JPH04132904A - Fine adjustment mechanism of scanning tunnel microscope - Google Patents

Fine adjustment mechanism of scanning tunnel microscope

Info

Publication number
JPH04132904A
JPH04132904A JP25631590A JP25631590A JPH04132904A JP H04132904 A JPH04132904 A JP H04132904A JP 25631590 A JP25631590 A JP 25631590A JP 25631590 A JP25631590 A JP 25631590A JP H04132904 A JPH04132904 A JP H04132904A
Authority
JP
Japan
Prior art keywords
piezoelectric element
probe
electrodes
electrode
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25631590A
Other languages
Japanese (ja)
Other versions
JP2948644B2 (en
Inventor
Yotaro Hatamura
洋太郎 畑村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP25631590A priority Critical patent/JP2948644B2/en
Publication of JPH04132904A publication Critical patent/JPH04132904A/en
Application granted granted Critical
Publication of JP2948644B2 publication Critical patent/JP2948644B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To negate the dynamic load generated at a coupling part between a fixed part and a piezoelectric element thereby to ensure high speed operation of a probe by so forming the piezoelectric element and so arranging electrodes as to be symmetric to the coupling part of the piezoelectric element. CONSTITUTION:A cylindrical piezoelectric element 31 is formed to be symmetric to a coupling part thereof in the up-and-down direction. For example, when the same predetermined voltage is impressed by a direct current voltage source 35 to between an electrode 32 and electrodes 21, 33 in a manner that the electrodes 21, 33 become positive, a probe 4 can be moved in a Z-axis direction by extending the piezoelectric element 31 in the Z-axis direction, i.e., in the axial direction. In this case, the lower half of the piezoelectric element 31 is extended downward and the upper half is extended upward. Since the extending amount is the same, the same masses are moved by the same quantity in the opposite directions. Therefore, a force is generated at the upper side and lower side of a coupling part between a fixed part 30 and a flange 31a in the Z-axis direction. The force is thus negated, thereby acting nothing to the coupling part. Accordingly, the probe can be driven at high speeds.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は走査型トンネル顕微鏡の微動機構に関し、特に
試料の表面等において原子レベルの観察を行うのに好適
な走査型トンネル顕微鏡の微動機構に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fine movement mechanism of a scanning tunneling microscope, and more particularly to a fine movement mechanism of a scanning tunneling microscope suitable for performing atomic level observations on the surface of a sample, etc. It is something.

〔従来の技術〕[Conventional technology]

第19図は一般的な走査型トンネル顕微鏡(以下STM
という)の構成を示す。第19図において、1はL字型
フレーム、2はフレーム1の上部に取り付けた粗動機構
、3は粗動機構2の先部に固定された微動機構である。
Figure 19 shows a typical scanning tunneling microscope (STM).
). In FIG. 19, 1 is an L-shaped frame, 2 is a coarse movement mechanism attached to the top of the frame 1, and 3 is a fine movement mechanism fixed to the tip of the coarse movement mechanism 2.

微動機構3の下端には、図中上下方向に向いた姿勢で探
針4が取り付けられている。フレーム1の水平部分を形
成するステージIAにおいて、探針4が臨む部位に試料
台1aが形成され、その上に試料5が配置される。
A probe 4 is attached to the lower end of the fine movement mechanism 3 so as to face vertically in the figure. In the stage IA forming the horizontal portion of the frame 1, a sample stage 1a is formed at a portion facing the probe 4, and the sample 5 is placed on it.

探針4は試料5に極めて接近して配置される。探針4と
試料5との間には電源6により所定の直流電圧が印加さ
れ、サーボ回路7による制御で探針4が試料5に対し所
定距離になると探針4にトンネル電流が流れる。探針4
を流れるトンネル電流はトンネル電流増幅器8によって
増幅され、サーボ回路7に与えられる。サーボ回路7は
、入力されたトンネル電流の情報に基づいて、探針4に
おいて一定のトンネル電流が流れるように、探針4の位
置を制御する。これによって探針4と試料5の距離は常
に一定になるように制御される。サーボ回路7による探
針4の制御データはメモリ9に記憶される。10はxY
走査回路で、XY走査回路10によって微動機構3を駆
動し、探針4を試料5の観察表面に対し平行なXY平面
内で走査させる。微動機構3をX軸及びY軸の方向に駆
動したデータはメモリに与えられ、記憶される。11は
マイクロコンピュータで、ここで信号処理が行われる。
The probe 4 is placed very close to the sample 5. A predetermined DC voltage is applied between the probe 4 and the sample 5 by a power supply 6, and when the probe 4 reaches a predetermined distance from the sample 5 under the control of a servo circuit 7, a tunnel current flows through the probe 4. Probe 4
The tunnel current flowing through is amplified by a tunnel current amplifier 8 and provided to a servo circuit 7. The servo circuit 7 controls the position of the probe 4 so that a constant tunnel current flows in the probe 4 based on the input tunnel current information. As a result, the distance between the probe 4 and the sample 5 is controlled to be always constant. Control data for the probe 4 by the servo circuit 7 is stored in the memory 9. 10 is xY
The fine movement mechanism 3 is driven by the XY scanning circuit 10 in the scanning circuit, and the probe 4 is caused to scan within the XY plane parallel to the observation surface of the sample 5. Data for driving the fine movement mechanism 3 in the X-axis and Y-axis directions is given to the memory and stored. A microcomputer 11 performs signal processing.

マイクロコンピュータ11はメモリ9に記憶された探針
4に関する試料5の表面との距離、X軸及びY軸の方向
の移動距離の各データを入力して、走査した試料5の表
面の画像を作成し、表示装置12に表示する。このよう
にしてSTMで観察された箇所の画像が表示装置12に
表示される。
The microcomputer 11 inputs data stored in the memory 9 regarding the distance between the probe 4 and the surface of the sample 5 and the distance traveled in the X-axis and Y-axis directions to create an image of the scanned surface of the sample 5. and displays it on the display device 12. The image of the location observed by STM in this manner is displayed on the display device 12.

上記の微動機構3及び探針4を拡大して示すと第20図
に示す如くなる。第20図は微動機構3の縦断面図を示
す。また第20図中のA−A線断面とB−B線断面をそ
れぞれ第21図と第22図で示す。微動機構3は円筒形
に形成された圧電素子であり、図中その上端を固定部2
aに接着剤によって結合されている。以下では微動機構
を圧電素子と呼ぶ。固定部2aは粗動機構2の一部であ
る。円筒形をした圧電素子3の内面には全周囲に且つ軸
方向の大部分にわたって電極20が形成され、外面には
、上半分に円筒形状の電極21、下半分には90度の角
度をずらせて4枚の矩形電極22a〜22dが配設され
ている。第22図で明らかなように対向する一対の電極
22 a+  22 cは圧電素子3をX軸方向に変形
動作させるための電極であり、同じく一対の電極22b
、22dは圧電素子3をY軸方向に変形動作させるため
の電極である。圧電素子3の図中下端部には円筒の内面
部分に固定ネジ23を用いて探針4が取り付けられてい
る。第20図において、Y軸方向は圧電素子3の軸方向
であり、このZ軸方向に直角なXY平面を形成するX軸
方向及びY軸方向は走査方向である。
An enlarged view of the fine movement mechanism 3 and the probe 4 is shown in FIG. 20. FIG. 20 shows a longitudinal sectional view of the fine movement mechanism 3. 21 and 22 respectively show a cross section along line AA and line B-B in FIG. 20. The fine movement mechanism 3 is a piezoelectric element formed in a cylindrical shape, and its upper end is connected to the fixed part 2 in the figure.
It is bonded to a with adhesive. Hereinafter, the fine movement mechanism will be referred to as a piezoelectric element. The fixed portion 2a is a part of the coarse movement mechanism 2. An electrode 20 is formed on the inner surface of the cylindrical piezoelectric element 3 over the entire circumference and most of the axial direction, and on the outer surface, a cylindrical electrode 21 is formed on the upper half, and an electrode 21 is arranged on the lower half at an angle of 90 degrees. Four rectangular electrodes 22a to 22d are arranged. As is clear from FIG. 22, a pair of opposing electrodes 22a+22c are electrodes for deforming the piezoelectric element 3 in the X-axis direction, and a pair of electrodes 22b also
, 22d are electrodes for deforming the piezoelectric element 3 in the Y-axis direction. A probe 4 is attached to the lower end of the piezoelectric element 3 in the figure using a fixing screw 23 on the inner surface of the cylinder. In FIG. 20, the Y-axis direction is the axial direction of the piezoelectric element 3, and the X-axis direction and Y-axis direction, which form the XY plane perpendicular to the Z-axis direction, are the scanning directions.

第23図を参照して微動機構である圧電素子3の動作に
ついて説明する。第23図の(A)に示す状態は、電極
20と電極21.22a 〜22dのそれぞれとの間に
全く電圧を印加しない状態を示している。第23図(B
)に示す如く電極20と電極21との間に直流源24で
所定の電圧を印加すると、圧電素子3は軸方向に伸長さ
れ、従って、Z軸方向に微動機構は伸びることになる。
The operation of the piezoelectric element 3, which is a fine movement mechanism, will be explained with reference to FIG. The state shown in FIG. 23A shows a state in which no voltage is applied between the electrode 20 and each of the electrodes 21.22a to 22d. Figure 23 (B
), when a predetermined voltage is applied between the electrodes 20 and 21 by the DC source 24, the piezoelectric element 3 is extended in the axial direction, and therefore the fine movement mechanism is extended in the Z-axis direction.

これによって探針4の2軸方向の位置を変化させること
が可能となる。また第23図(C)に示す如く電極20
とX軸方向の電極22Cに直流源24で所定電圧を印加
するとX軸の正側に圧電素子3を変形させることができ
る。これによって探針4はX軸方向について正の側に移
動する。また電極20と電極22aとの間に同様に所定
電圧を印加すると、探針4をX軸方向の負の側に移動さ
せることができる。同様にして電極20とY軸方向の電
極22b、22dとの間で適宜に選択して所定電圧を印
加すると、Y軸方向に圧電素子3を変形させることによ
り探針4をY軸方向に移動させることができる。また探
針4のX軸方向とY軸方向の移動を適当に組み合わせる
ことによりXY平面内で探針4の先端位置を任意に変化
させることが可能となる。
This makes it possible to change the position of the probe 4 in the two axial directions. Further, as shown in FIG. 23(C), the electrode 20
By applying a predetermined voltage from the DC source 24 to the electrode 22C in the X-axis direction, the piezoelectric element 3 can be deformed to the positive side of the X-axis. This causes the probe 4 to move toward the positive side in the X-axis direction. Further, by similarly applying a predetermined voltage between the electrode 20 and the electrode 22a, the probe 4 can be moved to the negative side in the X-axis direction. Similarly, when a predetermined voltage is appropriately selected and applied between the electrode 20 and the electrodes 22b and 22d in the Y-axis direction, the probe 4 is moved in the Y-axis direction by deforming the piezoelectric element 3 in the Y-axis direction. can be done. Furthermore, by appropriately combining the movements of the probe 4 in the X-axis direction and the Y-axis direction, it is possible to arbitrarily change the tip position of the probe 4 within the XY plane.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記STMにおける従来の圧電素子3による探針4を移
動させる構造について、圧電素子3は固定部2aに片持
ち梁の構造で接着剤で結合して取付けられているため、
圧電素子3を急速に変形動作させて探針4を高速で動か
す場合、圧電素子3、探針4、固定ネジ23等の質量を
有する部分を高速で動かすことになるため、固定部2a
と圧電素子3の間の結合部には動的荷重が発生する。こ
の動的荷重に含まれる要素は、Z軸方向の動作の場合に
は力要素、X軸方向又はY軸方向の動作の場合にはモー
メント要素と力要素である。このため、探針4をより高
速に動作させようとする場合には、固定部2aと圧電素
子3の結合部の強度、共振周波数等による制限を受け、
ある程度以上に高速化を図ることができないという不具
合があった。
Regarding the conventional structure of moving the probe 4 using the piezoelectric element 3 in the above-mentioned STM, the piezoelectric element 3 is attached to the fixing part 2a in a cantilever structure and bonded with adhesive.
When the piezoelectric element 3 is rapidly deformed and the probe 4 is moved at high speed, parts having mass such as the piezoelectric element 3, the probe 4, and the fixing screw 23 are moved at high speed.
A dynamic load occurs at the connection between the piezoelectric element 3 and the piezoelectric element 3. The elements included in this dynamic load are a force element in the case of movement in the Z-axis direction, and a moment element and a force element in the case of movement in the X-axis direction or Y-axis direction. Therefore, when attempting to operate the probe 4 at higher speeds, there are limitations due to the strength of the joint between the fixed part 2a and the piezoelectric element 3, the resonance frequency, etc.
There was a problem in that the speed could not be increased beyond a certain level.

本発明の目的は、片持ち梁構造で取り付けられた筒形状
を有する圧電素子によって構成される微動機構の上記問
題に鑑み、これを有効に解決すべく、圧電素子の高速動
作時の動的バランスをとることにより、圧電素子を固定
するための固定部と圧電素子との間の結合部に生じる動
的荷重を打消し又は低減し、探針の高速動作を実現した
STMの微動機構を提供することにある。
In view of the above-mentioned problem of a fine movement mechanism constituted by a piezoelectric element having a cylindrical shape attached in a cantilevered structure, an object of the present invention is to effectively balance the dynamic balance during high-speed operation of the piezoelectric element in order to effectively solve the problem. To provide a fine movement mechanism for STM that realizes high-speed movement of a probe by canceling out or reducing the dynamic load generated at a joint between a fixing part for fixing a piezoelectric element and a piezoelectric element. There is a particular thing.

〔課題を解決するための手段〕 本発明に係る第1の走査型トンネル顕微鏡の微動機構は
、先端に探針が取付けられた筒型の圧電素子の内面及び
外面に複数個の電極を配設し、これらの電極の間に選択
的に電圧を印加して圧電素子を変形動作することにより
、前記探針を、試料との距離を変化するよう圧電素子の
軸方向に移動させ、又は軸方向に直角な方向に走査させ
る走査型トンネル顕微鏡の微動機構において、前記圧電
素子を形状及び電極の配役位置を、圧電素子の結合部に
関して対称的になるよう形成し、電極に電圧を印加して
圧電素子を動作させるとき探針を取付けた圧電素子部分
と取付けていない圧電素子部分を対称的に動作させ、圧
電素子の結合部に動的荷重が生じないように構成される
[Means for Solving the Problems] The fine movement mechanism of the first scanning tunneling microscope according to the present invention includes a plurality of electrodes arranged on the inner and outer surfaces of a cylindrical piezoelectric element having a probe attached to its tip. By selectively applying a voltage between these electrodes to deform the piezoelectric element, the probe is moved in the axial direction of the piezoelectric element to change the distance to the sample, or In a fine movement mechanism of a scanning tunneling microscope that scans in a direction perpendicular to When operating the element, the piezoelectric element portion to which the probe is attached and the piezoelectric element portion to which the probe is not attached are operated symmetrically, so that no dynamic load is generated at the joint of the piezoelectric elements.

本発明に係る第2の走査型トンネル顕微鏡の微動機構は
、−先端に探針が取付けられた筒型の圧電素子の内面及
び外面に複数個の電極を配設し、これらの電極の間に選
択的に電圧を印加して圧電素子を変形動作することによ
り、前記探針を、試料との距離を変化するよう圧電素子
の軸方向に移動させ、又は軸方向に直角な方向に走査さ
せる走査型トンネル顕微鏡の微動機構において、前記圧
電素子を内筒部として配設し、この圧電素子の周囲に外
筒部として形成される筒型の圧電素子を配設し、この外
筒部の圧電素子に複数個の電極を設け、電極に電圧を印
加して内筒部の圧電素子を動作させるとき、外筒部の圧
電素子の電極に電圧を印加して、内筒部の圧電素子の探
針を取付けた部分と外筒部の圧電素子部分を反対側に動
作させ、内筒部の圧電素子の結合部に動的荷重が生じな
いように構成される。
The fine movement mechanism of the second scanning tunneling microscope according to the present invention includes: - A plurality of electrodes are arranged on the inner and outer surfaces of a cylindrical piezoelectric element with a probe attached to the tip, and a plurality of electrodes are arranged between these electrodes. Scanning in which the probe is moved in the axial direction of the piezoelectric element or scanned in a direction perpendicular to the axial direction so as to change the distance to the sample by selectively applying a voltage to deform the piezoelectric element. In the fine movement mechanism of a type tunneling microscope, the piezoelectric element is arranged as an inner cylinder part, a cylindrical piezoelectric element formed as an outer cylinder part is arranged around this piezoelectric element, and the piezoelectric element of this outer cylinder part When applying a voltage to the electrodes to operate the piezoelectric element in the inner cylinder, apply a voltage to the electrodes of the piezoelectric element in the outer cylinder to move the probe of the piezoelectric element in the inner cylinder. The piezoelectric element part of the outer cylinder part is moved in the opposite direction to the part to which the piezoelectric element is attached, so that no dynamic load is applied to the connection part of the piezoelectric element of the inner cylinder part.

本発明に係る第3の走査型トンネル顕微鏡の微動機構は
、先端に探針が取付けられた筒型の圧電素子の内面及び
外面に複数個の電極を配設し、これらの電極の間に選択
的に電圧を印加して圧電素子を変形動作することにより
、前記探針を、試料との距離を変化するよう前記圧電素
子の軸方向に移動させ、又は前記軸方向に直角な方向に
走査させる走査型トンネル顕微鏡の微動機構において、
前記圧電素子の形状及び前記電極の配役位置を、圧電素
子の結合部に関して対称的になるよう形成し、且つ記圧
電素子の少なくとも探針取付は部を内筒部とし、探針取
付は部の周囲に外筒部として形成される筒型の圧電素子
を配設し、この外筒部の圧電素子に複数個の電極を設け
、電極に電圧を印加して圧電素子の探針取付は部を動作
させるとき探針取付は部と探針を取付けていない圧電素
子部分を対称的に動作させ、及び/又は、電極に電圧を
印加して圧電素子の探針取付は部を動作させるとき、前
記外筒部の圧電素子の電極に電圧を印加して、探針取付
は部と外筒部の圧電素子部分を互いに反対側に動作させ
、内筒部の圧電素子の結合部に動的荷重が生じないよう
に構成される。
The fine movement mechanism of the third scanning tunneling microscope according to the present invention includes a plurality of electrodes arranged on the inner and outer surfaces of a cylindrical piezoelectric element with a probe attached to the tip, and a selected electrode between these electrodes. By applying a voltage to deform the piezoelectric element, the probe is moved in the axial direction of the piezoelectric element to change the distance to the sample, or is scanned in a direction perpendicular to the axial direction. In the fine movement mechanism of a scanning tunneling microscope,
The shape of the piezoelectric element and the position of the electrodes are formed to be symmetrical with respect to the coupling part of the piezoelectric element, and at least the probe attachment part of the piezoelectric element is an inner cylindrical part, and the probe attachment part is an inner cylindrical part. A cylindrical piezoelectric element formed as an outer cylindrical part is arranged around the outer cylindrical part, a plurality of electrodes are provided on the piezoelectric element of this outer cylindrical part, and a voltage is applied to the electrodes to attach the probe to the piezoelectric element. When operating, the probe attachment part and the piezoelectric element part to which the probe is not attached are operated symmetrically, and/or when the probe attachment part of the piezoelectric element is operated by applying a voltage to the electrode, the above-mentioned A voltage is applied to the electrode of the piezoelectric element in the outer cylinder part, and the probe attachment part and the piezoelectric element part in the outer cylinder part are moved in opposite directions, and a dynamic load is applied to the connection part of the piezoelectric element in the inner cylinder part. It is configured so that it does not occur.

〔作用〕[Effect]

本発明による走査型トンネル顕微鏡の微動機構では、片
持ち梁構造で固定され、探針を取付けた筒型の圧電素子
の内面及び外面に所定の配列で電極が配設され、かかる
電極を適宜に選択して所定の電圧を印加することにより
、圧電素子を軸方向又は軸方向に直交する方向に変形動
作させることが可能であるものにおいて、前記圧電素子
の変形動作に対して、対称的構造を有し且つ対称的変形
動作を行う部分を設け、又は反対の変形動作を行うこと
のできる構造部分を設け、あるいは前記2つの部分を組
み合わせ、これによって前記変形動作に対して鏡像的な
変形動作を同時に生じさせ、前記圧電素子の結合部に生
じる動的荷重を打消す、又は低減させる。
In the fine movement mechanism of a scanning tunneling microscope according to the present invention, electrodes are arranged in a predetermined arrangement on the inner and outer surfaces of a cylindrical piezoelectric element fixed in a cantilever structure and equipped with a probe. In a device capable of deforming a piezoelectric element in the axial direction or in a direction orthogonal to the axial direction by selectively applying a predetermined voltage, the piezoelectric element has a symmetrical structure with respect to the deforming movement of the piezoelectric element. or a structural part capable of performing an opposite deformation action, or a combination of the two parts, whereby a deformation action that is a mirror image of said deformation action is provided. At the same time, the dynamic loads occurring at the joints of the piezoelectric elements are canceled out or reduced.

〔実施例〕〔Example〕

以下に、本発明の実施例を添付図面に基づいて説明する
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図〜第6図は本発明の第1実施例を示し、第1図は
圧電素子の形状と取付は構造及び電極の配役構造を縦断
面図で示し、第2図〜第5図は第1図中のA−A、〜、
D−D各部横断面を示し、第6図は当該圧電素子の変形
動作を示す。各図において、前述した従来技術の箇所で
説明した同一要素に同一の符号を付している。
1 to 6 show a first embodiment of the present invention, FIG. 1 shows the shape and mounting structure of the piezoelectric element and the arrangement structure of the electrodes in a vertical cross-sectional view, and FIGS. A-A in Figure 1, ~,
FIG. 6 shows a cross section of each part along the line D-D, and FIG. 6 shows the deformation operation of the piezoelectric element. In each figure, the same reference numerals are given to the same elements explained in the section of the prior art described above.

第1図において、30は粗動機構(図示せず)の固定部
であり、固定部30は平板状であり孔30aを有する。
In FIG. 1, 30 is a fixed part of a coarse movement mechanism (not shown), and the fixed part 30 has a flat plate shape and has a hole 30a.

31は例えば円筒形状を有する圧電素子で、その外面中
央部にフランジ31aが形成されている。圧電素子31
は前述の通り微動機構として動作し、軸方向に関して所
要の長さを有する。圧電素子31は固定部30の孔30
aに挿通され、フランジ31aが孔30aの段差部に接
着剤等で結合されて取付けられる。図示例で明らかなよ
うに、円筒形の圧電素子31が、結合部に関して上下に
対称となる形態に形成されている。
31 is a piezoelectric element having a cylindrical shape, for example, and a flange 31a is formed at the center of its outer surface. Piezoelectric element 31
operates as a fine movement mechanism as described above, and has a required length in the axial direction. The piezoelectric element 31 is inserted into the hole 30 of the fixing part 30.
a, and the flange 31a is attached to the stepped portion of the hole 30a by bonding with an adhesive or the like. As is clear from the illustrated example, the cylindrical piezoelectric element 31 is formed to be vertically symmetrical with respect to the coupling portion.

従って、フランジ31aの上側に上半部が形成され、そ
の下側に下半部が形成される。圧電素子31の下端には
固定ネジ23で探針4が取付けられている。円筒形の圧
電素子31の内面には、はぼ全面にわたって円筒形状の
電極32が設けられる。
Therefore, an upper half is formed above the flange 31a, and a lower half is formed below it. The probe 4 is attached to the lower end of the piezoelectric element 31 with a fixing screw 23. A cylindrical electrode 32 is provided on the inner surface of the cylindrical piezoelectric element 31 over almost the entire surface.

また圧電素子31の外面には、先ず下半部に関し、前記
従来の圧電素子3で説明した場合と同様に電極21と電
極22a〜22dが設けられている。
Further, on the outer surface of the piezoelectric element 31, an electrode 21 and electrodes 22a to 22d are provided on the lower half, similar to the case described for the conventional piezoelectric element 3.

一方、圧電素子31の上半部に関しては、下半部と対称
的な配置関係で、電極33と電極34a〜34dが設け
られる。電極33は電極21に対応し、電極34a〜3
4dは電極22a〜22dに対応する。圧電素子31の
外面におけるこれらの電極の配役状態は、横断面図であ
る第2図〜第5図で明らかである。
On the other hand, regarding the upper half of the piezoelectric element 31, the electrode 33 and the electrodes 34a to 34d are provided in a symmetrical arrangement relationship with the lower half. Electrode 33 corresponds to electrode 21, and electrodes 34a to 3
4d corresponds to the electrodes 22a to 22d. The arrangement of these electrodes on the outer surface of the piezoelectric element 31 is clearly seen in the cross-sectional views of FIGS. 2-5.

上記構造を有する圧電素子31において、電極のそれぞ
れの間に所定電圧を印加すると、圧電素子31に変形が
生じる。第6図(A)は電極間に何等の電圧が印加され
ない状態を示している。第6図(B)は、電極32と電
極21.33との間において直流電圧源35で電極21
.33が正電圧となるように同一の所定電圧を印加する
場合を示し、圧電素子31を2軸方向、すなわち軸方向
に伸ばすことによって探針4をZ軸方向に移動させるこ
とができる。この場合に、圧電素子31の下半部は下方
に伸び、上半部は上方に伸びる。上半部と下半部の伸び
量は同じであるので、このとき、同じ質量のものが同時
に同じ量だけ反対方向に動くことになり、その結果、固
定部30とフランジ31aの結合部に加わるZ軸方向の
力は上側と下側に生じるため、相互に打ち消され、その
結合部には何等の力も作用しないことになる。
In the piezoelectric element 31 having the above structure, when a predetermined voltage is applied between each of the electrodes, the piezoelectric element 31 is deformed. FIG. 6(A) shows a state in which no voltage is applied between the electrodes. FIG. 6(B) shows that the electrode 21 is connected to the DC voltage source 35 between the electrode 32 and the electrode 21.33.
.. The case is shown in which the same predetermined voltage is applied so that 33 becomes a positive voltage, and by extending the piezoelectric element 31 in two axial directions, that is, in the axial direction, the probe 4 can be moved in the Z-axis direction. In this case, the lower half of the piezoelectric element 31 extends downward, and the upper half extends upward. Since the amount of extension of the upper half and the lower half is the same, at this time, objects of the same mass move in opposite directions by the same amount at the same time, and as a result, the force is applied to the joint between the fixed part 30 and the flange 31a. Since the forces in the Z-axis direction occur on the upper and lower sides, they cancel each other out, and no force acts on the joint.

次に探針4がX軸又はY軸の方向に移動させるべく圧電
素子31を変形させる場合には、例えば第6図(C)に
示す如く電極32と電極22cの間、及び電極32と電
極34cの間に直流電圧源35所定の電圧を印加する。
Next, when the piezoelectric element 31 is deformed so that the probe 4 moves in the X-axis or Y-axis direction, for example, as shown in FIG. 34c, a DC voltage source 35 applies a predetermined voltage.

このように電圧を印加すれば、圧電素子31の下半部を
X軸方向の正側に変形させ、探針4を当該方向に移動さ
せることができる。同時に圧電素子31の上半部もX軸
方向の正側に移動させることができる。これにより、固
定部30とフランジ31aの結合部における曲げモーメ
ントが圧電素子31の上半部と下半部の各変形動作で打
ち消され、X軸方向の力のみが作用することになる。こ
うして結合部での曲げモーノ、ントの作用を取除くこと
ができる。結合部における曲げモーメントをなくす作用
については、X軸方向の負側、及びY軸方向の正負の側
についても電圧を印加する電極の選択を変更するだけで
同様に生じさせることができる。
By applying a voltage in this manner, the lower half of the piezoelectric element 31 can be deformed in the positive direction of the X-axis, and the probe 4 can be moved in that direction. At the same time, the upper half of the piezoelectric element 31 can also be moved to the positive side in the X-axis direction. As a result, the bending moment at the joint between the fixing part 30 and the flange 31a is canceled out by the deformation movements of the upper and lower halves of the piezoelectric element 31, and only the force in the X-axis direction is applied. In this way, the effects of bending forces on the joint can be eliminated. The effect of eliminating the bending moment at the joint can be similarly achieved on the negative side in the X-axis direction and the positive and negative sides in the Y-axis direction by simply changing the selection of electrodes to which voltages are applied.

上記の如き形状及び電極の配置構造を有する圧電素子3
1によれば、電極を適宜に選択し所定の電圧を印加して
鏡像′的な動作を発生させると、圧電素子31と固定部
30の間の結合部における動的荷重を打ち消すことがで
きるので、圧電素子31の変形動作を高速化でき、もっ
て探針4の動作を高速化することができる。なお、前記
実施例で圧電素子31の形状を円筒形としたが、形状は
これに限定されない。また圧電素子31の形状は上下に
対称としたが、厳密に完全に対称である必要はなく、探
針4が取り付けられた圧電素子31の下半部の変形動作
に起因して結合部に発生するZ軸方向の力及びX軸又は
Y軸の方向の曲げモーメントを完全に打ち消す、又は部
分的に低減するものであれば、任意な形状を採用するこ
とができる。
Piezoelectric element 3 having the shape and electrode arrangement structure as described above
According to No. 1, if the electrodes are appropriately selected and a predetermined voltage is applied to generate a mirror image motion, the dynamic load at the joint between the piezoelectric element 31 and the fixed part 30 can be canceled out. , the deformation operation of the piezoelectric element 31 can be sped up, and the operation of the probe 4 can therefore be sped up. In addition, although the shape of the piezoelectric element 31 was made into the cylindrical shape in the said Example, the shape is not limited to this. In addition, although the shape of the piezoelectric element 31 is vertically symmetrical, it does not have to be strictly and completely symmetrical; Any shape can be adopted as long as it completely cancels out or partially reduces the force in the Z-axis direction and the bending moment in the X-axis or Y-axis direction.

例えば、圧電素子31は結合部に関して非対称の形状で
あっても構わない。
For example, the piezoelectric element 31 may have an asymmetrical shape with respect to the coupling portion.

第7図〜第12図は本発明の第2実施例を示す。7 to 12 show a second embodiment of the present invention.

本実施例において第7図は第1図と同様な図、第9図〜
第11図は第2図〜第5図と同様な図、第12図は第6
図と同様な図である。各図において、前記実施例で説明
した同一の要素には同一の符号を付している。固定部3
0及びその孔30a1圧電素子のフランジ31aと、こ
れらの結合構造は前記の第1実施例の場合と同じである
。本実施例による圧電素子41も前記の圧電素子31と
同様に結合部に関し上下に対称に形成されている点は同
じである。本実施例による圧電素子41の特徴点は、圧
電素子41の上半部及び下半部における筒部が内外2重
に形成されている点である。41Aは下半部の内筒部、
41八′は上半部の内筒部、41Bは下半部の外筒部、
41B′は上半部の外筒部である。内筒部41A、41
A’ と外筒部41B、41B’ はそれぞれ所定の距
離を隔てて配設される。下部内筒部41Aの形状及び探
針4の取付は構造は第1実施例の場合と同じである。下
部内筒部41Aにおける電極及びそれらの配役状態につ
いては、外面に円筒形状の電極42が設けられ、内面に
は、中央部側に円筒形状の電極43が設けられ、端部側
に90度の角度をずらせて4枚の矩形電極44a〜44
dが設けられる。同様に、上部内筒部41A′における
電極及びそれらの配役状態については、外面に円筒形状
の電極45が設けられ、内面には、中央部側に円筒形状
の電極46が設けられ、端部側に90度の角度をずらせ
て4枚の矩形電極47a〜47dが設けられている。次
に、下部外筒部41Bにおける電極及びそれらの配役状
態については、内面部に円筒形状の電極48が設けられ
、外面には、中央部側に円筒形状の電極49が設けられ
、端部側に90度の角度をずらせて4枚の矩形電極50
a〜50dが設けられている。上部外筒部41B′にお
ける電極及びそれらの配役状態については、内面部に円
筒形状の電極51が設けられ、外面には、中央部側に円
筒形状の電極52が設けられ、端部側に90度の角度を
ずらせて4枚の矩形電極53a〜53dが設けられてい
る。下部内筒部41A1上部内筒部41A’、下部外筒
部41B1上部外筒部41B′のそれぞれの内面及び外
面における電極の配役状態は、第8図〜第11図の横断
面図を参照すれば明らかである。
In this embodiment, FIG. 7 is similar to FIG. 1, and FIGS.
Figure 11 is similar to Figures 2 to 5, Figure 12 is similar to Figure 6.
It is a figure similar to the figure. In each figure, the same reference numerals are given to the same elements as explained in the above embodiment. Fixed part 3
0, its hole 30a1, the flange 31a of the piezoelectric element, and their coupling structure are the same as in the first embodiment. Similarly to the piezoelectric element 31 described above, the piezoelectric element 41 according to this embodiment is also formed vertically symmetrically with respect to the coupling portion. A feature of the piezoelectric element 41 according to this embodiment is that the cylindrical portions in the upper and lower halves of the piezoelectric element 41 are formed double-layered, inside and outside. 41A is the inner cylinder part of the lower half,
418' is the inner cylinder part of the upper half, 41B is the outer cylinder part of the lower half,
41B' is the outer cylinder part of the upper half. Inner cylinder portion 41A, 41
A' and the outer cylindrical parts 41B and 41B' are arranged at a predetermined distance from each other. The shape of the lower inner cylindrical portion 41A and the mounting structure of the probe 4 are the same as in the first embodiment. Regarding the electrodes and their arrangement in the lower inner cylindrical part 41A, a cylindrical electrode 42 is provided on the outer surface, a cylindrical electrode 43 is provided on the inner surface toward the center, and a 90-degree angle electrode is provided on the inner surface. Four rectangular electrodes 44a to 44 at different angles
d is provided. Similarly, regarding the electrodes and their arrangement in the upper inner cylindrical portion 41A', a cylindrical electrode 45 is provided on the outer surface, a cylindrical electrode 46 is provided on the inner surface toward the center, and a cylindrical electrode 46 is provided on the inner surface toward the end. Four rectangular electrodes 47a to 47d are provided at angles of 90 degrees. Next, regarding the electrodes and their arrangement in the lower outer cylindrical part 41B, a cylindrical electrode 48 is provided on the inner surface, a cylindrical electrode 49 is provided on the outer surface toward the center, and a cylindrical electrode 49 is provided on the outer surface toward the end. Four rectangular electrodes 50 are arranged at an angle of 90 degrees.
a to 50d are provided. Regarding the electrodes and their arrangement in the upper outer cylindrical part 41B', a cylindrical electrode 51 is provided on the inner surface, a cylindrical electrode 52 is provided on the center side of the outer surface, and a cylindrical electrode 52 is provided on the end side. Four rectangular electrodes 53a to 53d are provided at different angles. For the arrangement of electrodes on the inner and outer surfaces of each of the lower inner cylinder part 41A1, upper inner cylinder part 41A', lower outer cylinder part 41B1, and upper outer cylinder part 41B', please refer to the cross-sectional views of FIGS. 8 to 11. It is obvious.

上記の構成において、下部内筒部41Aと上部内筒部4
1A′、下部外筒部41Bと上部外筒部41B′のそれ
ぞれは質量がほぼ等しくなるようにその長さや肉厚が決
定されている。
In the above configuration, the lower inner cylinder part 41A and the upper inner cylinder part 4
1A', the length and wall thickness of the lower outer cylindrical part 41B and the upper outer cylindrical part 41B' are determined so that their masses are approximately equal.

上記構成を有する圧電素子41における作用を説明する
。圧電素子41の軸方向、すなわちZ軸方向の伸びに関
しては前記第1実施例の場合と同じで、所定の電極の間
に電圧を印加することにより、下方向に下部内筒部41
Aを伸ばした時、上部内筒部41A′を上方向に伸ばす
ことによって、結合部に加わるZ軸方向の力を打ち消す
ことができる。またZ軸方向に垂直なXY平面における
X軸方向又はY軸方向に探針4を移動するべく、下部内
筒部41Aを変形する場合、例えば第12図に示すよう
にX軸方向の正側に探針を移動する場合には、電極42
と電極44cとの間、電極45と電極47cの間に直流
電圧源35で同一の電圧を印加する。この電圧印加によ
って、下部内筒部41A及び上部内筒部41A′は図示
の如くX軸方向の正側に変形し、結合部における曲げモ
ーメントを打ち消すことができる。また直流電圧源35
による電圧印加と同時に、電極48と電極50aとの間
、電極51と電極53aの間に他の直流電圧源35′に
より電圧を印加する。この電圧印加により下部外筒部4
1Bと上部外筒部41B′はX軸方向の負側に変形する
。外筒部41B、41B’の変形では、下部外筒部41
Bの変形は下部内筒部41Aの変形の反対側に、上部外
筒部41B’変形は上部内筒部41A′の反対側にそれ
ぞれ生じる。かかる内筒部41A、41A’ と外筒部
41B、41B’の反対側への変形動作によって、結合
部におけるX軸方向の力が打ち消される。以上にように
、固定部30とフランジ31aの結合部では動的な曲げ
モーメント及び力を取除くことができ、X軸方向におけ
る圧電素子41の変形動作及び探針4の動作の高速性を
保持することができる。Y軸方向においても、電圧を印
加する電極を変更するだけで同様な作用を生じさせるこ
とができる。
The operation of the piezoelectric element 41 having the above configuration will be explained. The extension of the piezoelectric element 41 in the axial direction, that is, the Z-axis direction, is the same as in the first embodiment, and by applying a voltage between predetermined electrodes, the lower inner cylinder part 41 is extended downward.
When A is extended, the force in the Z-axis direction applied to the joint can be canceled by extending the upper inner cylindrical portion 41A' upward. Furthermore, when deforming the lower inner cylindrical portion 41A in order to move the probe 4 in the X-axis direction or Y-axis direction in the XY plane perpendicular to the Z-axis direction, for example, as shown in FIG. When moving the probe to
The same voltage is applied by the DC voltage source 35 between the electrode 44c and the electrode 45 and the electrode 47c. By applying this voltage, the lower inner cylindrical portion 41A and the upper inner cylindrical portion 41A' are deformed toward the positive side in the X-axis direction as shown in the figure, thereby canceling out the bending moment at the joint. Also, the DC voltage source 35
Simultaneously with the voltage application by another DC voltage source 35', a voltage is applied between the electrode 48 and the electrode 50a and between the electrode 51 and the electrode 53a. By applying this voltage, the lower outer cylindrical portion 4
1B and the upper outer cylindrical portion 41B' are deformed to the negative side in the X-axis direction. In the deformation of the outer cylinder parts 41B and 41B', the lower outer cylinder part 41
The deformation of B occurs on the opposite side of the deformation of the lower inner cylinder part 41A, and the deformation of the upper outer cylinder part 41B' occurs on the opposite side of the upper inner cylinder part 41A'. This deformation action of the inner cylinder parts 41A, 41A' and the outer cylinder parts 41B, 41B' to the opposite sides cancels out the force in the X-axis direction at the joint. As described above, the dynamic bending moment and force can be removed at the joint between the fixed part 30 and the flange 31a, and the high-speed deformation movement of the piezoelectric element 41 and the movement of the probe 4 in the X-axis direction are maintained. can do. A similar effect can be produced in the Y-axis direction as well by simply changing the electrode to which the voltage is applied.

第13図〜第18図は本発明の第3実施例を示す。この
実施例は、前記の第2実施例において、外筒部の上半部
を取除いた構成を有しており、第2実施例で示した同一
の要素には同一の符号を付している。第13図は第7図
に対応する図であり、第14図〜第17図は第8図〜第
11図にそれぞれ対応する図であり、第18図は第12
図に対応する図である。本実施例の圧電素子51の場合
、基本的に第2実施例の圧電素子41の構成において上
部外筒部を取除いた構成であり、特別に追加される要素
はなく、その他の構造は前記の実施例と同じである。本
実施例の圧電素子51では、下部内筒部を51A1上部
内筒部を51A’、下部外筒部51Bとし、各筒部の電
極配設構造については、前記第2実施例と同一の符号を
付すものとする。
13 to 18 show a third embodiment of the present invention. This embodiment has a structure in which the upper half of the outer cylinder part is removed from the second embodiment, and the same elements shown in the second embodiment are denoted by the same reference numerals. There is. Figure 13 is a diagram corresponding to Figure 7, Figures 14 to 17 are diagrams corresponding to Figures 8 to 11, respectively, and Figure 18 is a diagram corresponding to Figure 12.
FIG. In the case of the piezoelectric element 51 of this embodiment, the structure is basically the same as that of the piezoelectric element 41 of the second embodiment except that the upper outer cylindrical portion is removed, and there are no specially added elements, and the other structure is the same as described above. This is the same as the embodiment. In the piezoelectric element 51 of this embodiment, the lower inner cylinder part is 51A, the upper inner cylinder part is 51A', and the lower outer cylinder part 51B, and the electrode arrangement structure of each cylinder part has the same reference numerals as in the second embodiment. shall be attached.

上記構成を有する圧電素子51における動作を第18図
を参照して説明する。探針4が取付けられた下部内筒部
51Aを2軸方向に変形動作させる場合には、下部内筒
部51Aを下方向に伸ばすと共に、上部内筒部51A′
を上方向に伸ばすように電極を選択して所定電圧を印加
する。これによって探針4を2軸方向に移動させるとき
、その結合部に生じる力を打消すことができる。このこ
とは前記実施例の場合と同じである。また第18図に示
すように、探針4をX軸方向の正側に移動させるときに
は、下部内筒部51Aについては電極42と電極42c
との間に、また下部外筒部51Bについては、電極48
と電極50aとの間に直流電圧源35によって所定の電
圧を印加する。
The operation of the piezoelectric element 51 having the above configuration will be explained with reference to FIG. 18. When deforming the lower inner cylinder part 51A to which the probe 4 is attached in two axial directions, the lower inner cylinder part 51A is extended downward and the upper inner cylinder part 51A'
A predetermined voltage is applied to the selected electrode so that it extends upward. Thereby, when the probe 4 is moved in two axial directions, the force generated at the joint can be canceled out. This is the same as in the previous embodiment. Further, as shown in FIG. 18, when moving the probe 4 to the positive side in the X-axis direction, the electrode 42 and the electrode 42c are
and between the electrode 48 and the lower outer cylindrical portion 51B.
A predetermined voltage is applied between the electrode 50a and the electrode 50a by a DC voltage source 35.

このように電圧を印加して下部内筒部51Aと下部外筒
部51Bを互いに反対側に変形動作させると、固定部3
0とフランジ31aの結合部ではX軸方向の動的荷重で
ある力と曲げモーメントが打ち消され、圧電素子51の
高速動作及び探針4の高速移動を行うことができる。探
針4のX軸方向の負側、及びY軸方向の正負の側の移動
についても同様に結合部の動的荷重を打ち消すことがで
き、高速動作を行うことができる。
When the lower inner cylindrical portion 51A and the lower outer cylindrical portion 51B are deformed in opposite directions by applying a voltage in this manner, the fixed portion 3
0 and the flange 31a, the force and bending moment, which are dynamic loads in the X-axis direction, are canceled out, allowing high-speed operation of the piezoelectric element 51 and high-speed movement of the probe 4. Similarly, when the probe 4 moves in the negative direction of the X-axis direction and in the positive and negative directions of the Y-axis direction, the dynamic load on the joint can be canceled out, and high-speed operation can be performed.

上記の実施例では、下部内筒部51AのX軸方向及びY
軸方向の動作に関して下部外筒部51Bを反対の変形動
作させるように電極を選択して電圧を印加するように構
成されている。これによれば、X軸方向及びY軸方向の
力と曲げモーメントを同時に外筒部51Bのみで打ち消
すことができる。
In the above embodiment, in the X-axis direction and the Y-axis direction of the lower inner cylinder portion 51A,
It is configured to select the electrodes and apply a voltage so as to cause the lower outer cylindrical portion 51B to deform in the opposite direction with respect to the axial movement. According to this, the force and bending moment in the X-axis direction and the Y-axis direction can be simultaneously canceled only by the outer cylinder portion 51B.

また第13図に示される構成を有する圧電素子において
、Z軸方向の変形動作についても、例えば下部内筒部5
1Aを伸ばすときには下部外筒部51Bを縮め、反対に
下部内筒部51Aを縮めるときに下部外筒部51Bを伸
ばすように構成することにより、結合部の動的荷重を打
ち消すこともできる。このような構成では、上側に形成
した筒部51A′を省略することが可能である。
Furthermore, in the piezoelectric element having the configuration shown in FIG. 13, regarding the deformation operation in the Z-axis direction, for example,
By configuring the lower outer cylindrical portion 51B to be contracted when the lower inner cylindrical portion 1A is extended, and conversely to extend the lower outer cylindrical portion 51B when the lower inner cylindrical portion 51A is shortened, the dynamic load on the joint portion can be canceled out. In such a configuration, the cylindrical portion 51A' formed on the upper side can be omitted.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明によれば、STM
において微動機構である圧電素子が筒形形状に作製され
、この圧電素子が固定部に接着剤等で結合され片持ち梁
構造で固定されるように構成されているものについて、
探針を移動させるための圧電素子の変形動作において、
当該変形動作と対称的に変形動作を生じる部分及びこの
変形を駆動する機構、又は当該変形動作と反対の変形動
作を行う部分及びこの変形を駆動する機構を設けるよう
にしたため、圧電素子と固定部の結合部に動的荷重がか
からない構造となり、その結果圧電素子の変形動作を高
速に行うことができ、これにより探針の移動動作を高速
化することができる。
As is clear from the above description, according to the present invention, STM
Regarding a piezoelectric element that is a fine movement mechanism made in a cylindrical shape, this piezoelectric element is bonded to a fixed part with an adhesive or the like and fixed in a cantilever structure.
In the deformation operation of the piezoelectric element to move the probe,
Since the piezoelectric element and the fixing part are provided with a part that causes a deformation action symmetrically with the deformation action and a mechanism that drives this deformation, or a part that performs a deformation action opposite to the deformation action and a mechanism that drives this deformation, As a result, the piezoelectric element can be deformed at high speed, and the probe can be moved at high speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る微動機構の第1実施例を示す縦断
面図、第2図は第1図中のA−A線断面図、第3図は第
1図中のB−B線断面図、第4図は第1図中のC−C線
断面図、第5図は第1図中のD−D線断面図、第6図は
第1実施例の微動機構の変形動作を説明する図、第7図
は本発明に係る第2実施例を示す縦断面図、第8図は第
7図中のA−A線断面図、第9図は第7図中のB−B線
断面図、第10図は第7図中のC−C線断面図、第11
図は第7図中のD−D線断面図、第12図は第2実施例
の微動機構の変形動作を説明する図、第13図は本発明
に係る第3実施例を示す縦断面図、第14図は第13図
中のA−A線断面図、第15図は第13図中のB−B線
断面図、第16図は第13図中のC−C線断面図、第1
7図は第13図中のD−D線断面図、第18図は第3実
施例の微動機構の変形動作を説明する図、第19図はS
TMの基本構成を示すブロック図、第20図は従来の微
動機構の取付は構造を示す縦断面図、第21図は第20
図中のA−A線断面図、第22図は第20図中のB−B
線断面図、第23図は従来の微動機構の変形動作を説明
するための図である。 〔符号の説明〕 2・・・・・・粗動機構 3・・・・・・微動機構(圧電素子) 4・・・・・・探針 5・・・・・・試料 23・・・・・固定ネジ 30・・・・・固定部 31、 41. 51 ・・・・圧電素子
FIG. 1 is a longitudinal cross-sectional view showing a first embodiment of the fine movement mechanism according to the present invention, FIG. 2 is a cross-sectional view taken along the line A-A in FIG. 1, and FIG. 3 is a cross-sectional view taken along the line B-B in FIG. 4 is a sectional view taken along the line CC in FIG. 1, FIG. 5 is a sectional view taken along the line D-D in FIG. 1, and FIG. 6 shows the deformation operation of the fine movement mechanism of the first embodiment. 7 is a longitudinal cross-sectional view showing the second embodiment of the present invention, FIG. 8 is a cross-sectional view taken along the line A-A in FIG. 7, and FIG. 9 is a cross-sectional view taken along the line B-B in FIG. 7. Line sectional view, Figure 10 is a line C-C line sectional view in Figure 7, Figure 11.
The figure is a sectional view taken along the line DD in FIG. 7, FIG. 12 is a diagram explaining the deformation operation of the fine movement mechanism of the second embodiment, and FIG. 13 is a longitudinal sectional view showing the third embodiment of the present invention. , FIG. 14 is a cross-sectional view taken along line A-A in FIG. 13, FIG. 15 is a cross-sectional view taken along line B-B in FIG. 13, and FIG. 16 is a cross-sectional view taken along line C-C in FIG. 1
7 is a sectional view taken along the line DD in FIG. 13, FIG. 18 is a diagram explaining the deformation operation of the fine movement mechanism of the third embodiment, and FIG.
A block diagram showing the basic configuration of TM, Fig. 20 is a vertical sectional view showing the structure of the installation of a conventional fine movement mechanism, and Fig.
A sectional view taken along the line A-A in the figure, and Fig. 22 is a cross-sectional view taken along the line B-B in Fig. 20.
A line sectional view, FIG. 23, is a diagram for explaining the deformation operation of the conventional fine movement mechanism. [Explanation of symbols] 2... Coarse movement mechanism 3... Fine movement mechanism (piezoelectric element) 4... Probe 5... Sample 23...・Fixing screw 30...Fixing part 31, 41. 51 ・・・Piezoelectric element

Claims (3)

【特許請求の範囲】[Claims] (1)先端に探針が取付けられた筒型の圧電素子の内面
及び外面に複数個の電極を配設し、これらの電極の間に
選択的に電圧を印加して前記圧電素子を変形動作するこ
とにより、前記探針を、試料との距離を変化するよう前
記圧電素子の軸方向に移動させ、又は前記軸方向に直角
な方向に走査させる走査型トンネル顕微鏡の微動機構に
おいて、前記圧電素子の形状及び前記電極の配設位置を
、圧電素子の結合部に関して対称的になるよう形成し、
電極に前記電圧を印加して前記圧電素子を動作させると
き前記探針を取付けた圧電素子部分と取付けていない圧
電素子部分を対称的に動作させ、圧電素子の前記結合部
に動的荷重が生じないようにしたことを特徴とする走査
型トンネル顕微鏡の微動機構。
(1) A plurality of electrodes are arranged on the inner and outer surfaces of a cylindrical piezoelectric element with a probe attached to the tip, and a voltage is selectively applied between these electrodes to deform the piezoelectric element. In a fine movement mechanism of a scanning tunneling microscope that moves the probe in the axial direction of the piezoelectric element to change the distance to the sample or scans in a direction perpendicular to the axial direction, the piezoelectric element The shape of the electrode and the arrangement position of the electrode are formed to be symmetrical with respect to the coupling part of the piezoelectric element,
When applying the voltage to the electrode to operate the piezoelectric element, the piezoelectric element portion to which the probe is attached and the piezoelectric element portion to which the probe is not attached are operated symmetrically, and a dynamic load is generated at the joint portion of the piezoelectric element. A fine movement mechanism of a scanning tunneling microscope, which is characterized by a structure that prevents micro-movement.
(2)先端に探針が取付けられた筒型の圧電素子の内面
及び外面に複数個の電極を配設し、これらの電極の間に
選択的に電圧を印加して前記圧電素子を変形動作するこ
とにより、前記探針を、試料との距離を変化するよう前
記圧電素子の軸方向に移動させ、又は前記軸方向に直角
な方向に走査させる走査型トンネル顕微鏡の微動機構に
おいて、前記圧電素子を内筒部として配設し、前記圧電
素子の周囲に外筒部として形成される筒型の圧電素子を
配設し、この外筒部の圧電素子に複数個の電極を設け、
電極に電圧を印加して前記内筒部の圧電素子を動作させ
るとき、前記外筒部の圧電素子の電極に電圧を印加して
、内筒部の圧電素子の探針を取付けた部分と外筒部の圧
電素子部分を反対側に動作させ、内筒部の圧電素子の結
合部に動的荷重が生じないようにしたことを特徴とする
走査型トンネル顕微鏡の微動機構。
(2) A plurality of electrodes are arranged on the inner and outer surfaces of a cylindrical piezoelectric element with a probe attached to the tip, and a voltage is selectively applied between these electrodes to deform the piezoelectric element. In a fine movement mechanism of a scanning tunneling microscope that moves the probe in the axial direction of the piezoelectric element to change the distance to the sample or scans in a direction perpendicular to the axial direction, the piezoelectric element is arranged as an inner cylindrical part, a cylindrical piezoelectric element formed as an outer cylindrical part is arranged around the piezoelectric element, and a plurality of electrodes are provided on the piezoelectric element of the outer cylindrical part,
When a voltage is applied to the electrodes to operate the piezoelectric element in the inner cylinder part, a voltage is applied to the electrodes of the piezoelectric element in the outer cylinder part, so that the part of the piezoelectric element in the inner cylinder part to which the probe is attached and the outer part are connected. A fine movement mechanism for a scanning tunneling microscope, characterized in that the piezoelectric element portion of the cylindrical portion is moved to the opposite side so that no dynamic load is generated at the connection portion of the piezoelectric element of the inner cylindrical portion.
(3)先端に探針が取付けられた筒型の圧電素子の内面
及び外面に複数個の電極を配設し、これらの電極の間に
選択的に電圧を印加して前記圧電素子を変形動作するこ
とにより、前記探針を、試料との距離を変化するよう前
記圧電素子の軸方向に移動させ、又は前記軸方向に直角
な方向に走査させる走査型トンネル顕微鏡の微動機構に
おいて、前記圧電素子の形状及び前記電極の配設位置を
、圧電素子の結合部に関して対称的になるよう形成し、
且つ前記圧電素子の少なくとも探針取付け部を内筒部と
し、前記探針取付け部の周囲に外筒部として形成される
筒型の圧電素子を配設し、この外筒部の圧電素子に複数
個の電極を設け、電極に電圧を印加して圧電素子の前記
探針取付け部を動作させるとき前記探針取付け部と探針
を取付けていない圧電素子部分を対称的に動作させ、及
び/又は、電極に電圧を印加して圧電素子の探針取付け
部を動作させるとき、前記外筒部の圧電素子の電極に電
圧を印加して、前記探針取付け部と外筒部の圧電素子部
分を互いに反対側に動作させ、内筒部の圧電素子の結合
部に動的荷重が生じないようにしたことを特徴とする走
査型トンネル顕微鏡の微動機構。
(3) A plurality of electrodes are arranged on the inner and outer surfaces of a cylindrical piezoelectric element with a probe attached to the tip, and a voltage is selectively applied between these electrodes to deform the piezoelectric element. In a fine movement mechanism of a scanning tunneling microscope that moves the probe in the axial direction of the piezoelectric element to change the distance to the sample or scans in a direction perpendicular to the axial direction, the piezoelectric element The shape of the electrode and the arrangement position of the electrode are formed to be symmetrical with respect to the coupling part of the piezoelectric element,
Further, at least the probe attachment portion of the piezoelectric element is an inner tube portion, a cylindrical piezoelectric element formed as an outer tube portion is disposed around the probe attachment portion, and a plurality of piezoelectric elements of the outer tube portion are arranged. and/or when a voltage is applied to the electrode to operate the probe attachment portion of the piezoelectric element, the probe attachment portion and a portion of the piezoelectric element to which the probe is not attached are operated symmetrically; and/or When a voltage is applied to the electrode to operate the probe attachment portion of the piezoelectric element, a voltage is applied to the electrode of the piezoelectric element of the outer cylinder portion to cause the probe attachment portion and the piezoelectric element portion of the outer cylinder portion to operate. A fine movement mechanism for a scanning tunneling microscope, characterized in that the fine movement mechanism is moved in opposite directions so that no dynamic load is generated on the joint of the piezoelectric elements in the inner cylinder.
JP25631590A 1990-09-26 1990-09-26 Fine movement mechanism Expired - Fee Related JP2948644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25631590A JP2948644B2 (en) 1990-09-26 1990-09-26 Fine movement mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25631590A JP2948644B2 (en) 1990-09-26 1990-09-26 Fine movement mechanism

Publications (2)

Publication Number Publication Date
JPH04132904A true JPH04132904A (en) 1992-05-07
JP2948644B2 JP2948644B2 (en) 1999-09-13

Family

ID=17290961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25631590A Expired - Fee Related JP2948644B2 (en) 1990-09-26 1990-09-26 Fine movement mechanism

Country Status (1)

Country Link
JP (1) JP2948644B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002323312A (en) * 2001-04-26 2002-11-08 Mitsutoyo Corp High precision movement mechanism
US7732985B2 (en) * 2004-12-16 2010-06-08 Electronics And Telecommunications Research Institute Micro stage using piezoelectric element
US10886150B2 (en) 2017-10-13 2021-01-05 Weber Machinenbau GmbH Breidenbach Positioning apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002323312A (en) * 2001-04-26 2002-11-08 Mitsutoyo Corp High precision movement mechanism
US7732985B2 (en) * 2004-12-16 2010-06-08 Electronics And Telecommunications Research Institute Micro stage using piezoelectric element
US10886150B2 (en) 2017-10-13 2021-01-05 Weber Machinenbau GmbH Breidenbach Positioning apparatus

Also Published As

Publication number Publication date
JP2948644B2 (en) 1999-09-13

Similar Documents

Publication Publication Date Title
TWI446000B (en) Mems scanning micromirror
US5656769A (en) Scanning probe microscope
CN107948532B (en) Optical image stabilizing system, imaging device and electronic device
US7690047B2 (en) Scanning probe apparatus
DE102008049647B4 (en) Micromechanical element and method for operating a micromechanical element
US8860260B2 (en) High-scan rate positioner for scanned probe microscopy
JPH11133040A (en) Fine motion mechanism apparatus and scanning type probe microscope
US5223713A (en) Scanner for scanning tunneling microscope
JPH04132904A (en) Fine adjustment mechanism of scanning tunnel microscope
US7765606B2 (en) Scanning probe apparatus
DE60122834T2 (en) Torsion-tilt component
JP4102343B2 (en) 2-axis actuator with large area stage
JP4623547B2 (en) Non-reaction type displacement expansion positioning device
JP5268008B2 (en) Scanner device for scanning probe microscope
US6822933B2 (en) High density data storage module
CN112577684A (en) Planar large-displacement piezoelectric micro-vibration table
JP2006329704A (en) Scanning probe microscope
CN115793349A (en) Three-degree-of-freedom piezoelectric driving precision positioning platform
JPS63236992A (en) Piezoelectric-element fine adjustment mechanism
JP3104889B2 (en) XY scanner table for tunneling electron microscope using piezoelectric element
JPS63153405A (en) Scanning type tunnel microscope
JPH0894644A (en) Scanning system of scanning probe microscope
JPS62198820A (en) Optical deflector
JP3672751B2 (en) Piezoelectric element drive mechanism
JPH0433361B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees