JPH04132802A - Shaft sealing method of double-flow evacuating geothermal steam turbine and device thereof - Google Patents

Shaft sealing method of double-flow evacuating geothermal steam turbine and device thereof

Info

Publication number
JPH04132802A
JPH04132802A JP25448090A JP25448090A JPH04132802A JP H04132802 A JPH04132802 A JP H04132802A JP 25448090 A JP25448090 A JP 25448090A JP 25448090 A JP25448090 A JP 25448090A JP H04132802 A JPH04132802 A JP H04132802A
Authority
JP
Japan
Prior art keywords
steam
shaft sealing
shaft
pressure
gland
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25448090A
Other languages
Japanese (ja)
Inventor
Ryoji Muramoto
良二 村本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP25448090A priority Critical patent/JPH04132802A/en
Publication of JPH04132802A publication Critical patent/JPH04132802A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To reduce the construction cost as well as to save time and labor for operation and maintenance by supplying the shaft sealing steam of specified pressure a little lower than atmospheric pressure to the middle of a gland part being installed in a part where a turbine rotor pierces through a casing. CONSTITUTION:A pressure control valve 20 is controlled by an output signal out of a controller 22 from a deviation between detection pressure in a shaft sealing steam pipe 18 detected by a steam pressure detector 21 and the desired value and thereby a pressure of shaft sealing steam in the shaft sealing steam pipe 18 is set down to the specified pressure. The shaft sealing steam of this specified pressure is fed to each mid part of both gland parts 4, 4a, flowing into two evacuation parts 12, 12a by way of these gland parts 4, 4a, and then it flows into a condenser 11. On the other hand, from the atmospheric side of the gland parts 4, 4a, the shaft sealing steam to be supplied is of negative pressure, so that air is inhaled and it is flows into the evacuation parts 12, 12a together with the said shaft sealing steam, thus it flows in the condenser 11. Doing like this, cost is reduced and, what is more, time and labor for operation and maintenance is savable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、地熱蒸気がタービンに供給され、その排気が
直接接触式復水器に導かれる二流排気地熱蒸気タービン
において、ロータがケーシングに貫通する部分に設けら
れるグランド部の軸封方法及びその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a two-stream exhaust geothermal steam turbine in which geothermal steam is supplied to the turbine and its exhaust gas is led to a direct contact condenser, in which the rotor penetrates the casing. The present invention relates to a shaft sealing method and apparatus for a gland section provided in a part where the ground section is installed.

〔従来の技術〕[Conventional technology]

復水器を備えた蒸気タービンにおいては、翼段落にて膨
脹仕事をした排気は復水器に導かれて復水となり、排気
部は真空になるので、ロータがケ−シングを貫通する部
分に設けられたグランド部に軸封装置により軸封蒸気を
供給して空気を吸込まないようにしている。このような
軸封装置を備えた蒸気タービンとして第2図に示す直接
接触式復水器を備え、地熱蒸気により駆動される二流排
気地熱蒸気タービンが知られている。
In a steam turbine equipped with a condenser, the exhaust gas that has undergone expansion work in the blade stages is led to the condenser and becomes condensate, and the exhaust section becomes a vacuum, so the rotor penetrates the casing. A shaft sealing device supplies shaft sealing steam to the provided gland to prevent air from being sucked in. As a steam turbine equipped with such a shaft sealing device, there is known a two-stream exhaust geothermal steam turbine equipped with a direct contact condenser shown in FIG. 2 and driven by geothermal steam.

第2図において、ロータ1は図示しない動翼を備え、内
部ケーシング2はロータ1の動翼と2方間の翼段落を形
成する図示しない静翼を備えてロータ1を囲んでいる。
In FIG. 2, the rotor 1 includes moving blades (not shown), and the internal casing 2 surrounds the rotor 1 with stationary blades (not shown) forming blade stages on two sides of the moving blades of the rotor 1.

外部ケーシング3は内部ケーシング2を囲み、ロータ1
がケーシング3を貫通する両側の部分にはラビリンスパ
ツキンからなるグランド部4,4aが設けられている。
The outer casing 3 surrounds the inner casing 2 and the rotor 1
Gland portions 4, 4a made of labyrinth packings are provided on both sides of the casing 3 where the casing 3 is penetrated.

ロータ1はされた軸受5,5aにより指テされている。The rotor 1 is supported by parallel bearings 5, 5a.

発電機7はロータ1にカンプリングを介して接続されて
いる。
The generator 7 is connected to the rotor 1 via a camp ring.

内部ケーシング2の中央部の蒸気人口9に接続して蒸気
供給管10が設けられ、蒸気供給管10を経て蒸気人口
9から内部ケーシング2内に流入した蒸気は2方向に分
かれて翼段落を流れる。
A steam supply pipe 10 is provided connected to the steam port 9 in the center of the internal casing 2, and the steam that flows into the internal casing 2 from the steam port 9 via the steam supply pipe 10 is divided into two directions and flows through the blade stages. .

直接接触式の復水器11は外部ケーシング3に接続して
設けられ、2方向の翼段落を膨脹仕事して排気部12.
12aから排気された蒸気を外部から供給される冷却水
に接触させて冷却凝縮して復水にする。なお空気抽出器
13は地熱蒸気や冷却水に含まれる不凝縮ガスを抽出し
て復水器の真空を保持している。復水ポンプ14は復水
器11に下部に滞留する復水と冷却水との混合水を復水
供給管15を経て外部に送水する。
A direct contact type condenser 11 is connected to the outer casing 3 and expands the blade stages in two directions to perform exhaust part 12.
The steam exhausted from 12a is brought into contact with cooling water supplied from the outside to be cooled and condensed to form condensate. Note that the air extractor 13 extracts non-condensable gas contained in geothermal steam and cooling water to maintain a vacuum in the condenser. The condensate pump 14 sends mixed water of condensate and cooling water that remains in the lower part of the condenser 11 to the outside through a condensate supply pipe 15 .

軸封蒸気管工8はグランド部4.4aの中部に接続され
、この軸封蒸気管18に接続して軸封1気を供給する軸
封蒸気供給管19が設けられている。軸封蓋気供給管H
には圧力制御弁20が介装設置され、また軸封蒸気管1
8には内部の蒸気圧力を検出する蒸気圧力検出器21が
設けられている。
The shaft-sealed steam pipework 8 is connected to the central part of the gland portion 4.4a, and a shaft-sealed steam supply pipe 19 is provided which is connected to this shaft-sealed steam pipe 18 and supplies shaft-sealed air. Shaft seal air supply pipe H
A pressure control valve 20 is installed in the shaft-sealed steam pipe 1.
8 is provided with a steam pressure detector 21 for detecting the internal steam pressure.

圧力調節器22は蒸気圧力検出器21による検出圧力が
入力され、大気圧より若干高い所定圧力の目標値と蒸気
圧力検出器21による検出圧力の偏差により圧力制御弁
20を制御する。
The pressure detected by the steam pressure detector 21 is input to the pressure regulator 22, and the pressure control valve 20 is controlled based on the deviation between the target value of a predetermined pressure slightly higher than atmospheric pressure and the pressure detected by the steam pressure detector 21.

グランド部4,4aの大気側と軸封蒸気管1日のグラン
ド部4,4aへの接続個所との間のグランド部4,4a
にグランド蒸気管24が接続して設けられている。
Gland portions 4, 4a between the atmosphere side of the gland portions 4, 4a and the connection point to the ground portions 4, 4a of the shaft-sealed steam pipe on the 1st day.
A ground steam pipe 24 is connected to the ground steam pipe 24 .

そしてグランド蒸気管24はグランド蒸気復水器25に
接続され、グランド蒸気管24を経てグランド蒸気復水
器25に流入した蒸気を復水にするとともに排風112
6によりグランド蒸気復水器25内の不凝縮ガスを排出
してグランド蒸気復水器内を大気圧より若干低い負圧に
している。
The grand steam pipe 24 is connected to a grand steam condenser 25, and the steam that has flowed into the grand steam condenser 25 through the grand steam pipe 24 is condensed, and the exhaust air 112 is
6, the non-condensable gas in the gland steam condenser 25 is discharged to make the interior of the gland steam condenser a negative pressure slightly lower than atmospheric pressure.

このような構成により、地熱蒸気が蒸気供給管10を経
て蒸気人口9から内部ケーシング2内に流入すると、地
熱蒸気は2方向に分かれて流れ、翼段落にて膨脹仕事を
してロータ1を回転させて動力を発生し、発電機7はこ
の動力に克合う電力を発電する。この際翼段落にて仕事
をした地熱蒸気は排気部12.12aから直接接触式の
復水器11に導かれて外部から供給される冷却水に接触
して冷却凝縮して復水になるとともに空気抽出器13の
駆動により不凝縮ガスが抽出されて真空に保持される。
With this configuration, when geothermal steam flows into the inner casing 2 from the steam supply pipe 10 through the steam supply pipe 10, the geothermal steam flows in two directions, performs expansion work in the blade stages, and rotates the rotor 1. The generator 7 generates electric power to overcome this power. At this time, the geothermal steam that has worked in the blade stage is led from the exhaust section 12.12a to the direct contact type condenser 11, contacts cooling water supplied from the outside, cools and condenses, and becomes condensate. By driving the air extractor 13, non-condensable gas is extracted and maintained in a vacuum.

したがって、排気部12.12aは真空になるので、グ
ランド部4,4aがら空気が吸込まれないように、軸封
蒸気供給管19を経て軸封蒸気を軸封蒸気管18に供給
し、グランド部4,4aの中部を大気圧より若干高い所
定圧力、例えば約+0.07 kg/−にする、この所
定圧力の制御は、蒸気圧力検出器21での検出圧力を圧
力調節器22に入力し、この検出圧力と前記所定圧力の
目標値との偏差により圧力調節器22から出力する出力
信号による圧力制御弁20の制御により行われる。
Therefore, since the exhaust section 12.12a becomes a vacuum, the shaft-sealed steam is supplied to the shaft-sealed steam pipe 18 via the shaft-sealed steam supply pipe 19 to prevent air from being sucked into the glands 4, 4a. 4, 4a to a predetermined pressure slightly higher than atmospheric pressure, for example, about +0.07 kg/-, the predetermined pressure is controlled by inputting the pressure detected by the steam pressure detector 21 to the pressure regulator 22, The pressure control valve 20 is controlled by an output signal output from the pressure regulator 22 based on the deviation between the detected pressure and the target value of the predetermined pressure.

なお、軸封蒸気管1日からグランド部4,4aに供給さ
れた軸封蒸気は、グランド部り、4a内を排気部12゜
12aの方へ流れるとともに軸受台6.6a側の方にも
流れる。軸受台6.6a側に流れる蒸気がグランド部4
.4aから排出されて軸受け5,5aに流入すると、潤
滑油が劣化するので、これを防止するため、グランド部
4,4aを軸受台6,6aの方に流れる蒸気をグラグラ
ンド蒸気管24内の蒸気圧力を大気圧より若干低い圧力
、例えば約−0,003kg/jにすることによリ、空
気をグランド部4,4aの大気側から吸入してグランド
蒸気復水器25に導いている。この結果軸受5,5aに
はグランド部4,4aからの蒸気が流入しないので、潤
滑油の劣化は防止される。
In addition, the shaft-sealed steam supplied to the gland parts 4 and 4a from the shaft-sealed steam pipe 1st flows through the gland and 4a towards the exhaust part 12. flows. The steam flowing toward the bearing stand 6.6a side is connected to the gland section 4.
.. If the lubricating oil is discharged from 4a and flows into the bearings 5, 5a, the lubricating oil will deteriorate, so in order to prevent this, the steam flowing through the glands 4, 4a toward the bearing stands 6, 6a is diverted from the steam inside the gland steam pipe 24. By setting the steam pressure to a pressure slightly lower than atmospheric pressure, for example, about -0,003 kg/j, air is drawn from the atmospheric side of the gland sections 4, 4a and guided to the gland steam condenser 25. As a result, steam from the gland portions 4, 4a does not flow into the bearings 5, 5a, so deterioration of the lubricating oil is prevented.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のように軸封蒸気が供給されてグランド部を軸受側
の方に流れる軸封蒸気を大気圧より若干低い圧力に保持
されるグランド蒸気復水器に導き、軸受の方に軸封蒸気
が流れ込まないようにする方法は、グランド蒸気管やグ
ランド蒸気復水器、排風機等の設備が必要なので、コス
トが上昇し、また運転、メンテナンスに手間がかかると
いう欠点がある。
As mentioned above, the shaft sealing steam is supplied and the shaft sealing steam flowing through the gland toward the bearing side is guided to the gland steam condenser which is maintained at a pressure slightly lower than atmospheric pressure, and the shaft sealing steam flows toward the bearing. The method of preventing the water from flowing in requires equipment such as a gland steam pipe, a gland steam condenser, and an exhaust fan, which has the disadvantage of increasing costs and requiring time and effort for operation and maintenance.

本発明の目的は、コストが低く、運転、メンテナンスの
手間が省ける直接接触式復水器を備えた二流排気地熱1
気タービンの軸封方法及びその装置を提供することであ
る。
The purpose of the present invention is to provide a two-stream exhaust geothermal system with a direct contact condenser that is low in cost and requires less operation and maintenance.
An object of the present invention is to provide a shaft sealing method and apparatus for an air turbine.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明によればタービンロ
ータを囲むケーシングの蒸気入口がら流入する地熱蒸気
が2方向に分かれて翼段落にて膨張仕事をした後、両側
の排気部から冷却水との接触により復水にする復水器に
導がれる蒸気タービンのタービンロータがケーシングを
貫通する両側の部分に設けられるグランド部に軸封蒸気
を供給して軸封する二流排気地熱蒸気タービンの軸封方
法において、グランド部の中部に大気圧より若干低い所
定圧力の軸封蒸気を供給するものとする。
In order to solve the above problems, according to the present invention, geothermal steam flowing in from the steam inlet of the casing surrounding the turbine rotor is divided into two directions, performs expansion work in the blade stages, and is then discharged from the exhaust ports on both sides as cooling water. The shaft of a two-flow exhaust geothermal steam turbine is sealed by supplying steam to the glands provided on both sides where the turbine rotor of the steam turbine passes through the casing. In the sealing method, shaft sealing steam at a predetermined pressure slightly lower than atmospheric pressure is supplied to the central part of the gland section.

また、上記の二流排気地熱薫気タービンのグランド部を
軸封する軸封装置としてグランド部の中部に軸封蒸気を
供給する軸封蒸気管と、この蒸気管に接続され、軸封蒸
気を外部がら供給する軸封蒸気供給管と、この蒸気供給
管に設けられる圧力制御弁と、軸封蒸気管内の蒸気圧力
を大気圧より若干低い所定圧力になるように圧力制御弁
を制御する制御手段とから構成するものとする。
In addition, as a shaft sealing device for shaft sealing the gland section of the above-mentioned two-stream exhaust geothermal fume turbine, there is also a shaft sealing steam pipe that supplies shaft sealing steam to the middle part of the gland section, and a shaft sealing steam pipe that is connected to this steam pipe and supplies shaft sealing steam to the outside. a shaft-sealed steam supply pipe, a pressure control valve provided in the steam supply pipe, and a control means for controlling the pressure control valve so that the steam pressure in the shaft-sealed steam pipe becomes a predetermined pressure slightly lower than atmospheric pressure. It shall consist of:

〔作用〕[Effect]

タービンロータがケーシングを貫通する部分に設けられ
る両側のグランド部の中部に軸封蒸気供給管に設けられ
た圧力制御弁により大気圧より若干低い所定圧力に制御
した軸封蒸気を軸封蒸気管を経て供給することにより、
軸封蒸気はグランド部の中部から排気部に流れるととも
にグランド部の大気側から空気を吸込んでグランド部を
経て排気部に流れ、この結果グランド部を軸封するとと
もにグランド部の大気側には蒸気を排出しないので、軸
受への蒸気の流入による潤滑油の劣化を起こさない。
The shaft-sealed steam is controlled to a predetermined pressure slightly lower than atmospheric pressure by a pressure control valve installed in the shaft-sealed steam supply pipe in the middle of the gland section on both sides where the turbine rotor penetrates the casing. By supplying
The shaft-sealing steam flows from the middle of the gland to the exhaust section, sucks air from the atmosphere side of the gland, passes through the gland, and flows to the exhaust section. As a result, the shaft seals the gland, and steam flows to the atmosphere side of the gland. Since no steam is discharged, the lubricating oil does not deteriorate due to steam entering the bearing.

ところで、地熱蒸気には多量の不凝縮ガスが含まれ、一
方、冷却水との接触により復水にする復水器に供給され
る冷却水も復水器内で脱気するので、これらの不凝縮ガ
スを合計すると多量になり、例えば50MW級のタービ
ン設備においては2〜3ton/11となる。この場合
、上記のようにグランド部に供給する軸封蒸気の圧力を
大気圧より若干低い圧力、例えば約−0,001kg/
−にした場合、グランド部の大気側から吸込む空気量は
0.1 ton/h程度である。したがってこの空気量
が前記2〜3 ton/hの不凝縮ガスに加わっても空
気抽出器の能力は殆んどアップする必要がない。
By the way, geothermal steam contains a large amount of non-condensable gas, and on the other hand, the cooling water that is supplied to the condenser, which is converted into condensation by contact with the cooling water, is also degassed within the condenser, so these non-condensable gases are The total amount of condensed gas is large, for example, 2 to 3 tons/11 in a 50 MW class turbine facility. In this case, as mentioned above, the pressure of the shaft sealing steam supplied to the gland section is set to a pressure slightly lower than atmospheric pressure, for example, about -0,001 kg/
When set to -, the amount of air sucked in from the atmosphere side of the ground section is about 0.1 ton/h. Therefore, even if this amount of air is added to the 2 to 3 tons/h of non-condensable gas, there is almost no need to increase the capacity of the air extractor.

また、軸封蒸気はグランド部から軸受の方へ流れないの
で、グランド蒸気復水器、グランド蒸気配管及び排風機
等の設備が不要となる。
Furthermore, since the shaft sealing steam does not flow from the gland toward the bearing, equipment such as a gland steam condenser, gland steam piping, and exhaust fan are not required.

〔実施例〕〔Example〕

以下図面に基づいて本発明の実施例について説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の実施例にょる軸封装置を備えた二流排
気地熱蒸気タービンの系統構成図である。なお、第1図
において第2図の従来例と同一部品には同じ符号を付し
、その説明を省略する。第1図において従来例の第2図
におけるグランド蒸気管24.グランド蒸気復水器25
.排風機26等を取除き、軸封蒸気管1日をグランド部
4,4aの中部に接続した他は従来例と同じである。
FIG. 1 is a system configuration diagram of a two-stream exhaust geothermal steam turbine equipped with a shaft sealing device according to an embodiment of the present invention. In FIG. 1, parts that are the same as those in the conventional example shown in FIG. 2 are given the same reference numerals, and their explanations will be omitted. In FIG. 1, the gland steam pipe 24 in FIG. 2 of the conventional example. Grand steam condenser 25
.. The structure is the same as the conventional example except that the exhaust fan 26 and the like are removed and the shaft-sealed steam pipe is connected to the middle part of the ground portions 4 and 4a.

第1図において軸封蒸気管18内の軸封蒸気の圧力を大
気圧より若干低い所定圧力、例えば約−0,001kg
/ ajになるように制御する。すなわち蒸気圧力検出
器21で検出した軸封蒸気管18内の検出圧力と前記所
定圧力の目標値の偏差から調節器22からの出力信号に
より圧力制御弁2oを制御して軸封蒸気管18内の軸封
蒸気の圧力を所定圧力にする。この所定圧力の軸封蒸気
はグランド部4,4aの中部に供給され、グランド部4
,4aを経て真空の排気部12゜12aに流入して復水
器11に流れる。一方グランド部4,4aの大気側から
は、供給される軸封蒸気が負圧のため空気が吸込まれて
グランド部4.4aを経て前記軸封蒸気とともに排気部
12.12aに流入して復水器11に流れる。
In FIG. 1, the pressure of the shaft-sealed steam in the shaft-sealed steam pipe 18 is set to a predetermined pressure slightly lower than atmospheric pressure, for example, about -0,001 kg.
/ aj. That is, the pressure control valve 2o is controlled by the output signal from the regulator 22 based on the deviation between the detected pressure in the shaft-sealed steam pipe 18 detected by the steam pressure detector 21 and the target value of the predetermined pressure. The pressure of the shaft-sealing steam is set to the specified pressure. This shaft sealing steam at a predetermined pressure is supplied to the central part of the gland parts 4, 4a, and the gland part 4
, 4a, flows into the vacuum exhaust section 12.degree. 12a, and flows into the condenser 11. On the other hand, from the atmosphere side of the gland portions 4, 4a, air is sucked into the shaft sealing steam supplied from the atmosphere side due to the negative pressure, and it flows into the exhaust portion 12.12a together with the shaft sealing steam through the gland portion 4.4a, and is recovered. It flows into the water container 11.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によればタービ
ンロータがケーシングを貫通する部分に設けられるグラ
ンド部の中部に大気圧より若干低い所定圧力の軸封蒸気
を供給すること、またこれを行う設備としてグランド部
の中部に接続する軸封蒸気管と、この軸封蒸気管内の軸
封蒸気の圧力を大気圧より若干低い所定圧力に制御する
圧力制御弁及びこれを制御する制御手段とを設けたこと
により、グランド部の大気側からはグランド部に空気を
吸込みながら軸封蒸気がグランド部を経て排気部に流れ
て軸封を行うので、従来のようにグランド蒸気復水器、
排風機、グランド蒸気復水配管等が不要になり、このた
め建設コストが低減するとともに運転やメンテナンスの
手間が省けるという効果がある。
As is clear from the above description, according to the present invention, it is possible to supply shaft sealing steam at a predetermined pressure slightly lower than atmospheric pressure to the central part of the gland section provided in the part where the turbine rotor penetrates the casing, and to do this. The equipment includes a shaft-sealed steam pipe connected to the central part of the gland section, a pressure control valve that controls the pressure of the shaft-sealed steam in this shaft-sealed steam pipe to a predetermined pressure slightly lower than atmospheric pressure, and a control means for controlling this. As a result, while air is sucked into the gland from the atmosphere side of the gland, the shaft sealing steam flows through the gland to the exhaust section and seals the shaft.
There is no need for an exhaust fan, gland steam condensate piping, etc., which has the effect of reducing construction costs and saving time and effort in operation and maintenance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例による軸封装置を備えた二流排
気地熱蒸気タービンの系統構成図、第2図は従来の軸封
装置を備えた二流排気地熱蒸気タービンの系統構成図で
ある。 1:ロータ、2:内部ケーシング、3:外部ケーシング
、4,4aニゲランド部、11:復水器、18二軸封蒸
気管、20:圧力制御弁、21:蒸気圧力検出器、22
:調節器。
FIG. 1 is a system configuration diagram of a two-stream exhaust geothermal steam turbine equipped with a shaft sealing device according to an embodiment of the present invention, and FIG. 2 is a system configuration diagram of a two-stream exhaust geothermal steam turbine equipped with a conventional shaft sealing device. 1: Rotor, 2: Internal casing, 3: External casing, 4, 4a Nigerland section, 11: Condenser, 18 twin-shaft sealed steam pipe, 20: Pressure control valve, 21: Steam pressure detector, 22
: Regulator.

Claims (1)

【特許請求の範囲】 1)タービンロータを囲むケーシングの蒸気入口から流
入する地熱蒸気が二方向に分かれて翼段落にて膨脹仕事
をした後、両側の排気部から冷却水との接触により復水
にする復水器に導かれる蒸気タービンのタービンロータ
がケーシングを貫通する両側の部分に設けられるグラン
ド部に軸封蒸気を供給して軸封する二流排気地熱蒸気タ
ービンの軸封方法において、グランド部の中部に大気圧
より若干低い所定圧力の軸封蒸気を供給することを特徴
とする二流排気地熱蒸気タービンの軸封方法。 2)タービンロータを囲むケーシングの蒸気入口から流
入する地熱蒸気が二方向に分かれて翼段落にて膨脹仕事
した後、両側の排気部から冷却水との接触により復水に
する復水器に導かれる蒸気タービンのタービンロータが
ケーシングを貫通する両側の部分に設けられるグランド
部に軸封蒸気を供給して軸封する二流排気地熱蒸気ター
ビンの軸封装置において、グランド部の中部に軸封蒸気
を供給する軸封蒸気管と、この蒸気管に接続され、軸封
蒸気を外部から供給する軸封蒸気供給管と、この蒸気供
給管に設けられる圧力制御弁と、軸封蒸気管内の蒸気圧
力が大気圧より若干低い所定圧力になるように圧力制御
弁を制御する制御手段とを設けたことを特徴とする二流
排気地熱蒸気タービンの軸封装置。
[Claims] 1) Geothermal steam that flows in from the steam inlet of the casing surrounding the turbine rotor is divided into two directions and expands in the blade stages, and then condenses from the exhaust ports on both sides by contact with cooling water. In a shaft sealing method for a two-flow exhaust geothermal steam turbine, the shaft sealing method for a two-flow exhaust geothermal steam turbine supplies shaft sealing steam to the gland sections provided on both sides where the turbine rotor of a steam turbine guided to a condenser passes through the casing. A shaft sealing method for a two-stream exhaust geothermal steam turbine, characterized by supplying shaft sealing steam at a predetermined pressure slightly lower than atmospheric pressure to the central part of the turbine. 2) Geothermal steam that flows in from the steam inlet of the casing surrounding the turbine rotor is split into two directions, expanded in the blade stages, and then led from the exhaust ports on both sides to the condenser where it is condensed by contact with cooling water. In a shaft sealing device for a two-flow exhaust geothermal steam turbine, the shaft sealing device supplies shaft sealing steam to the gland sections provided on both sides of the steam turbine where the turbine rotor passes through the casing, thereby sealing the shaft. A shaft-sealed steam pipe to be supplied, a shaft-sealed steam supply pipe connected to this steam pipe and which supplies shaft-sealed steam from the outside, a pressure control valve provided in this steam supply pipe, and a steam pressure inside the shaft-sealed steam pipe. 1. A shaft sealing device for a two-stream exhaust geothermal steam turbine, comprising: a control means for controlling a pressure control valve to maintain a predetermined pressure slightly lower than atmospheric pressure.
JP25448090A 1990-09-25 1990-09-25 Shaft sealing method of double-flow evacuating geothermal steam turbine and device thereof Pending JPH04132802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25448090A JPH04132802A (en) 1990-09-25 1990-09-25 Shaft sealing method of double-flow evacuating geothermal steam turbine and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25448090A JPH04132802A (en) 1990-09-25 1990-09-25 Shaft sealing method of double-flow evacuating geothermal steam turbine and device thereof

Publications (1)

Publication Number Publication Date
JPH04132802A true JPH04132802A (en) 1992-05-07

Family

ID=17265639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25448090A Pending JPH04132802A (en) 1990-09-25 1990-09-25 Shaft sealing method of double-flow evacuating geothermal steam turbine and device thereof

Country Status (1)

Country Link
JP (1) JPH04132802A (en)

Similar Documents

Publication Publication Date Title
CA2159634C (en) Gas-turbine engine with bearing chambers and barrier-air chambers
US4193603A (en) Sealing system for a turbomachine
US4969803A (en) Compressor unit
GB2039352A (en) Process and apparatus for cooling natural gas
US5632492A (en) Sealing configuration for a passage of a shaft through a casing and method of operating the sealing configuration
CZ343195A3 (en) Self-lubrication method of turbo-set rolling-contact bearings and apparatus for making the same
US10927845B2 (en) Seal assembly and method for reducing aircraft engine oil leakage
US3390525A (en) Shaft-sealing device for turbomachines having a gaseous working medium heated in a nuclear reactor
JPH03117601A (en) Turbo apparatus with seal fluid-recovering channel
US4099727A (en) Seal system for a gas turbine engine or the like
US2484275A (en) Supercharger seal
CN202560333U (en) Booster expansion turbine for recovery device in chemical industry
JPH04132802A (en) Shaft sealing method of double-flow evacuating geothermal steam turbine and device thereof
US5167123A (en) Flow condensing diffusers for saturated vapor applications
NO316236B1 (en) Method and apparatus for securing the operation of gas seals by turbochargers
WO2009118668A2 (en) Recovery of expander-booster leak gas
JPH10103018A (en) Gland shaft seal device for back pressure steam turbine
US3767318A (en) Method of controlling multi-casing variable speed compressors
JPH08218811A (en) Cooling method for steam turbine and device therefor
JP3879213B2 (en) Steam turbine ground leakage steam recovery system
JP2000303990A (en) Shaft seal system for rotary compressor
US9175775B2 (en) Shaft seal for steam turbines
JPH05231103A (en) Shaft sealing pressure controller for condensing turbine
RU93474U1 (en) DEVICE FOR EXCLUSION OF TRANSVERSES IN GAS-TURBINE INSTALLATIONS AND COMPRESSORS
JPH03213692A (en) Shaft seal device for oilless screw compressor