filaments, and the filaments are uniformly dispersed in the fiber-reinforced resin layer (i) Obtained. 500mm x 500mm of this sheet
A test piece of 30 mm × 30 mm was cut out from 5 random places within the range, and treated at 700 ° C. for 5 hours to burn off the resin component, and the glass fiber content was measured. Width 20mm
× Cut a test piece with a length of 150 mm and set the distance between fulcrums to 120
Bending elastic modulus was measured by performing a 3-point bending test in mm. The results are shown in Table 1.

【0041】[0041]

【表1】 [Table 1]

【0042】実施例2 粉体状熱可塑性樹脂(A)としては、ナイロン66(平
均粒径80μm)を、粉体状熱可塑性樹脂(B)として
は、ナイロン12(平均粒径100μm)をそれぞれ用
いた。
Example 2 Nylon 66 (average particle size 80 μm) was used as the powdery thermoplastic resin (A), and nylon 12 (average particle size 100 μm) was used as the powdery thermoplastic resin (B). Using.

【0043】また強化繊維束(F1)としては、直径7μm
のモノフィラメント6000本が集束されてなるロービ
ング状ポリアクリロニトリル系炭素繊維束を、また強化
繊維束(f1)としては、ロービング状ガラス繊維束(モノ
フィラメントの直径14μm、1100g/km)をそれ
ぞれ用いた。
The reinforcing fiber bundle (F1) has a diameter of 7 μm.
The roving-like polyacrylonitrile-based carbon fiber bundle obtained by bundling 6000 monofilaments was used, and the reinforcing fiber bundle (f1) was a roving-like glass fiber bundle (monofilament diameter 14 μm, 1100 g / km).

【0044】上下無端ベルト(7)(8)には、実施例1と同
様のものを用いた。
The same upper and lower endless belts (7) and (8) as in Example 1 were used.

【0045】中位の強化繊維束(F1)を、粉体状熱可塑性
樹脂(A)の流動層(a) 中を連続的に通過させ、モノフ
ィラメント相互間に粉体状熱可塑性樹脂(A)を含浸さ
せるとともに各モノフィラメントに付着させたのち、ス
クレーパー(3) によりその過剰分を除去し、樹脂と強化
繊維の重量割合が6:4となるように調節した。このと
きの樹脂付着量調節後の強化繊維束(F2)は、1530g
/m2 であった。この連続樹脂付着繊維束(F2)を、ガイ
ド・ローラ(13)(14)の案内により上下無端ベルト(7)(8)
の間隙へ連続的に送り込む。
The medium-strength fiber bundle (F1) is continuously passed through the fluidized bed (a) of the powdery thermoplastic resin (A), and the powdery thermoplastic resin (A) is placed between the monofilaments. Was impregnated and attached to each monofilament, and the excess was removed by a scraper (3), and the weight ratio of the resin and the reinforcing fiber was adjusted to 6: 4. At this time, the reinforcing fiber bundle (F2) after adjusting the resin adhesion amount is 1530 g.
/ M 2 . This continuous resin-attached fiber bundle (F2) is guided by guide rollers (13) (14) to the upper and lower endless belts (7) (8).
Continuously feed into the gap.

【0046】上位及び下位の強化繊維束(f1)を、粉体状
熱可塑性樹脂(B)の流動層(b) 中を連続的に通過さ
せ、モノフィラメント相互間に粉体状熱可塑性樹脂
(B)を含浸させるとともに各モノフィラメントに付着
させたのち、スクレーパー(3) によりその過剰分を除去
し、樹脂と強化繊維の重量割合が3:1となるように調
節した。樹脂付着量調節後の強化繊維束(f2)をロータリ
ー・カッター(6) によりそれぞれ50mmに切断し、上位
の切断樹脂付着繊維(f3)を中位の連続樹脂付着繊維束(F
2)上に落下させて集積するとともに、下位の切断樹脂付
着繊維(f3)を上下無端ベルト(7)(8)の間隙への送り込み
部(8b)上に落下させて集積する。中位の連続樹脂付着繊
維束(F2)及び送り込み部(8b)の幅は600mmであり、こ
れらの幅全体に上位及び下位の切断樹脂付着繊維(f3)が
それぞれ1400g/m2 となるように落下集積した。
このときの両切断樹脂付着繊維集積物(f4)の見かけ厚み
は、それぞれ約10mmであった。
The upper and lower reinforcing fiber bundles (f1) are continuously passed through the fluidized bed (b) of the powdery thermoplastic resin (B), and the powdery thermoplastic resin (B ) And was attached to each monofilament, the excess was removed by a scraper (3), and the weight ratio of the resin and the reinforcing fiber was adjusted to 3: 1. The reinforced fiber bundle (f2) after adjusting the resin adhesion amount is cut into 50 mm each by the rotary cutter (6), and the upper cut resin adhesion fiber (f3) is cut to the middle continuous resin adhesion fiber bundle (F
2) Drop and accumulate the lower cut resin-attached fibers (f3) on the feeding part (8b) into the gap between the upper and lower endless belts (7) and (8). The width of the middle continuous resin-attached fiber bundle (F2) and the feeding part (8b) is 600 mm, and the upper and lower cut resin-attached fibers (f3) are 1400 g / m 2 respectively over the entire width. Accumulated by falling.
The apparent thickness of both cut resin-adhered fiber aggregates (f4) at this time was about 10 mm.

【0047】以下実施例1と同様にして、繊維強化樹脂
層(い)の強化繊維(f5)の長さが50mmであること以外
は実施例1と同様のシート(S)を得た。
Then, in the same manner as in Example 1, a sheet (S) similar to that in Example 1 was obtained except that the length of the reinforcing fiber (f5) of the fiber-reinforced resin layer (i) was 50 mm.

【0048】このシートのガラス繊維の含有量及び曲げ
弾性率を実施例1と同様にして測定し、その結果を表2
に示す。
The glass fiber content and flexural modulus of this sheet were measured in the same manner as in Example 1, and the results are shown in Table 2.
Shown in.

【0049】[0049]

【表2】 [Table 2]

【0050】実施例3 粉体状熱可塑性樹脂(A)(B)としては、ポリプロピ
レンの冷凍粉砕粉(平均粒径130μm)を用いた。
Example 3 As the powdery thermoplastic resin (A) and (B), polypropylene pulverized powder (average particle size 130 μm) was used.

【0051】また強化繊維束(F1)(f1)としては、ロービ
ング状ガラス繊維束(モノフィラメントの直径23μ
m、4400g/km)を用いた。
As the reinforcing fiber bundles (F1) and (f1), roving glass fiber bundles (monofilament diameter 23 μm) are used.
m, 4400 g / km) was used.

【0052】中位の強化繊維束(F1)を、粉体状熱可塑性
樹脂(A)の流動層(a) 中を連続的に通過させ、モノフ
ィラメント相互間に粉体状熱可塑性樹脂(A)を含浸さ
せるとともに各モノフィラメントに付着させたのち、ス
クレーパー(3) によりその過剰分を除去し、樹脂と強化
繊維の重量割合が6:4となるように調節した。このと
きの樹脂付着量調節後の強化繊維束(F2)は、1880g
/m2 であった。この連続樹脂付着繊維束(F2)を、ガイ
ド・ローラ(13)(14)の案内により上下無端ベルト(7)(8)
の間隙へ連続的に送り込む。
The medium-strength fiber bundle (F1) is continuously passed through the fluidized bed (a) of the powdery thermoplastic resin (A), and the powdery thermoplastic resin (A) is placed between the monofilaments. Was impregnated and attached to each monofilament, and the excess was removed by a scraper (3), and the weight ratio of the resin and the reinforcing fiber was adjusted to 6: 4. At this time, the reinforcing fiber bundle (F2) after adjusting the resin adhesion amount is 1880 g.
/ M 2 . This continuous resin-attached fiber bundle (F2) is guided by guide rollers (13) (14) to the upper and lower endless belts (7) (8).
Continuously feed into the gap.

【0053】上位及び下位の強化繊維束(f1)を、粉体状
熱可塑性樹脂(B)の流動層(b) 中を連続的に通過さ
せ、モノフィラメント相互間に粉体状熱可塑性樹脂
(B)を含浸させるとともに各モノフィラメントに付着
させたのち、スクレーパー(3) によりその過剰分を除去
し、樹脂と強化繊維の重量割合が7:3となるように調
節した。樹脂付着量調節後の強化繊維束(f2)をロータリ
ー・カッター(6) によりそれぞれ12.5mmに切断し、
上位の切断樹脂付着繊維(f3)を中位の連続樹脂付着繊維
束(F2)上に落下させて集積するとともに、下位の切断樹
脂付着繊維(f3)を上下無端ベルト(7)(8)の間隙への送り
込み部(8b)上に落下させて集積する。中位の連続樹脂付
着繊維束(F2)及び送り込み部(8b)の幅は600mmであ
り、これらの幅全体に上位及び下位の切断樹脂付着繊維
(f3)がそれぞれ2090g/m2 となるように落下集積
した。このときの両切断樹脂付着繊維集積物(f4)の見か
け厚みは、それぞれ約11mmであった。
The upper and lower reinforcing fiber bundles (f1) are continuously passed through the fluidized bed (b) of the powdery thermoplastic resin (B), and the powdery thermoplastic resin (B ) And adhering to each monofilament, the excess was removed by a scraper (3), and the weight ratio of the resin and the reinforcing fiber was adjusted to 7: 3. Cut the reinforcing fiber bundle (f2) after adjusting the resin adhesion amount to 12.5 mm with the rotary cutter (6),
The upper cut resin-adhered fiber (f3) is dropped onto the middle continuous resin-adhered fiber bundle (F2) and accumulated, and the lower cut resin-adhered fiber (f3) is attached to the upper and lower endless belts (7) (8). It drops and collects on the sending part (8b) to the gap. The width of the middle continuous resin-attached fiber bundle (F2) and the feeding part (8b) is 600 mm, and the upper and lower cut resin-attached fibers are in the entire width of these bundles.
(f3) was dropped and accumulated so that each was 2090 g / m 2 . The apparent thickness of the both cut resin-adhered fiber assembly (f4) at this time was about 11 mm.

【0054】両者を中位の連続樹脂付着繊維束(F2)の移
動とともに上下無端ベルト(7)(8)の間隙へ連続的に送り
込み、中位の連続樹脂付着繊維束(F2)を介して上位及び
中位の切断樹脂付着繊維集積物(f4)を580mm/分で移
動する両無端ベルト(7)(8)で挾みながら、約200℃の
熱風が循環している長さ1500mmの熱風加熱炉(9)中
を通過させた。このさいガイド・ロール(18)により上下
の無端ベルト(7)(8)の間隙を4.2mmに調節して加圧
し、引き続いて、ガイド・ロール(19)により上下の無端
ベルト(7)(8)の間隙を4mmに調節して加圧しながら、冷
却ブロア(10)により冷却する。
Both of them are continuously fed into the gap between the upper and lower endless belts (7) and (8) along with the movement of the medium continuous resin-adhered fiber bundle (F2), and the intermediate continuous resin-attached fiber bundle (F2) is passed through. A 1500 mm long hot air in which hot air of about 200 ° C circulates while sandwiching the upper and middle cut resin-adhered fiber aggregates (f4) with both endless belts (7) (8) moving at 580 mm / min. It was passed through a heating furnace (9). This guide roll (18) adjusts the gap between the upper and lower endless belts (7) and (8) to 4.2 mm and pressurizes it, and then the upper and lower endless belts (7) (7) by the guide roll (19). While adjusting the gap of 8) to 4 mm and applying pressure, it is cooled by the cooling blower (10).

【0055】このようにして、各繊維強化樹脂層(い)
厚さが1.5mm、その強化繊維(f5)の長さが12.5m
m、全体の厚さが4mmであること以外は実施例1と同様
のシート(S)を得た。
In this way, each fiber reinforced resin layer (i)
The thickness is 1.5mm and the length of the reinforcing fiber (f5) is 12.5m.
A sheet (S) similar to that of Example 1 was obtained except that the total thickness was m and the total thickness was 4 mm.

【0056】このシートのガラス繊維の含有量及び曲げ
弾性率を実施例1と同様にして測定し、その結果を表3
に示す。
The glass fiber content and flexural modulus of this sheet were measured in the same manner as in Example 1, and the results are shown in Table 3.
Shown in.

【0057】[0057]

【表3】 [Table 3]

【0058】[0058]

【発明の効果】請求項1の発明の繊維複合シートによれ
ば、繊維強化樹脂層(あ)の存在により、一方向に機械
的強度が要求される成形部品を成形するのに適し、また
繊維強化樹脂層(い)の存在により、シート全体の強度
が向上するから、プレス成形用シートとして優れてい
る。
According to the fiber composite sheet of the first aspect of the present invention, the presence of the fiber reinforced resin layer (a) is suitable for forming a molded part that requires mechanical strength in one direction, and the fiber The presence of the reinforced resin layer (ii) improves the strength of the entire sheet, and is therefore excellent as a sheet for press molding.

【0059】また請求項2の発明の繊維複合シートの製
造方法によれば、請求項1の繊維複合シートを連続的に
うることができるから、生産性がよい。
According to the method for producing a fiber composite sheet of the invention of claim 2, since the fiber composite sheet of claim 1 can be continuously obtained, the productivity is good.

【0060】また強化繊維のモノフィラメント相互間に
まで樹脂が十分に含浸せられ、かつ強化繊維がモノフィ
ラメント単位で繊維強化樹脂層(い)内に良好に分散す
るから強化繊維の補強効果が大であり、得られたシート
は優れた物性を示す。
The resin is sufficiently impregnated between the monofilaments of the reinforcing fibers, and the reinforcing fibers are well dispersed in the fiber-reinforced resin layer (i) in units of monofilaments, so that the reinforcing effect of the reinforcing fibers is great. The obtained sheet shows excellent physical properties.

【0061】しかも強化繊維と樹脂の分布が均一となる
から、物性の均一な繊維複合シートが得られる。
Moreover, since the distribution of the reinforcing fiber and the resin becomes uniform, a fiber composite sheet having uniform physical properties can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】繊維複合シートの製造装置により同シートを製
造する状態を示す側面図である。
FIG. 1 is a side view showing a state in which the same sheet is manufactured by a fiber composite sheet manufacturing apparatus.

【図2】上部繊維強化樹脂層(い)、中間繊維強化樹脂
層(あ)及び下部繊維強化樹脂層(い)を順次切欠いた
繊維複合シートの一部平面図である。
FIG. 2 is a partial plan view of a fiber composite sheet in which an upper fiber reinforced resin layer (i), an intermediate fiber reinforced resin layer (a) and a lower fiber reinforced resin layer (i) are sequentially cut out.

【符号の説明】[Explanation of symbols]

(A)(B) 熱可塑性樹脂 (あ)(い) 繊維強化樹脂層 (F3) 連続強化繊維 (f5) 強化繊維 (F1)(f1) 強化繊維束 (a)(b) 流動層 (F2) 連続樹脂付着繊維束 (f2) 樹脂付着繊維束 (f3) 切断樹脂付着繊維 (f4) 切断樹脂付着繊維集積物 (7) 上無端ベルト (8) 下無端ベルト (A) (B) Thermoplastic resin (A) (I) Fiber reinforced resin layer (F3) Continuous reinforcing fiber (f5) Reinforcing fiber (F1) (f1) Reinforced fiber bundle (a) (b) Fluidized bed (F2) Continuous resin-attached fiber bundle (f2) Resin-attached fiber bundle (f3) Cut resin-attached fiber (f4) Cut resin-attached fiber aggregate (7) Upper endless belt (8) Lower endless belt

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂(A)に連続強化繊維が一
方向にそろえられた状態で配されている繊維強化樹脂層
(あ)と、熱可塑性樹脂(B)に長さ5〜100mmの強
化繊維が長さ方向のランダムな状態で配されている繊維
強化樹脂層(い)とが積層一体化されてなる繊維複合シ
ート。
1. A fiber-reinforced resin layer (a) in which continuous reinforcing fibers are arranged in one direction in a thermoplastic resin (A), and a thermoplastic resin (B) having a length of 5 to 100 mm. A fiber composite sheet in which reinforcing fibers are laminated and integrated with a fiber reinforced resin layer (i) in which the reinforcing fibers are randomly arranged in the longitudinal direction.
【請求項2】 a)多数の連続モノフィラメントよりな
る強化繊維束を、上位、中位及び下位に配置された粉体
状熱可塑性樹脂流動層中を通過させ、それぞれ繊維束の
各フィラメントに粉体状熱可塑性樹脂を付着させる工程
と、 b) 中位の連続樹脂付着繊維束を、所定間隔をおいて
対向せしめられた上下無端ベルトの間隙へ連続的に送り
込む工程と、 c) 上位及び下位の樹脂付着繊維束をそれぞれ5〜1
00mmに切断し、上位の切断樹脂付着繊維を中位の連続
樹脂付着繊維束上に落下させて集積するとともに、下位
の切断樹脂付着繊維を上下無端ベルトの間隙への送り込
み部上に落下させて集積し、両者の集積物を中位の連続
樹脂付着繊維束の移動とともに上下無端ベルトの間隙へ
連続的に送り込む工程と、 d) 中位の連続樹脂付着繊維束を介して上位及び下位
の切断樹脂付着繊維集積物を移動する両無端ベルトで挾
みながら、加熱領域及び冷却領域を通過させてシート状
となす工程とを含む繊維複合シートの製造方法。
2. A) a reinforcing fiber bundle composed of a large number of continuous monofilaments is passed through a powdery thermoplastic resin fluidized bed arranged in upper, middle and lower layers, and each filament of the fiber bundle is powdered. A step of adhering the thermoplastic resin in the form of b), b) a step of continuously feeding a medium-sized continuous resin-adhered fiber bundle into the gaps of the upper and lower endless belts facing each other at a predetermined interval, and c) the upper and lower layers. Resin-attached fiber bundles 5-1
Cut it to 00 mm and drop the upper cut resin-attached fibers on the middle continuous resin-attached fiber bundle to accumulate them, and drop the lower cut resin-attached fibers on the feeding part into the gap between the upper and lower endless belts. Stacking and continuously feeding both aggregates into the gap between the upper and lower endless belts along with the movement of the medium continuous resin-attached fiber bundle, and d) cutting the upper and lower layers through the medium continuous resin-attached fiber bundle. A method for producing a fiber composite sheet, comprising a step of passing a resin-attached fiber assembly through both moving endless belts and passing it through a heating region and a cooling region to form a sheet.
JP3175189A 1991-07-16 1991-07-16 Fiber composite sheet and its manufacture Pending JPH0516139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3175189A JPH0516139A (en) 1991-07-16 1991-07-16 Fiber composite sheet and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3175189A JPH0516139A (en) 1991-07-16 1991-07-16 Fiber composite sheet and its manufacture

Publications (1)

Publication Number Publication Date
JPH0516139A true JPH0516139A (en) 1993-01-26

Family

ID=15991845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3175189A Pending JPH0516139A (en) 1991-07-16 1991-07-16 Fiber composite sheet and its manufacture

Country Status (1)

Country Link
JP (1) JPH0516139A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004504962A (en) * 2000-07-28 2004-02-19 ハイパーカー,インコーポレイテッド Method and apparatus for manufacturing advanced composite structure
WO2008056956A1 (en) * 2006-11-09 2008-05-15 Huneco Co., Ltd. Stampable sheet manufacturing device
JP2017001264A (en) * 2015-06-09 2017-01-05 三菱樹脂株式会社 Reinforced fiber composite laminate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004504962A (en) * 2000-07-28 2004-02-19 ハイパーカー,インコーポレイテッド Method and apparatus for manufacturing advanced composite structure
JP4718758B2 (en) * 2000-07-28 2011-07-06 ハイパーカー,インコーポレイテッド Advanced composite structure manufacturing method and apparatus
WO2008056956A1 (en) * 2006-11-09 2008-05-15 Huneco Co., Ltd. Stampable sheet manufacturing device
JP2017001264A (en) * 2015-06-09 2017-01-05 三菱樹脂株式会社 Reinforced fiber composite laminate

Similar Documents

Publication Publication Date Title
US7005024B2 (en) Process and device for the manufacture of a composite material
US4487647A (en) Process and device for the continuous production of glass fiber reinforced sheets of thermoplastic polymers
JPH0516139A (en) Fiber composite sheet and its manufacture
JPH04366627A (en) Fiber-reinforced sheet
JPH0516138A (en) Fiber reinforced sheet and its manufacture
JP3090723B2 (en) Method for producing fiber composite sheet
JPH0531812A (en) Manufacture of fiber-reinforced resin sheet and manufacture of fiber-reinforced resin molded product
JPH05318472A (en) Fiber-reinforced thermoplastic resin sheet
JPH02139218A (en) Continuous manufacturing method and device for thermoplastic reinforced sheet
JPH0531811A (en) Manufacture of fiber-reinforeced resin molded product
JPH06200048A (en) Production of fiber-reinforced thermoplastic resin sheet
JP3043121B2 (en) Method for producing fiber composite sheet
US20030107148A1 (en) Methods of randomly dispersing chopped carbon fiber and consolidating the materials together to make a fiber reinforcement mat
KR100296229B1 (en) Composite material manufacturing method with enhanced performance and its manufacturing apparatus
JPH06335987A (en) Fiber reinforced thermoplastic resin sheet
JPH0737040B2 (en) Method for manufacturing fiber composite sheet
JPH05104525A (en) Manufacture of fiber reinforced thermoplastic resin sheet
JPH0745136B2 (en) Method for manufacturing fiber composite sheet
JPH0542538A (en) Manufacture of fiber composite sheet
JP3043152B2 (en) Method for producing fiber reinforced thermoplastic resin sheet
JPH0596536A (en) Fiber reinforced thermoplastic resin sheet and production thereof
JPH0761648B2 (en) Method for manufacturing fiber-reinforced resin sheet
JP2991470B2 (en) Method for producing fiber reinforced resin sheet
JPH04135743A (en) Production of fiber composite sheet
JPH06134904A (en) Fiber reinforced, thermoplastic resin sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees