JPH04133113A - Constant-current circuit and oscillation circuit - Google Patents

Constant-current circuit and oscillation circuit

Info

Publication number
JPH04133113A
JPH04133113A JP2256294A JP25629490A JPH04133113A JP H04133113 A JPH04133113 A JP H04133113A JP 2256294 A JP2256294 A JP 2256294A JP 25629490 A JP25629490 A JP 25629490A JP H04133113 A JPH04133113 A JP H04133113A
Authority
JP
Japan
Prior art keywords
circuit
voltage
current
constant current
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2256294A
Other languages
Japanese (ja)
Other versions
JP2763393B2 (en
Inventor
Makoto Suwada
誠 須和田
Shuichi Inoue
修一 井上
Yuzo Usui
有三 碓井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2256294A priority Critical patent/JP2763393B2/en
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to US07/765,272 priority patent/US5146188A/en
Priority to CA002052248A priority patent/CA2052248C/en
Priority to EP91116347A priority patent/EP0477907B1/en
Priority to EP95102887A priority patent/EP0664502A3/en
Priority to DE69118798T priority patent/DE69118798T2/en
Priority to KR1019910016770A priority patent/KR950005155B1/en
Publication of JPH04133113A publication Critical patent/JPH04133113A/en
Application granted granted Critical
Publication of JP2763393B2 publication Critical patent/JP2763393B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/265Current mirrors using bipolar transistors only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/22Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only
    • G05F3/222Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only with compensation for device parameters, e.g. Early effect, gain, manufacturing process, or external variations, e.g. temperature, loading, supply voltage
    • G05F3/227Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only with compensation for device parameters, e.g. Early effect, gain, manufacturing process, or external variations, e.g. temperature, loading, supply voltage producing a current or voltage as a predetermined function of the supply voltage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/023Generators characterised by the type of circuit or by the means used for producing pulses by the use of differential amplifiers or comparators, with internal or external positive feedback
    • H03K3/0231Astable circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K4/00Generating pulses having essentially a finite slope or stepped portions
    • H03K4/06Generating pulses having essentially a finite slope or stepped portions having triangular shape
    • H03K4/08Generating pulses having essentially a finite slope or stepped portions having triangular shape having sawtooth shape
    • H03K4/48Generating pulses having essentially a finite slope or stepped portions having triangular shape having sawtooth shape using as active elements semiconductor devices
    • H03K4/50Generating pulses having essentially a finite slope or stepped portions having triangular shape having sawtooth shape using as active elements semiconductor devices in which a sawtooth voltage is produced across a capacitor
    • H03K4/501Generating pulses having essentially a finite slope or stepped portions having triangular shape having sawtooth shape using as active elements semiconductor devices in which a sawtooth voltage is produced across a capacitor the starting point of the flyback period being determined by the amplitude of the voltage across the capacitor, e.g. by a comparator
    • H03K4/502Generating pulses having essentially a finite slope or stepped portions having triangular shape having sawtooth shape using as active elements semiconductor devices in which a sawtooth voltage is produced across a capacitor the starting point of the flyback period being determined by the amplitude of the voltage across the capacitor, e.g. by a comparator the capacitor being charged from a constant-current source

Abstract

PURPOSE:To curtail the hardware quantity and the power consumption and to reduce the cost by varying smoothly a current value and an oscillation frequency allowing them to follow a power supply voltage, in a miniature/low power consumption device such as a note personal computer. CONSTITUTION:When a value of a power supply voltage Vcc is V4, voltage dividing resistances R2, R3 of a differential amplification input part 4 are adjusted so that an input voltage V2 of a differential amplifying part 3 becomes equal to a constant-voltage V1 of an output of a reference voltage part 1. In this case, a current I3 flowing through R4 is '0'. Subsequently, when the power supply voltage rises and comes to V2>V1, I3 flows to the VA side from the VB side. On the other hand, when the power supply voltage drops and comes to V2<V1, I3 flows to the VB side from the VA side. That is, when Vcc increases by setting Vcc=V4 as a boundary, I2 increases, and when Vcc decreases, I2 also decreases. Inclination of this characteristic is varied by a value of R4.

Description

【発明の詳細な説明】 〔概 要〕 電源電圧によってt流値を制御できる定電流回路と、こ
の定電流回路を用いて構成される発振回路に関し。
[Detailed Description of the Invention] [Summary] This invention relates to a constant current circuit whose t current value can be controlled by a power supply voltage, and an oscillation circuit configured using this constant current circuit.

電源電圧に依存して定電流値および発振周波数をなめら
かに変化させるための簡単な回路構成を提供することを
目的とし それぞれのエミッタに定電流源を接続した第1と第2の
2つのトランジスタの各エミッタ間を抵抗で結合し、第
1のトランジスタのベースを定電圧源に接続し、第2の
トランジスタのベースを電源電圧の分圧点に接続して、
第2のトランジスタのコレクタ電流が1tat圧の大き
さに応じて定電流制御されるようにした定電流回路と、
この定電流回路をコンデンサへの充電回路に用い、充放
電をスイッチングして発振を行う発振回路とを構成とし
てもつ。
The purpose is to provide a simple circuit configuration for smoothly changing the constant current value and oscillation frequency depending on the power supply voltage. Each emitter is coupled with a resistor, the base of the first transistor is connected to a constant voltage source, the base of the second transistor is connected to a voltage dividing point of the power supply voltage,
a constant current circuit in which the collector current of the second transistor is controlled at a constant current according to the magnitude of the 1 tat pressure;
This constant current circuit is used as a charging circuit for a capacitor, and has an oscillation circuit that performs oscillation by switching charging and discharging.

〔産業上の利用分野〕 本発明は、 it電源電圧よって電流値を制御できる定
電流回路と、この定電流回路を用いて構成される発振回
路に関する。
[Industrial Application Field] The present invention relates to a constant current circuit whose current value can be controlled by an IT power supply voltage, and an oscillation circuit configured using this constant current circuit.

本発明による発振回路は、バッテリー駆動型の計算機に
おける周波数が可変のクロック装置に有用なものである
The oscillation circuit according to the present invention is useful for a variable frequency clock device in a battery-powered computer.

バッテリー駆動型の計算機においては、演算処理モード
に入る前の例えば、モードセレクト時には高速動作は不
要であるので、動作電圧を下げて消費電力を減少させる
工夫を行っている。又、これにともなって、クロックに
ついても低速でよいため2発振器の発振周波数も下げる
様にして、消費電力を艷に下げることを行っている。
In battery-powered computers, high-speed operation is not required before entering an arithmetic processing mode, for example, when selecting a mode, so measures are taken to reduce power consumption by lowering the operating voltage. In addition, in conjunction with this, the oscillation frequency of the two oscillators is also lowered, since the clock speed may be lower, thereby significantly reducing power consumption.

〔従来の技術〕[Conventional technology]

従来のコンピュータでは、一般にクロック装置として固
定周波数の発振器を用いている。そのためクロック周波
数を可変にする必要がある場合には1周波数が異なる複
数の発振器を設けておいて。
Conventional computers typically use fixed frequency oscillators as clock devices. Therefore, if it is necessary to make the clock frequency variable, multiple oscillators with different frequencies are provided.

そのうちの1つを任意に選択する方法や、比較的高い周
波数の発振器を1つ設け、その出力を複数の周波数に分
周して、必要な周波数を任意に選択する方法がとられて
いた。
There have been methods of arbitrarily selecting one of them, or methods of providing one oscillator with a relatively high frequency, dividing its output into a plurality of frequencies, and arbitrarily selecting the required frequency.

このようなりロック発生用の発振器としてはコンデンサ
の充放電を用いた形式のものが多く用いられる0代表的
な回路としては1定電流回路を通して電源電圧によりコ
ンデンサを充電し、コンデンサの端子電圧があるレベル
に達したとき放電させ、コンデンサの端子電圧が他のあ
るレベルにまで降下したとき、放電を停止して充電を再
開する動作を繰り返し、鋸歯状波を発生するものである
As such, many oscillators for lock generation are of the type that uses charging and discharging of capacitors.A typical circuit is to charge a capacitor with the power supply voltage through a constant current circuit, and to set the terminal voltage of the capacitor. When the terminal voltage of the capacitor reaches a certain level, the capacitor is discharged, and when the terminal voltage of the capacitor drops to another certain level, the discharge is stopped and the charging is restarted.This operation is repeated, and a sawtooth wave is generated.

しかしながら、いずれの場合も3発振器や選択回路など
のハードウェア回路が著しく多くなるという問題が生じ
た。
However, in either case, a problem arises in that the number of hardware circuits such as three oscillators and selection circuits increases significantly.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、tag圧に依存して定電流値および発振周波
数をなめらかに変化させるための簡単な回路構成を提供
することを目的としている。
An object of the present invention is to provide a simple circuit configuration for smoothly changing the constant current value and the oscillation frequency depending on the tag pressure.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は2発振器のコンデンサの充放電サイクルをif
f電圧に依存して変化させるため、コンデンサに充電電
流を供給する定電流回路に電源電圧依存性をもたせるも
のである。
The present invention provides two oscillator capacitor charge/discharge cycles if
In order to change the f voltage depending on the voltage, the constant current circuit that supplies the charging current to the capacitor is made to have dependence on the power supply voltage.

第1図は本発明に基づく定電流回路の原理構成図、第2
図は第1図の定電流回路を使用した発振回路の原理構成
図である。
Fig. 1 is a basic configuration diagram of a constant current circuit based on the present invention, Fig. 2
The figure is a diagram showing the principle configuration of an oscillation circuit using the constant current circuit of FIG. 1.

第1図および第2図において、1は基準電圧部。In FIG. 1 and FIG. 2, 1 is a reference voltage section.

2は定電流源部、3は差動増幅部、4は差動増幅人力部
、5ばカレントミラ一部、6ば電流積分部。
2 is a constant current source section, 3 is a differential amplification section, 4 is a differential amplification section, 5 is a part of a current mirror, and 6 is a current integration section.

7は充放電制御部である。7 is a charge/discharge control section.

差動増幅部3は、一対のトランジスタQ3.Q。The differential amplifier section 3 includes a pair of transistors Q3. Q.

の各エミッタをそれぞれ電流源IA、IBに接続すると
ともに抵抗R4で結合したものである。
The respective emitters of the circuit are connected to current sources IA and IB, respectively, and coupled through a resistor R4.

基準電圧部1は9本発明回路の基準となる電圧を発生さ
せるもので、得られた基rst圧VIは差動増幅部3の
トランジスタQ、のベースに印加される。
The reference voltage unit 1 generates a reference voltage for the circuit of the present invention, and the obtained base rst voltage VI is applied to the base of the transistor Q of the differential amplifier unit 3.

差動増幅入力部4は、を源電圧Vccを抵抗R1゜R1
で分圧し9分圧点電圧■2を差動増幅部3のトランジス
タQ、のベースに印加する。
The differential amplification input section 4 connects the source voltage Vcc to the resistor R1°R1
The 9-divided voltage point voltage 2 is applied to the base of the transistor Q of the differential amplifier section 3.

これにより、差動増幅部3のトランジスタQ。As a result, the transistor Q of the differential amplifier section 3.

のコレクタには、V、、VzO差電圧に応じた電流■2
が流れる。
In the collector of , there is a current according to the voltage difference between V, , and VzO ■2
flows.

Q、のコレクタに設けられているトランジスタQ4およ
びQ、は、後述される第2図の発振回路におけるカレン
トミラ一部5の一部である。
Transistors Q4 and Q provided at the collector of Q are part of a current mirror section 5 in the oscillation circuit of FIG. 2, which will be described later.

第2図の発振回路の構成において、カレントミラ一部5
のトランジスタQ、のベースは、第1図の定電流回路の
トランジスタQ4のベースおよびコレクタに接続され、
Q、を流れる定電流化された電流I2にほぼ等しい一定
のコレクタ電流I4を生じる。このコレクタ電流■4は
電流積分部6のコンデンサC0に充電電流として流れ、
端子電圧■。を時間とともに上昇させる。
In the configuration of the oscillation circuit shown in Figure 2, the current mirror part 5
The base of transistor Q is connected to the base and collector of transistor Q4 of the constant current circuit in FIG.
produces a constant collector current I4 approximately equal to the constant current I2 flowing through Q. This collector current ■4 flows into the capacitor C0 of the current integrating section 6 as a charging current,
Terminal voltage■. increases over time.

充放電制御部7は、コンデンサCoに並列に設けられた
スイッチSWと、!圧検出回路D1をそなえている。
The charge/discharge control section 7 includes a switch SW provided in parallel with the capacitor Co, and! It is equipped with a pressure detection circuit D1.

電圧検出回路り、は、コンデンサC6の端子電圧■。を
監視し、voが充電により上昇しである一定電圧以上に
なるとSWをONにしてコンデンサを放電させ、その結
果、■。が低下して他のある一定電圧以下になると、S
WをOFFにして放電を停止させ、充電を再開させる。
The voltage detection circuit is the terminal voltage of capacitor C6. is monitored, and when vo rises due to charging and exceeds a certain voltage, the SW is turned on to discharge the capacitor, and as a result, ■. When S decreases to below a certain other voltage, S
Turn OFF W to stop discharging and restart charging.

これにより、コンデンサC0に対する充放電が繰り返さ
れて、■。は一定周期で変化する鋸歯状波となり1発振
出力が得られる。
As a result, charging and discharging of the capacitor C0 are repeated, resulting in (■). becomes a sawtooth wave that changes at a constant period, and one oscillation output is obtained.

〔作 用〕[For production]

まず第1rj!Jの定電流回路の動作における電源電圧
Vccの変化に対するコレクタ電流Itの変化について
説明する。電源電圧Vccの値がv4であったとき、差
動増幅部3の入力電圧■zは、基準電圧部1の出力の定
電圧■1と等しくなるように差動増幅入力部4の分圧抵
抗R,,R,が調整される。このとき Q、、Q、では
、I、=1□、■=■2であるので、R4を流れる電流
I、は0である。
First, the first rj! The change in the collector current It with respect to the change in the power supply voltage Vcc in the operation of the constant current circuit of J will be explained. When the value of the power supply voltage Vcc is v4, the voltage dividing resistor of the differential amplification input section 4 is set so that the input voltage z of the differential amplification section 3 is equal to the constant voltage 1 of the output of the reference voltage section 1. R,,R, is adjusted. At this time, for Q,,Q,, I,=1□,■=■2, so the current I, flowing through R4 is 0.

次に電源電圧が上昇し、  Vcc= V s(> V
 a)になると、V、>V、となるので、Itは増加、
■。
Next, the power supply voltage increases, and Vcc=Vs(>V
In a), V, > V, so It increases,
■.

は減少し、Lは■、側から■1側へ流れる。decreases, and L flows from the ■ side to the ■1 side.

また電源電圧が低下して、  Vcc= V s(< 
V a)になると、V、<V、となるので、Vcc=V
4のときにくらべて■2は減少、■、は増加し、■、は
vA側からV、側へ流れる。
Also, the power supply voltage decreases, Vcc=Vs(<
When V a), V<V, so Vcc=V
4, ■2 decreases, ■ increases, and ■ flows from the vA side to the V side.

つまりVcc−Vnを境にして、Vccが増加すると1
8は増加し、Vccが減少すると■□も減少して、第3
図に示すような特性が得られる。この曲線の傾きはR4
の値によって変わり、R4が大きいはど■、は小さく、
R4が小さいほどI、は大きくなるので、第4図に示す
ようになる。
In other words, when Vcc increases with Vcc-Vn as the boundary, 1
8 increases, and when Vcc decreases, ■□ also decreases, and the third
The characteristics shown in the figure are obtained. The slope of this curve is R4
It changes depending on the value of , and the larger R4 is, the smaller it is.
The smaller R4 is, the larger I becomes, as shown in FIG.

次に第2図に示す発振回路の動作を説明する。Next, the operation of the oscillation circuit shown in FIG. 2 will be explained.

電圧検出回路D1の2つの検出電圧を■S1+ ■5t
(V□>Vsz)とすると、電圧検出回路D1は。
The two detection voltages of voltage detection circuit D1 are ■S1+ ■5t
When (V□>Vsz), the voltage detection circuit D1 is.

C0の充電中に■。>V、、になるとスイッチSWをO
NにしてC8の電荷の放電を開始させ、vo<V、、に
なるとSWをOFFにして放電を停止し。
■ While charging C0. >V, turn switch SW to O.
Turn it to N to start discharging the charge of C8, and when vo<V, turn off the SW to stop the discharge.

充電を再開させる。Restart charging.

したがって、C0への充電電流I4が大きいほど充電、
放電の繰り返しサイクルが速くなる。■4(’ildは
Vccが大きいほど増加するから、Vccの上下の変化
に応じて1発振周波数fは高低にリニアに変化する。
Therefore, the larger the charging current I4 to C0, the more
Repeated discharge cycles become faster. 4 ('ild increases as Vcc increases, so the 1 oscillation frequency f changes linearly in high and low directions according to the vertical changes in Vcc.

第5図にこの発振回路の出力波形を示す、また第6図に
Vccとfの関係を示す、VCC−V4のときf=f、
、Vcc=Vsのときf−f、となる。
FIG. 5 shows the output waveform of this oscillation circuit, and FIG. 6 shows the relationship between Vcc and f. When VCC-V4, f=f,
, when Vcc=Vs, f−f.

またfの変化範囲の幅を変えたい場合には、第1図の定
電流源部2の定電流値を変化させればよい。
Furthermore, if it is desired to change the width of the variation range of f, the constant current value of the constant current source section 2 shown in FIG. 1 may be changed.

fの傾きを変化させたい場合には、R1を大き(してい
けば傾きは小さくなり、Raを小さくしていけば傾きは
太き(なり、VccflSII係の特性は第7図のよう
になる。
If you want to change the slope of f, increase R1 (the slope will become smaller), decrease Ra (the slope will become thicker), and the characteristics of VccflSII will be as shown in Figure 7. .

fの変化範囲を拡大したい場合には、In、IsをI’
A(> Ia ) 、  I’s  (> Im )の
ように太きくすれば、VCC−1!関係の特性は第8図
に示すようになり、電流変化分はΔI、からΔI2へと
拡大する。この結果のVcc−f関係の特性は第9図の
ようになり、Vcc=Va 、Vcc”V5に対応する
fはf4→r’4.fs→「、となって9周波数範囲は
、Δf、からΔf2へ拡大する。
If you want to expand the variation range of f, change In, Is to I'
If you make it thicker like A (>Ia) or I's (>Im), you get VCC-1! The characteristics of the relationship are as shown in FIG. 8, and the current change expands from ΔI to ΔI2. The resulting Vcc-f relationship is as shown in Figure 9, where Vcc=Va, f corresponding to Vcc''V5 is f4→r'4.fs→'', and the 9 frequency range is Δf, to Δf2.

〔実施例〕〔Example〕

第10図ないし第18図を用いて本発明の詳細な説明す
る。
The present invention will be explained in detail using FIGS. 10 to 18.

第10図に示す第1の実施例は、Vccに対する周波数
変化範囲をシフトする機構を有するものでコンデンサC
0に対する追加の定電流印加部8をそなえている。
The first embodiment shown in FIG. 10 has a mechanism to shift the frequency change range with respect to Vcc, and the capacitor C
An additional constant current applying section 8 for 0 is provided.

この定電流印加部8は、トランジスタQsのベース・コ
レクタ接続側に定電流源Icを有し、トランジスタQ自
とQ、で構成されるカレントミラー回路によって、Q、
のコレクタにほぼI、に等しい電流を流し、14 =I
z +lCとする。つまりI、をIc骨分ゲタ上する。
This constant current applying section 8 has a constant current source Ic on the base-collector connection side of the transistor Qs, and uses a current mirror circuit composed of the transistors Q and Q to
A current approximately equal to I flows through the collector of 14 = I
Let z +lC. In other words, I is raised by Ic.

第11図は、第10図から充放電制御部7を取り除いた
状態でのシフトされたVcc−14関係の特性である。
FIG. 11 shows the characteristics of the shifted Vcc-14 relationship with the charging/discharging control section 7 removed from FIG. 10.

VCCの変化に対してI4の変化範囲はΔI、からΔI
4にシフトされることがわかる。
The change range of I4 with respect to VCC change is ΔI, to ΔI
It can be seen that it is shifted to 4.

また第12図は、その結果として周波数の変化範囲がΔ
f3からΔf4にシフトすることを示す。
In addition, Fig. 12 shows that as a result, the frequency change range is Δ
This indicates a shift from f3 to Δf4.

これにより周波数の下限をある一定値に制限することが
できる。
This makes it possible to limit the lower limit of the frequency to a certain constant value.

第13図に示す第2の実施例回路は1発振出力波形の立
上り、立下り時間の比を調整するためのもので、充放電
制御部7のスイッチSWと直列に定電流源■。(■。=
n−1a、 1/n ・+4. nは自然数)を設け、
SWがONのときSWを通る放電電流が00への充電電
流I4のn倍あるいは1/n倍になるようにしている。
The second embodiment circuit shown in FIG. 13 is for adjusting the ratio of the rise and fall times of a single oscillation output waveform, and includes a constant current source (2) in series with the switch SW of the charge/discharge control section 7. (■.=
n-1a, 1/n ・+4. n is a natural number),
When the SW is ON, the discharge current passing through the SW is set to be n times or 1/n times the charging current I4 to 00.

第14図は三角波の発振出力波形を示す、この三角波は
1.−2・I4としたときのものであり。
FIG. 14 shows the oscillation output waveform of a triangular wave. This triangular wave is 1. -2・I4.

duty= 5 Q%のクロックを生成するために都合
のよいものである。
This is convenient for generating a clock with a duty of 5 Q%.

第15図に示す第3の実施例回路は、第10図と第13
図の各実施例回路を組合わせたものである1図中のトラ
ンジスタQI、Qzは、それぞれのベース・エミッタ間
の接合電圧を定電圧源として利用しており、抵抗R1を
介してこれらのトランジスタQ、、 Q、にバイアス電
流を流し、得られた基準電圧■1をトランジスタQ3の
ベースに印加する。また、トランジスタQ、は、スイッ
チSWとしての動作機能をもち、またシュミット回路D
2はそのヒステリシス特性をもった波形整形作用により
、三角波を矩形波に変換する動作を行う。
The third embodiment circuit shown in FIG.
Transistors QI and Qz in Figure 1, which is a combination of the circuits shown in each example, use the junction voltage between their respective bases and emitters as a constant voltage source, and these transistors are connected via resistor R1. A bias current is passed through Q, , Q, and the obtained reference voltage 1 is applied to the base of transistor Q3. Further, the transistor Q has an operating function as a switch SW, and also has a Schmitt circuit D.
2 performs an operation of converting a triangular wave into a rectangular wave by its waveform shaping action with hysteresis characteristics.

第15図の回路からDt 、Q啼を取り除いたときのV
cc−14の関係の特性が第16図でありここでDx、
Qqを追加したときの動作は次のようになる。Dzは2
つのしきい値Sイ、SL (S。
V when Dt and Q are removed from the circuit in Figure 15
The characteristics of the cc-14 relationship are shown in Figure 16, where Dx,
The operation when Qq is added is as follows. Dz is 2
Two threshold values S, SL (S.

>SL )をもち、VO>SNになると出力Fou t
の電圧を■ににジャンプさせる。この結果、Q、はON
にされ、C0の電荷はIo  (−214)で放電され
、■。は次第に低下するが出力Foutの電圧は■。の
ままである。
>SL), and when VO>SN, the output Fout
Jump the voltage to ■. As a result, Q is ON
, the charge on C0 is discharged at Io (-214), and ■. gradually decreases, but the voltage of the output Fout is ■. It remains as it is.

続いてVO<SLになると、D2は逆方向にジャンプし
て出力Foutの電圧をV、にし、Q、をOFFにする
。これによりC0の放電は停止され。
Subsequently, when VO<SL, D2 jumps in the opposite direction, sets the voltage of the output Fout to V, and turns Q off. This stops the discharge of C0.

I4による充電が再開される。そして次にvo〉S、に
なるまで出力Fou tをVLのままに保持する。
Charging by I4 is resumed. Then, the output Fout is held at VL until vo>S.

第17図は、第15図の回路中のVCCと出力Fout
の周波数fの関係を示すVcc−f特性であり、第18
図は出力Foutの波形を示す。図示のようにduty
=5Q%の矩形波パルスを連続して得ることができる。
Figure 17 shows VCC and output Fout in the circuit of Figure 15.
This is the Vcc-f characteristic showing the relationship between the frequency f of the 18th
The figure shows the waveform of the output Fout. duty as shown
=5Q% square wave pulses can be obtained continuously.

これらの実施例回路は、モノリンツクICに適しており
、容易に1チツプ化を図ることができる。
These embodiment circuits are suitable for monolink ICs and can be easily integrated into a single chip.

〔発明の効果〕〔Effect of the invention〕

本発明は、ノートパソコンのような小型で低積電力の装
置において、電源電圧の変動を追従させて定電流回路の
電流値および発振回路の発振周波数をなめらかに変化さ
せることができ、ハードウェア量と消費電力の大幅な削
減と、その結果としての信頼性の向上およびコストダウ
ンを図ることができる。
The present invention makes it possible to smoothly change the current value of a constant current circuit and the oscillation frequency of an oscillation circuit by following fluctuations in power supply voltage in a small, low-power device such as a notebook computer, and the amount of hardware required is It is possible to significantly reduce power consumption and, as a result, improve reliability and reduce costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による定電流回路の原理構成図第2図は
本発明による発振回路の原理構成図、第3図は第1図に
おけるVcc−1t*性を示す説明図、第4図は第3図
におけるVcc  It特性の傾きの変化を示す説明図
、第5図は第2図の発振回路の出力の波形図、第6図は
第2図の回路のVcc−f特性の説明図、第7図は2第
4図に対応するVCc−f特性、第8図は第2図の回路
の拡大されたVCCIt特性の説明図、第9図は第8図
に対応する拡大されたVcc−f特性の説明図、第10
図は本発明の第1の実施例回路の構成図、第11図は第
10図におけるシフトされたVcc  Ia特性の説明
図、第12図は第11図に対応するシフトされたVcc
−f特性の説明図、第13図は本発明の第2の実施例回
路の構成図、第14図は第2の実施例回路の発振出力波
形図、第15図は本発明の第3の実施例回路の構成図、
第16図は第3の実施例回路のVcc  1g特性の説
明図、第17図は第3の実施例回路のV cc −Fo
u を周波数特性の説明図、第18図は第3の実施例回
路の出力Foutの波形図である。 第1図および第2図において。 1:基準電圧部 2:定電流源部 3:差動増幅部 4:差動増幅入力部 5:カレントミラ一部 6:を流積分部 7;充放ti!1I7at部 Q、ゞQ& :トランジスタ R,〜R4:抵抗 Co :コンデンサ ■^、1富 :定電流源 り、:電圧検出回路 SW:スイッチ
Fig. 1 is a basic configuration diagram of a constant current circuit according to the present invention. Fig. 2 is a basic configuration diagram of an oscillation circuit according to the present invention. Fig. 3 is an explanatory diagram showing the Vcc-1t* characteristic in Fig. 1. An explanatory diagram showing changes in the slope of the Vcc It characteristic in FIG. 3, FIG. 5 is a waveform diagram of the output of the oscillation circuit in FIG. 2, and FIG. 6 is an explanatory diagram of the Vcc-f characteristic of the circuit in FIG. 2. FIG. 7 is an explanatory diagram of the VCc-f characteristic corresponding to FIG. 2, FIG. 8 is an explanatory diagram of the enlarged VCCIt characteristic of the circuit in FIG. 2, and FIG. Explanatory diagram of f characteristics, 10th
11 is an explanatory diagram of the shifted Vcc Ia characteristics in FIG. 10, and FIG. 12 is a diagram of the shifted Vcc Ia characteristic corresponding to FIG. 11.
-f characteristics, FIG. 13 is a configuration diagram of the second embodiment circuit of the present invention, FIG. 14 is an oscillation output waveform diagram of the second embodiment circuit, and FIG. 15 is a diagram of the third embodiment circuit of the present invention. A configuration diagram of an example circuit,
FIG. 16 is an explanatory diagram of the Vcc 1g characteristic of the circuit of the third embodiment, and FIG. 17 is an explanatory diagram of the Vcc - Fo of the circuit of the third embodiment.
u is an explanatory diagram of frequency characteristics, and FIG. 18 is a waveform diagram of the output Fout of the third embodiment circuit. In FIGS. 1 and 2. 1: Reference voltage section 2: Constant current source section 3: Differential amplification section 4: Differential amplification input section 5: Current mirror section 6: Current integration section 7; Charge ti! 1I7at section Q, ゞQ&: Transistor R, ~R4: Resistor Co: Capacitor ■^, 1 wealth: Constant current source,: Voltage detection circuit SW: Switch

Claims (5)

【特許請求の範囲】[Claims] (1)それぞれのエミッタに定電流源(IA、IB)を
接続した第1と第2の2つのトランジスタ(Q_3、Q
_5)の各エミッタ間を抵抗(R_4)で結合し、第1
のトランジスタ(Q_3)のベースを定電圧源(1)に
接続し、第2のトランジスタ(Q_5)のベースを電源
電圧の分圧点に接続して、第2のトランジスタ(Q_5
)のコレクタ電流が電源電圧の大きさに応じて定電流制
御されるようにした定電流回路。
(1) First and second two transistors (Q_3, Q
The emitters of _5) are connected by a resistor (R_4), and
The base of the transistor (Q_3) is connected to the constant voltage source (1), the base of the second transistor (Q_5) is connected to the voltage dividing point of the power supply voltage, and the second transistor (Q_5) is connected to the constant voltage source (1).
) is a constant current circuit whose collector current is controlled at a constant current according to the magnitude of the power supply voltage.
(2)充放電用のコンデンサと、それぞれのエミッタに
定電流源を接続した第1と第2の2つのトランジスタの
各エミッタ間を抵抗で結合し、第1のトランジスタのベ
ースを定電圧源に接続し、第2のトランジスタのベース
を電源電圧の分圧点に接続して、第2のトランジスタの
コレクタ電流が電源電圧に応じて定電流制御される定電
流回路を用いた前記コンデンサの充電回路と、前記コン
デンサに並列に設けた放電用のスイッチ回路と、前記コ
ンデンサの端子電圧がある設定値に達したとき前記スイ
ッチ回路を導電状態にして他の設定値に達したとき非導
電状態にする充放電制御部とをそなえた発振回路。
(2) Connect a charging/discharging capacitor and the emitters of the first and second transistors, each of which has a constant current source connected to its emitter, with a resistor, and connect the base of the first transistor to a constant voltage source. a charging circuit for the capacitor using a constant current circuit in which the base of the second transistor is connected to a voltage dividing point of the power supply voltage, and the collector current of the second transistor is controlled at a constant current according to the power supply voltage; and a discharge switch circuit provided in parallel with the capacitor; the switch circuit is made conductive when the terminal voltage of the capacitor reaches a certain set value and is made non-conductive when another set value is reached. An oscillation circuit equipped with a charge/discharge control section.
(3)請求項第2項において、定電流回路内の第1と第
2のトランジスタの各エミッタに接続された電流源の電
流値を変化させることにより発振周波数範囲を可変にし
たことを特徴とする発振回路。
(3) Claim 2 is characterized in that the oscillation frequency range is made variable by changing the current value of a current source connected to each emitter of the first and second transistors in the constant current circuit. oscillation circuit.
(4)請求項第2項において、コンデンサに、定電流回
路から独立して電流値を制御できる定電流源を接続し発
振周波数の範囲をシフト可能にしたことを特徴とする発
振回路。
(4) The oscillation circuit according to claim 2, characterized in that a constant current source that can control the current value independently of the constant current circuit is connected to the capacitor, thereby making it possible to shift the range of the oscillation frequency.
(5)請求項第2項において、コンデンサに番列に設け
た放電用のスイッチ回路中に前記コンデンサへの充電電
流のn倍または1/n倍の大きさの電流値をもつ定電流
源を挿入し、立上りと立下りの時間比を可変できる三角
波を発振することを特徴とする発振回路。
(5) In claim 2, a constant current source having a current value n times or 1/n times as large as the charging current to the capacitor is provided in the discharging switch circuit provided in the serial number of the capacitor. An oscillation circuit characterized in that it oscillates a triangular wave whose rise and fall time ratio can be varied by inserting the waveform.
JP2256294A 1990-09-26 1990-09-26 Constant current circuit and oscillation circuit Expired - Lifetime JP2763393B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2256294A JP2763393B2 (en) 1990-09-26 1990-09-26 Constant current circuit and oscillation circuit
CA002052248A CA2052248C (en) 1990-09-26 1991-09-25 Constant current circuit and an oscillating circuit controlled by the same
EP91116347A EP0477907B1 (en) 1990-09-26 1991-09-25 A constant current circuit and an oscillating circuit controlled by the same
EP95102887A EP0664502A3 (en) 1990-09-26 1991-09-25 Oscillating circuit.
US07/765,272 US5146188A (en) 1990-09-26 1991-09-25 Constant current circuit and an oscillating circuit controlled by the same
DE69118798T DE69118798T2 (en) 1990-09-26 1991-09-25 Constant current circuit and an oscillating circuit controlled by the same
KR1019910016770A KR950005155B1 (en) 1990-09-26 1991-09-26 Constant current circuit and oscillating circuit controlled by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2256294A JP2763393B2 (en) 1990-09-26 1990-09-26 Constant current circuit and oscillation circuit

Publications (2)

Publication Number Publication Date
JPH04133113A true JPH04133113A (en) 1992-05-07
JP2763393B2 JP2763393B2 (en) 1998-06-11

Family

ID=17290663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2256294A Expired - Lifetime JP2763393B2 (en) 1990-09-26 1990-09-26 Constant current circuit and oscillation circuit

Country Status (6)

Country Link
US (1) US5146188A (en)
EP (2) EP0664502A3 (en)
JP (1) JP2763393B2 (en)
KR (1) KR950005155B1 (en)
CA (1) CA2052248C (en)
DE (1) DE69118798T2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011172213A (en) * 2010-01-18 2011-09-01 Rohm Co Ltd Current mirror circuit, drive circuit and oscillator of light-emitting element using the same, current drive circuit, and light-emitting device using the same
US10345833B2 (en) 2016-06-28 2019-07-09 Mitsubishi Electric Corporation Voltage-current converter and load driver

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994022208A1 (en) * 1993-03-17 1994-09-29 National Semiconductor Corporation Frequency shift circuit for switching regulator
US5349286A (en) * 1993-06-18 1994-09-20 Texas Instruments Incorporated Compensation for low gain bipolar transistors in voltage and current reference circuits
US5619125A (en) * 1995-07-31 1997-04-08 Lucent Technologies Inc. Voltage-to-current converter
US6441693B1 (en) * 2001-03-20 2002-08-27 Honeywell International Inc. Circuit for voltage to linear duty cycle conversion
DE10121821B4 (en) * 2001-05-04 2004-04-08 Infineon Technologies Ag Frequency control circuit
DE10259384B3 (en) * 2002-12-18 2004-05-13 Siemens Ag Battery charge level detection device for mobile data carrier e.g. for use in identification system, using measurement of charging time of auxiliary capacitor
CN109002076B (en) * 2017-06-07 2021-10-29 苏州瀚宸科技有限公司 Resistance current mirror circuit, RSSI circuit and chip

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870971A (en) * 1973-03-17 1975-03-11 Victor Company Of Japan Circuit arrangement of voltage controlled oscillator
US3831113A (en) * 1973-06-01 1974-08-20 Rca Corp Relaxation oscillator
DE2912492A1 (en) * 1979-03-29 1980-10-09 Siemens Ag MONOLITHICALLY INTEGRATED RECTANGLE IMPULSE GENERATOR
US4471326A (en) * 1981-04-30 1984-09-11 Rca Corporation Current supplying circuit as for an oscillator
NL8302215A (en) * 1983-06-22 1985-01-16 Philips Nv POWER SOURCE SWITCH.
JPS60263507A (en) * 1984-06-11 1985-12-27 Nec Corp Oscillating circuit
JPH0659024B2 (en) * 1985-12-23 1994-08-03 日本電気株式会社 Time constant circuit
US4667146A (en) * 1986-10-10 1987-05-19 Tektronix, Inc. Voltage-controlled push-pull current source

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011172213A (en) * 2010-01-18 2011-09-01 Rohm Co Ltd Current mirror circuit, drive circuit and oscillator of light-emitting element using the same, current drive circuit, and light-emitting device using the same
US10345833B2 (en) 2016-06-28 2019-07-09 Mitsubishi Electric Corporation Voltage-current converter and load driver

Also Published As

Publication number Publication date
DE69118798D1 (en) 1996-05-23
EP0477907A2 (en) 1992-04-01
KR950005155B1 (en) 1995-05-19
CA2052248A1 (en) 1992-03-27
DE69118798T2 (en) 1996-09-05
EP0477907B1 (en) 1996-04-17
CA2052248C (en) 1994-07-26
KR920007320A (en) 1992-04-28
EP0664502A2 (en) 1995-07-26
EP0477907A3 (en) 1993-06-30
EP0664502A3 (en) 1997-08-06
JP2763393B2 (en) 1998-06-11
US5146188A (en) 1992-09-08

Similar Documents

Publication Publication Date Title
EP0735677B1 (en) Oscillator circuit having oscillation frequency independent from the supply voltage value
US4891609A (en) Ring oscillator
US6362697B1 (en) Low supply voltage relaxation oscillator having current mirror transistors supply for capacitors
US8203392B2 (en) Oscillator stabilized for temperature and power supply variations
CN104426479A (en) Low-power consumption, low-jitter, and wide working-range crystal oscillator circuit
JP2560983B2 (en) Semiconductor device
JPH04133113A (en) Constant-current circuit and oscillation circuit
JP3586172B2 (en) Semiconductor integrated circuit and phase locked loop circuit
CN111464152A (en) Circuit and method for realizing low temperature drift and low power consumption of on-chip clock
US6734747B1 (en) Piezoelectric oscillator
JP2003173212A (en) Cmos reference voltage generating circuit and power supply monitoring circuit
JPH06196976A (en) Signal generator
JPH01161906A (en) Oscillation circuit
JPH07271322A (en) Voltage conversion circuit
US11476803B2 (en) Oscillating circuit and electronic device
CN203504497U (en) Low power consumption, low jittering, and wide work range crystal oscillator circuit
JP2008211757A (en) Temperature compensated piezoelectric oscillator
JP3132212B2 (en) Crystal oscillation circuit
CN114553193B (en) Clock generation circuit and apparatus insensitive to supply voltage and temperature
US20050110583A1 (en) Reference voltage generator for logic elements providing stable and predefined gate propagation time
KR100310488B1 (en) Simple voltage-to-current converting circuit with wide control range
JPH0697732A (en) Oscillation circuit
JPS63185108A (en) High frequency oscillating circuit
JPH06152244A (en) Piezoelectric oscillation circuit
CN113691220A (en) On-chip low frequency oscillator