JPH04132560A - Medical oxygen concentration apparatus and method - Google Patents

Medical oxygen concentration apparatus and method

Info

Publication number
JPH04132560A
JPH04132560A JP25381990A JP25381990A JPH04132560A JP H04132560 A JPH04132560 A JP H04132560A JP 25381990 A JP25381990 A JP 25381990A JP 25381990 A JP25381990 A JP 25381990A JP H04132560 A JPH04132560 A JP H04132560A
Authority
JP
Japan
Prior art keywords
solenoid valve
signal
trigger signal
adsorption tower
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25381990A
Other languages
Japanese (ja)
Other versions
JPH0565200B2 (en
Inventor
Noboru Sato
暢 佐藤
Toshihisa Hasegawa
長谷川 敏久
Kazukiyo Takano
和潔 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tottori University NUC
Original Assignee
Tottori University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tottori University NUC filed Critical Tottori University NUC
Priority to JP25381990A priority Critical patent/JPH04132560A/en
Publication of JPH04132560A publication Critical patent/JPH04132560A/en
Publication of JPH0565200B2 publication Critical patent/JPH0565200B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To enable the feeding of a concentrated oxygen gas to a respiratory organ stably by a method wherein an inhaling synchronized solenoid valve is opened synchronously early in an inhaling phase of a breathing cycle to feed the concentrated oxygen gas stored to an inhaler and then, closed synchronously after a specified time or early in the subsequent inhaling. CONSTITUTION:When an exhaling signal from an exhaling/inhaling discrimination circuit 14 is outputted to a cycle generation circuit 13, a program set on the circuit 13 is started to generate oxygen. Then, an inhaling signal discriminated and amplified with the exhaling/inhaling discrimination circuit 14 is inputted into an inhaling synchronized solenoid value 22 to open the inhaling synchronized solenoid valve 22 synchronously early in the inhaling of a patient or the like and oxygen stored in a storage tank 21 is supplied to a respiratory organ through a nose canula. As one-way valve 20 works when the inhaling of the patient or the like begins, oxygen stored in the storage tank 21 will not reverse to an adsorption column 9. At this point, the oxygen stored in the storage tank 21 is secured sufficiently in a quantity necessary for the patient or the like. This enables the supplying of the oxygen stably to the respiratory organ if the timing of starting the release of the inhaling synchronized solenoid valve 22 is after the timing of starting the sampling of oxygen.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、生体の呼吸に同調して酸素ガスを供給するた
めの圧力変動吸着型の医療用酸素濃縮装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a pressure fluctuation adsorption type medical oxygen concentrator for supplying oxygen gas in synchronization with the breathing of a living body.

(従来の技術) 圧力変動吸着型の医療用酸素濃縮装置は、従来種々のも
のが提案されており、例えば、特公昭57−5571号
公報には、2つの吸着床を用い、一方の吸着床に吸着サ
イクルの期間中に該吸着床によって生成された酸素濃縮
ガスの一部を他方の吸着床のパージに用いるようにして
、これら各吸着床の動作サイクルを交互に行うようにし
たものが開示されている。この酸素濃縮装置によれば、
各吸着床が比較的小容量であっても、これらが互いに充
分にパージされるので、所望濃度の濃縮酸素ガスを産出
できる利点がある。
(Prior Art) Various pressure fluctuation adsorption type medical oxygen concentrators have been proposed in the past. For example, in Japanese Patent Publication No. 57-5571, two adsorption beds are used, one of which is discloses a system in which a portion of the oxygen-enriched gas produced by one adsorption bed during an adsorption cycle is used to purge another adsorption bed, so that the operating cycles of each adsorption bed are performed alternately. has been done. According to this oxygen concentrator,
Even though each adsorption bed has a relatively small volume, it has the advantage that they can be sufficiently purged from each other to produce concentrated oxygen gas at the desired concentration.

また、特公昭57−52090号公報には40〜80メ
ツシユの比較的小さい粒子の吸着剤を、直径と長さに一
定の関係を有する吸着床に充填して各行程の操作に流れ
抵抗を生じさせるようにし、この吸着床に短時間圧縮空
気を導入した後、所定の停止時間経過後導入口を大気に
開放して減圧することにより、圧縮空気導入期間および
停止期間において濃縮酸素ガスを得ると共に、大気開放
期間において圧力差により吸着床内に逆向きの流れを生
じさせて吸着剤をパージするようにした単一吸着床の酸
素濃縮法が開示されている。この酸素fi縮法によれば
、圧縮空気導入期間、停止期間および大気開放期間より
成る吸着床の動作1サイクルを3〜30秒と極めて短時
間とすることができ、(RPSA方式)したがって全体
として吸着剤単位重量当りの生成ガスの生産量を比較的
高くでき、装置全体の小型軽量化が図れるという利点が
ある。また、特公昭57−44361号公報には、複数
の吸着床を用い、各吸着床の動作1サイクルを圧縮空気
導入期間、停止期間、大気開放期間および生成物再加圧
期間として、この動作サイクルを吸着床間でタイミング
をずらして設定し、ある吸着床の圧縮空気導入期間に産
出される生成ガスの一部を、大気開放期間にある他の吸
着床におけるパージガスとして用いると共に、生成物再
加圧期間にある他の吸着床における生成物再加圧ガスと
して用いるような酸素濃縮法が開示されでいる。
In addition, in Japanese Patent Publication No. 57-52090, relatively small adsorbent particles of 40 to 80 mesh are packed into an adsorption bed with a certain relationship between diameter and length to create flow resistance during each stroke operation. After introducing compressed air into the adsorption bed for a short period of time, the inlet is opened to the atmosphere and the pressure is reduced after a predetermined stoppage period has elapsed, thereby obtaining concentrated oxygen gas during the compressed air introduction period and the stoppage period. , discloses a single bed oxygen enrichment method in which a pressure difference causes a reverse flow within the bed during an open atmosphere period to purge the adsorbent. According to this oxygen ficondensation method, one cycle of adsorption bed operation consisting of a compressed air introduction period, a stop period, and an atmosphere opening period can be made extremely short, 3 to 30 seconds (RPSA method), and therefore the overall This method has the advantage that the production amount of generated gas per unit weight of adsorbent can be relatively high, and the entire device can be made smaller and lighter. Furthermore, in Japanese Patent Publication No. 57-44361, a plurality of adsorption beds are used, and one cycle of operation of each adsorption bed is defined as a compressed air introduction period, a stop period, an atmosphere opening period, and a product repressurization period. The timing is staggered between the adsorption beds, and part of the product gas produced during the compressed air introduction period of one adsorption bed is used as purge gas for other adsorption beds that are open to the atmosphere, and the product is re-added. Oxygen enrichment methods have been disclosed for use as product repressurization gas in other adsorption beds during pressure periods.

一方、上記のような酸素濃縮装置を用い、該装置によっ
て生成される濃縮酸素ガスを電磁弁等を介して呼吸器や
循環器系の疾患患者等の呼吸に同調して供給するように
した呼吸同調式酸素供給装置も従来種々提案されている
。例えば、特公昭62−54023号公報には、呼吸気
流から生成した電気信号に基づいた呼気相から吸気相に
移るタイミング信号に応答してt磁弁を介して各吸気相
の期間に濃縮酸素ガスを供給するようにした酸素ガス供
給装置が開示されている。
On the other hand, breathing is a method in which an oxygen concentrator as described above is used and the concentrated oxygen gas generated by the device is supplied through a solenoid valve or the like in synchronization with the breathing of patients with respiratory or circulatory system diseases. Various synchronous oxygen supply devices have been proposed in the past. For example, in Japanese Patent Publication No. 62-54023, concentrated oxygen gas is supplied during each inspiratory phase via a magnetic valve in response to a timing signal for transitioning from an expiratory phase to an inspiratory phase based on an electrical signal generated from the respiratory airflow. An oxygen gas supply device is disclosed.

(発明が解決しようとする課題) しかしながら、上述した従来の医療用酸素濃縮装置にあ
っては、患者の呼吸動作とは無関係に独立して作動する
よう構成されているため、例えば生成ガスを患者が必要
としない時期にそのガスを吸着床のパージに活用できな
かったり、患者の方へ大量に生成ガスを使った時期には
吸着床の方へはパージ用のガスが同時に十分量廻らない
ということが起こり、効率化に時間的なむらが生しると
いう問題がある。また、このような問題を解決する方法
として、吸着床で生成される濃縮酸素ガスを貯溜するサ
ージタンクの容量を大きくすることが考えられるが、こ
のようにすると装置全体が大型となり高価になるという
問題がある。
(Problem to be Solved by the Invention) However, the conventional medical oxygen concentrator described above is configured to operate independently, regardless of the patient's breathing movement, and therefore, for example, it is difficult to direct the generated gas to the patient. It is said that the gas cannot be used to purge the adsorption bed when it is not needed, and that when a large amount of produced gas is used for patients, a sufficient amount of purge gas cannot be sent to the adsorption bed at the same time. There is a problem that there is a problem that efficiency improvement occurs over time. In addition, one possible way to solve this problem is to increase the capacity of the surge tank that stores the concentrated oxygen gas generated in the adsorption bed, but this would make the entire device large and expensive. There's a problem.

また、本発明者等は特開平1−274771号公報で人
の呼吸サイクルに同期してPSA式酸素濃縮装置を作動
させる発明を行った。これは特公昭57−52090号
公報の技術であるRPSA方式を用い、動作を早くする
ため、装置を必要最小限に小さくして動作サイクルが人
体の呼吸で動作するようにしたものであるが、人体の吸
気に合わせて、吸着塔に濃縮酸素の原料である空気を送
り込み、吸着塔の出口より出てくる酸素を人が吸おうと
するものであるから、その間多少のタイミングの遅れが
生し、早い呼吸では患者に違和感を与えかつ吸入効率も
不充分になり易いという欠点があった。
The present inventors also made an invention in Japanese Patent Application Laid-Open No. 1-274771 in which a PSA type oxygen concentrator is operated in synchronization with a person's breathing cycle. This uses the RPSA method, which is the technology disclosed in Japanese Patent Publication No. 57-52090, and in order to speed up the operation, the device is made as small as possible and the operation cycle is based on the human body's breathing. Air, which is the raw material for concentrated oxygen, is fed into the adsorption tower in time with the intake of the human body, and the person attempts to inhale the oxygen that comes out from the exit of the adsorption tower, so there is a slight timing delay during this time. Rapid breathing has disadvantages in that it gives the patient a sense of discomfort and tends to result in insufficient inhalation efficiency.

本発明は、このような従来の問題点に着目してなされた
もので、酸素濃縮ガスを効率良く常に安定して産出でき
ると共に、装置全体を小型にできるよう適切に構成した
医療用酸素濃縮装置を提供することを目的とする。
The present invention has been made by focusing on these conventional problems, and provides a medical oxygen concentrator that is appropriately configured so that it can efficiently and consistently produce oxygen-enriched gas and that the entire device can be made compact. The purpose is to provide

(課社を解決するための手段) 本発明は圧縮された空気中の窒素を選択的にかつ迅速に
吸着する吸着剤を充填した単数または複数の吸着塔と、
この吸着塔の導入口に第1の1i磁弁を介して連結した
コンプレッサーまたは圧縮空気源と、前記の導入口を断
続的に大気圧または陰圧源に開放する第2のit電磁弁
、吸入装置またはその近くに設けた人等の呼吸の相を検
出するセンサと、このセンサの出力変化から呼気相と吸
気相とを弁別して必要な信号を送出する呼気・吸気弁別
回路と、当該弁別回路からの信号により呼吸サイクルの
呼気相と吸気相との開始時、またはこれらの呼吸信号の
開始時から電気的に任意に遅延させた時期に、第1の電
磁弁を開いて吸着塔へ圧縮空気を導入し、一定の圧にな
る迄は加圧してから後、濃縮酸素ガスが通り抜けるよう
な吸着相と、ついで第1の電磁弁を閉鎖した後、一定の
停止期間をおいて第2の電磁弁を開いて大気圧または陰
圧源へ吸着された窒素や水分を多量に含むガスを排除す
る脱着パージ相とを最適のパターンで1サイクル毎に運
行するようにプログラム制御するサイクル発生回路と、
吸着塔から発生する濃縮酸素ガスを貯めるバッファタン
クと、これに一方弁を介して貯溜タンクを接続し、この
貯溜タンクと前記吸入装置を吸気同調弁を介して導管で
接続し、前記の呼気相・吸気相弁別回路からの信号で、
呼吸サイクルの吸気相の初めに同期して吸気同調電磁弁
を開いて、貯溜された濃縮酸素ガスを一気に吐きだして
吸入装置の方へ送出し、所定時間後に当該吸気同調を磁
弁を閉鎖する構成としたことを特徴とする医療用酸素濃
縮装置である。
(Means for solving the problem of divisions and companies) The present invention comprises one or more adsorption towers filled with an adsorbent that selectively and quickly adsorbs nitrogen in compressed air;
A compressor or compressed air source connected to the inlet of this adsorption tower via a first 1i solenoid valve, and a second it solenoid valve that intermittently opens said inlet to atmospheric pressure or a source of negative pressure; A sensor installed at or near the device to detect the phase of respiration of a person, etc.; an exhalation/inhalation discrimination circuit that discriminates between the exhalation phase and the inhalation phase based on changes in the output of this sensor and sends out necessary signals; and the discrimination circuit. At the start of the exhalation and inhalation phases of the breathing cycle, or at an arbitrary electrical delay from the start of these breathing signals, the first solenoid valve is opened to supply compressed air to the adsorption tower. is introduced and pressurized until it reaches a constant pressure, then an adsorption phase is introduced through which concentrated oxygen gas passes through, and then the first solenoid valve is closed, and after a certain period of stop, the second solenoid valve is closed. a cycle generation circuit that program-controls a desorption purge phase in which a valve is opened to remove a gas containing a large amount of nitrogen or moisture adsorbed to an atmospheric pressure or negative pressure source, and the cycle is operated in an optimal pattern for each cycle;
A buffer tank for storing concentrated oxygen gas generated from the adsorption tower is connected to a storage tank via a one-way valve, and the storage tank and the inhalation device are connected via a conduit via an intake synchronization valve.・The signal from the intake phase discrimination circuit,
The intake tuning solenoid valve is opened in synchronization with the beginning of the inhalation phase of the breathing cycle, the stored concentrated oxygen gas is exhaled at once and sent toward the inhalation device, and after a predetermined period of time, the intake tuning solenoid valve is closed. This medical oxygen concentrator is characterized by:

(作 用) 上記目的を達成するため、本発明は特開平1(1989
) −274771号公報の発明の生成ガス用サージタ
ンクの後に一方弁を介して患者等の1回吸気分における
必要酸素濃度を確保できる濃縮酸素ガス(以下単に酸素
または酸素ガスという)を供給する貯溜タンクを設ける
ことにより、これを解決するようにしたものである。
(Function) In order to achieve the above object, the present invention is disclosed in Japanese Patent Application Laid-Open No.
) - A reservoir for supplying concentrated oxygen gas (hereinafter simply referred to as oxygen or oxygen gas) capable of ensuring the required oxygen concentration for a single intake of a patient, etc. through a one-way valve after the surge tank for generated gas according to the invention of Publication No. 274771 This problem was solved by providing a tank.

すなわち患者等の呼吸をセンサで捕らえて信号化して、
当該患者の吸気の始まる前に、該呼気信号からまたは該
呼気信号の直前の吸気信号から任意に遅延させた信号を
トリガ信号として酸素濃縮サイクルをスタートさせるこ
とにより、生成された酸素を事前(吸気が始まる以前)
に必要量を貯溜タンクに貯めておき、該吸気の初めに同
期して当該呼吸器内へ送気するものである。つまり、酸
素発生1サイクルで、1回吸気に必要な酸素量は充分余
裕を持って貯溜タンクに確保されるが、これに先立って
生成される酸素をバッファタンク内に貯めて、該吸着床
の再生用専用のパージガスとして利用することができる
ようにしたのが特徴である。したがって、このことは、
生成された酸素ガスを、患者等の呼吸器への送気用とし
て貯溜タンク内に、また、酸素:a縮装置の吸着床の再
生用パージガスとしてバッファタンク内に各々分離して
貯めておくことができるために、酸素を常に安定的に発
生して呼吸に同調して供給することができる装置である
In other words, the patient's breathing is captured by a sensor and converted into a signal.
Before the patient's inspiration begins, an oxygen concentrator cycle is started using a signal arbitrarily delayed from the expiratory signal or from the inspiratory signal just before the expiratory signal as a trigger signal, so that the generated oxygen is (before the start)
The required amount of air is stored in a storage tank, and air is delivered into the respiratory organ in synchronization with the beginning of the intake air. In other words, in one cycle of oxygen generation, the amount of oxygen required for one intake is secured in the storage tank with sufficient margin, but prior to this, the oxygen generated is stored in the buffer tank and the amount of oxygen required for one intake is secured in the storage tank. The feature is that it can be used as a purge gas exclusively for regeneration. Therefore, this means that
The generated oxygen gas is stored separately in a storage tank for supplying air to the respiratory organs of patients, etc., and in a buffer tank as purge gas for regenerating the adsorption bed of the oxygen:a-condensation equipment. This device is capable of constantly and stably generating oxygen and supplying it in synchronization with breathing.

(実施例) 第1図は本発明の第1の実施例を示すものである。(Example) FIG. 1 shows a first embodiment of the invention.

第1図において工は1に源、2はこれに接続した運転回
路、3は運転回路に接続されたコンプレッサー、4Aは
その間の配線を示す。本発明においては、このコンプレ
ッサー3に配管5Aによりサージタンク6を介して第1
tvL弁7を連結する。
In Fig. 1, 1 indicates the power supply, 2 indicates the operating circuit connected to this, 3 indicates the compressor connected to the operating circuit, and 4A indicates the wiring between them. In the present invention, the compressor 3 is connected to the first
Connect the tvL valve 7.

8は第1t磁弁7を操作する機構(ソレノイド又はサー
ボモータ)である。第1i!磁弁7は配管5Bにより吸
着塔9に連結する。10はサイレンサー、11は配管5
CによりサイレンサーlOに連結した第2を磁弁であり
、第2電佑弁11は配管5Bにより吸着塔9に連結する
。12は電磁弁11を操作する機構であり、第1を磁弁
7を操作する機構8と第2電磁弁11を操作する機構1
2とはそれぞれ配線4B、4Cによりサイクル発生回路
13に接続する。
8 is a mechanism (a solenoid or a servo motor) for operating the first t magnetic valve 7. 1st i! The magnetic valve 7 is connected to the adsorption tower 9 through a pipe 5B. 10 is a silencer, 11 is piping 5
The second valve connected to the silencer IO by C is a magnetic valve, and the second electric valve 11 is connected to the adsorption tower 9 by a pipe 5B. 12 is a mechanism for operating the solenoid valve 11; the first is a mechanism 8 for operating the solenoid valve 7; and the mechanism 1 for operating the second solenoid valve 11.
2 are connected to the cycle generation circuit 13 through wirings 4B and 4C, respectively.

サイクル発生回路13は配線4Dにより前記の運転回路
2に接続すると共に、呼気・吸気弁別回路14に配線4
Eにより接続する。15は逆止弁、16はオリフィスで
配管5Dにより吸着塔9に連結される。
The cycle generation circuit 13 is connected to the aforementioned driving circuit 2 through a wiring 4D, and is also connected to the exhalation/inhalation discrimination circuit 14 through a wiring 4D.
Connect by E. Reference numeral 15 denotes a check valve, and 16 denotes an orifice, which are connected to the adsorption tower 9 through a pipe 5D.

この逆止弁15とオリフィス16とは並列に連結せられ
ており、配管5Eおよびバッファタンク17を介して運
転弁18に連結する。19は、運転回路2より電気信号
を受けて運転弁18を開閉する機構である。
This check valve 15 and orifice 16 are connected in parallel, and are connected to an operating valve 18 via a pipe 5E and a buffer tank 17. Reference numeral 19 denotes a mechanism that opens and closes the operating valve 18 in response to an electric signal from the operating circuit 2.

運転弁18を、配管5Fにより一方弁20に連結すると
ともに、配管5Gおよび酸素貯溜タンク21を介して吸
気同調電磁弁22に連結する。吸気同調電磁弁22を操
作する開閉機構23は配線4Gを介して呼気・吸気弁別
回路14に接続する。吸気同調電磁弁22は配管5Hを
介して吸入装置である鼻カニユーラ24に連結されてお
り、鼻カニユーラ24には呼気吸気に対する温度センサ
24Sを設ける。これは呼吸気の温度変化を電気信号に
変換する呼吸センサである。呼吸センサ24Sからの電
気信号を配線4Fを介して呼気・吸気弁別回路14に取
り込む。
The operating valve 18 is connected to the one-way valve 20 via a pipe 5F, and is also connected to an intake tuning solenoid valve 22 via a pipe 5G and an oxygen storage tank 21. An opening/closing mechanism 23 that operates the intake tuning solenoid valve 22 is connected to the exhalation/inhalation discrimination circuit 14 via a wiring 4G. The intake tuning solenoid valve 22 is connected to a nasal cannula 24, which is an inhalation device, via a pipe 5H, and the nasal cannula 24 is provided with a temperature sensor 24S for expiration and intake air. This is a respiratory sensor that converts temperature changes in breathing air into electrical signals. An electrical signal from the breathing sensor 24S is taken into the exhalation/inhalation discrimination circuit 14 via the wiring 4F.

上記の機械的な構成を制御する電気回路の概略は、外部
から商用電#1等を取り入れ、装置0運転開始の指令を
受けて運転回路2が作動し、運転弁18の開閉機構19
やコンプレッサー3とサイクル発生回路13および吸気
・呼気弁別回路14に電源を供給することにより、コン
プレッサー3が始動シ、運転弁1Bが開放する。
The outline of the electric circuit that controls the above-mentioned mechanical configuration is as follows: commercial power #1 etc. is taken in from the outside, the operation circuit 2 is operated in response to a command to start operation of the device 0, and the opening/closing mechanism 19 of the operation valve 18 is operated.
By supplying power to the compressor 3, the cycle generation circuit 13, and the intake/exhalation discrimination circuit 14, the compressor 3 is started and the operating valve 1B is opened.

次に、鼻カニユーラ24に設けられた呼吸センサ24S
で呼吸信号を検出し、この呼吸信号を呼気・吸気弁別回
路14に取り込んで増幅し、かつ、呼気と吸気を弁別す
る。弁別された呼気信号または吸気信号から任意に遅延
させた信号をトリガ信号としてサイクル発生回路13へ
出力するとともに、吸気信号は吸気同調電磁弁22へと
出力される。
Next, the respiratory sensor 24S provided on the nasal cannula 24
Detects a breathing signal, takes this breathing signal into an exhalation/inhalation discrimination circuit 14, amplifies it, and discriminates between exhalation and inspiration. A signal arbitrarily delayed from the discriminated exhalation signal or inhalation signal is outputted as a trigger signal to the cycle generation circuit 13, and the inhalation signal is outputted to the intake tuning solenoid valve 22.

サイクル発生回路13は、当該酸素濃縮装置に対する最
良の酸素濃縮行程サイクルが、固定的にタイムプログラ
ム化されている。このサイクル発生回路13のプログラ
ムパターンの概略を第2図に基づいて説明すれば、最初
に第1霧磁弁7を開放して、コンプレッサー3から圧縮
空気を吸着塔9内へ導入するための通電時間(S−5)
、次に吸着塔9内の圧縮空気の圧力を保持して窒素ガス
を吸着させ、かつ生成された酸素をバッファタンク17
および貯溜タンク21内に採取蓄積する停止時間(S−
8)、続いて第2を磁弁11を開放して吸着塔9内に残
留している窒素分の濃度の高くなったガスを大気中に排
出する時間(S−6)へと移る。
The cycle generating circuit 13 is time-programmed in a fixed manner to determine the best oxygen concentrating cycle for the oxygen concentrator. The outline of the program pattern of this cycle generation circuit 13 will be explained based on FIG. Time (S-5)
Next, the pressure of the compressed air in the adsorption tower 9 is maintained to adsorb nitrogen gas, and the generated oxygen is transferred to the buffer tank 17.
and the stop time for collecting and accumulating in the storage tank 21 (S-
8), followed by a second time (S-6) in which the magnetic valve 11 is opened and the gas with a high concentration of nitrogen remaining in the adsorption tower 9 is discharged into the atmosphere.

これに伴って相対的に圧力が高くなるバッファタンク1
7内に貯められていた酸素を逆流させ、吸着塔9内をパ
ージ再生したところで、第2を磁弁11を閉鎖する。し
たがって、運転中に、呼気・吸気弁別回路14から呼気
信号が、サイクル発生回路13へ出力されると、当該サ
イクル発生回路13に設定されているプログラムが始動
して酸素を生成する。
As a result, the pressure in buffer tank 1 becomes relatively high.
After the oxygen stored in the adsorption column 7 is caused to flow back and the interior of the adsorption tower 9 is purged and regenerated, the second magnetic valve 11 is closed. Therefore, when an exhalation signal is output from the exhalation/inhalation discrimination circuit 14 to the cycle generation circuit 13 during operation, the program set in the cycle generation circuit 13 is started to generate oxygen.

次に、前記呼気・吸気弁別回路14で弁別増幅した吸気
信号を吸気同調電磁弁22へ入力し、当該吸気同調を磁
弁22を吸気の初めに同期させて開くことにより、貯溜
タンク21内に貯められている酸素を、当該患者等の吸
気に同期して鼻カニユーラを介して該呼吸器へ供給する
Next, the inhalation signal discriminated and amplified by the exhalation/inhalation discrimination circuit 14 is input to the inhalation tuning solenoid valve 22, and the inhalation tuning is performed by opening the solenoid valve 22 in synchronization with the beginning of inspiration. The stored oxygen is supplied to the respiratory organ via the nasal cannula in synchronization with the patient's inhalation.

呼吸パターンにおいて、基本的には呼気時間の方が吸気
時間より長いために、患者等の吸気が開始される時期に
、サイクル発生回路13のプログラムサイクルにおいて
生成された酸素はすでに採取され終わってパージ行程に
なっていても、貯溜タンク21の前に設置されている一
方弁2oが働いて、該貯溜タンク21内の酸素は吸着塔
9の方へ逆流しない、この時、貯溜タンク21内に貯っ
ている酸素は、当該患者等が必要とする量が充分に確保
されているために、吸気同調を磁弁22の開放開始時期
が、酸素採取開始時期以降であれば同等問題はない。こ
のことからも当該患者等の呼吸サイクルが多少変動して
も、当該呼吸器へ安定的に酸素を供給することができる
In the breathing pattern, the exhalation time is basically longer than the inhalation time, so when the patient, etc. starts to inhale, the oxygen generated in the program cycle of the cycle generation circuit 13 has already been collected and purged. Even during the stroke, the one-way valve 2o installed in front of the storage tank 21 operates, and the oxygen in the storage tank 21 does not flow back toward the adsorption tower 9. At this time, the oxygen stored in the storage tank 21 Since the amount of oxygen required by the patient is sufficiently secured, there is no problem if the opening timing of the magnetic valve 22 for intake synchronization is after the oxygen collection starting timing. For this reason, oxygen can be stably supplied to the respiratory apparatus even if the patient's breathing cycle changes somewhat.

次に、この実施例の回路動作を説明する。Next, the circuit operation of this embodiment will be explained.

センサ24Sからの信号は第2図のS−1で示す信号で
、これは呼吸のガス温度で呼気、吸気を検出する方式の
ものの例で示しである。すなわち呼気のときは、体温で
温められた呼気を鼻孔位置に取付けた熱電対で検出する
ため熱起電力で電圧が上昇し、吸気は温度の低い外気が
センサの所を通って吸入されるため下降する波形を示し
ており、各々のピーク点が呼気、吸気の始点を示してい
る。
The signal from the sensor 24S is the signal shown as S-1 in FIG. 2, which is an example of a system that detects exhaled and inhaled air based on the temperature of the respiratory gas. In other words, when exhaling, the thermocouple installed at the nostril detects exhaled air warmed by body temperature, which increases the voltage due to thermoelectromotive force, and when inhaling, the lower temperature outside air is inhaled through the sensor. It shows a descending waveform, with each peak point indicating the starting point of exhalation and inspiration.

この信号S−1を呼気・吸気弁別回路14に入れる。This signal S-1 is input to the exhalation/inhalation discrimination circuit 14.

この呼気・吸気弁別回路14は第3図の回路構成になっ
ている。すなわち、IC−1−1が増幅回路で信号を増
幅し、IC−1−2の回路が微分回路で波形を微分し、
それをIC−2−1およびIC−2−2で増幅して、再
度RとCで微分して出力端子27Aより第2図のS−3
で示す呼気のトリガ信号S−3が出力される。第3図の
出力端子27BにIC−3の回路により作られた吸気期
間のみ第2図のS−4で示す信号が出力される。このS
−4の信号は吸気同調電磁弁22に供給された期間のみ
弁を開にする。また、端子27Aの出力を配線4Eを介
して第4図で示す1サイクル発生回路13の入力端子2
8Aに供給する。
This exhalation/inhalation discrimination circuit 14 has a circuit configuration as shown in FIG. That is, IC-1-1 amplifies the signal with an amplifier circuit, IC-1-2 circuit differentiates the waveform with a differentiator circuit,
It is amplified by IC-2-1 and IC-2-2, differentiated by R and C again, and output from the output terminal 27A to S-3 in Figure 2.
An exhalation trigger signal S-3 shown by is output. A signal indicated by S-4 in FIG. 2 is outputted to the output terminal 27B in FIG. 3 only during the intake period created by the circuit of IC-3. This S
The -4 signal opens the intake tuning solenoid valve 22 only during the period in which it is supplied. Further, the output of the terminal 27A is sent to the input terminal 2 of the one cycle generation circuit 13 shown in FIG. 4 via the wiring 4E.
8A.

このサイクル発生回路13は、装置動作の1サイクルの
信号を作り出すもので、ここでは第4図に示すモノステ
ーブルマルチバイブレータ回路(以下単にモノマルチ回
路という)28によりその各々のタイミング信号を作り
上げていることを示すものであるが、本発明では各サイ
クル時間を作りだす方法をこのモノマルチ回路28に限
定するものではない。
This cycle generation circuit 13 generates a signal for one cycle of device operation, and here each timing signal is created by a monostable multivibrator circuit (hereinafter simply referred to as a monomulticircuit) 28 shown in FIG. However, in the present invention, the method of creating each cycle time is not limited to this monomulti circuit 28.

次に、回路動作の説明に入ると酸素発生装置の原料空気
を吸着塔9に送り込むlサイクル動作の動作開始から貯
溜タンク21に酸素ガスが貯溜されて患者が吸入できる
までの時間を予め考慮し、患者の吸気にどれだけ先行さ
せて装置を始動すればよいかを設定する必要がある。こ
の時間を吸気の前にある呼気を基準にして作りだす。す
なわち第2図の呼気トリガ信号S−3の立上りからS−
7の遅れ時間の終わり(S−7T)までが装置を次の吸
気に先行させて動作させる時間を決める。詳しくは、呼
気、吸気弁別回路14より出力される呼気トリガ信号S
−3で第4図のIC−1のモノマルチ回路を作動させ、
遅れ時間S、−7を作りだす。
Next, to explain the circuit operation, we will consider in advance the time from the start of the 1-cycle operation in which the raw air of the oxygen generator is fed into the adsorption tower 9 until the oxygen gas is stored in the storage tank 21 and can be inhaled by the patient. , it is necessary to set how far in advance of the patient's inspiration the device should be started. This time is created based on exhalation, which precedes inhalation. That is, from the rising edge of the exhalation trigger signal S-3 in FIG.
The end of the 7 delay time (S-7T) determines the time the device operates in advance of the next inspiration. In detail, the exhalation trigger signal S output from the exhalation/inhalation discrimination circuit 14
-3 activates the monomulti circuit of IC-1 in Figure 4,
A delay time S, -7 is created.

この遅れ時間は、回路IC−1のコンデンサCIと可変
抵抗器VRIとで決定される。そして、この遅れ時間信
号S−7の立下り信号5−7T <第4図の28ではI
(、−1のQ2の立上り)でIC2をトリガ(起動)さ
せて、第1電磁弁7の動作信号S−5を作る。この動作
信号は同しく抵抗R2,コンデンサC2で電磁弁7の必
要オン時間が決められる。この出力を回路1(,3−2
で増幅し、回路5SR2を起動して、電磁弁7を動作さ
せる。また、この信号S−5の終わり、すなわちモノマ
ルチ回路の立下り時間で回路IC3をトリガさせて、電
磁弁11を起動するまでの停止時間S−8を回路IC3
で作りだす。この時間の設定は回路IC3のコンデンサ
C6,抵抗R3の値ニより決められる。この停止時間の
終わり、すなわちIC3のモノマルチ出力信号の立下り
時(回路ではIC3のQ2の立上り)でIC4を起動し
第2電磁弁]1の動作信号S−6を作りだす。この出力
を回路IC3−1で増幅し、回路SSR1を駆動し、第
2霧磁弁11を作動させる。この時間は抵抗R4、コン
デンサC4の値で作りだす。この信号S−6が第2電磁
弁11に加えられて、第2電磁弁】1が開となる。
This delay time is determined by the capacitor CI and the variable resistor VRI of the circuit IC-1. Then, the falling signal 5-7T of this delay time signal S-7 <I at 28 in FIG.
The IC2 is triggered (activated) at (rising edge of Q2 of , -1) to generate an operation signal S-5 for the first electromagnetic valve 7. This operation signal similarly determines the required ON time of the solenoid valve 7 using the resistor R2 and the capacitor C2. This output is connected to circuit 1 (, 3-2
, the circuit 5SR2 is activated, and the solenoid valve 7 is operated. In addition, the circuit IC3 is triggered at the end of this signal S-5, that is, the falling time of the monomulti circuit, and the stop time S-8 until the solenoid valve 11 is started is determined by the circuit IC3.
Create it with The setting of this time is determined by the values of capacitor C6 and resistor R3 of circuit IC3. At the end of this stop time, that is, at the falling edge of the mono-multi output signal of IC3 (at the rising edge of Q2 of IC3 in the circuit), IC4 is activated to generate the operation signal S-6 of the second solenoid valve]1. This output is amplified by the circuit IC3-1, drives the circuit SSR1, and operates the second mist valve 11. This time is created by the values of resistor R4 and capacitor C4. This signal S-6 is applied to the second solenoid valve 11, and the second solenoid valve 1 opens.

第5図は本発明の第2の天施例を示すものである。FIG. 5 shows a second embodiment of the present invention.

本実施例は実施例1の構成の第1ft磁弁7A。This embodiment is a first ft magnetic valve 7A having the configuration of the first embodiment.

7B、第2電磁弁11A、IIB、吸着塔9A、9B、
逆止弁15A、15B、オリフィス16A、16B、バ
ッファタンク17A、17B、一方弁2OA、20Bを
それぞれ複数化したもので、これら複数化した構成を実
施例1と同様のパターンで動作するよう構成する。すな
わち、サイクル発生回路13A、13Bは実施例1を複
数化したもので、交互に各吸着塔9A9Bを利用するこ
とにより各吸着塔9A、9Bは、呼吸複数回に1回の動
作となるため、患者の呼吸数が異常に早くなっても、該
呼吸数に対する追従性を向上させた高機能型の装置であ
る。
7B, second solenoid valve 11A, IIB, adsorption tower 9A, 9B,
A plurality of check valves 15A, 15B, orifices 16A, 16B, buffer tanks 17A, 17B, and one-way valves 2OA, 20B are respectively provided, and these plurality of configurations are configured to operate in the same pattern as in the first embodiment. . That is, the cycle generation circuits 13A and 13B are a plurality of cycle generation circuits 13A and 13B, and by alternately using the adsorption towers 9A and 9B, each adsorption tower 9A and 9B operates once every multiple breaths. This is a highly functional device that has improved ability to follow a patient's breathing rate even if it becomes abnormally fast.

しかし、吸気同調電磁弁22の制御パターンは実施例1
および実施例2ともに変更なく、呼気・吸気弁別回路1
4からの制御信号で吸気同調電磁弁22の制御ができる
However, the control pattern of the intake tuning solenoid valve 22 is
Exhalation/inhalation discrimination circuit 1 is unchanged in both Example 2 and Embodiment 2.
The intake tuning solenoid valve 22 can be controlled by the control signal from 4.

次に示す第6図は、第5圀のサイクル発生回路の具体例
である。呼気トリガ信号S−3が入る度にフリップフロ
ンプ回路(IC5)が反転し、この出力端子Ql、Q2
より出力された信号をANDIおよびAND2を介して
モノマルチ回路IC2−1とIC2−2とに送る。IC
5のQlがオンの時はANDIが生きて13AのIC2
−1を起動させて信号S−5−1を発生する。これは配
線4H−1により第1iii1i!弁7Aの開閉機構8
Aに接続されており、第1を磁弁7Aを開にする。そし
てS−5−1の立ち下がりで前記同様にIC3−1をト
リガし、停止時間S−8を作りだし、つづいてS−8の
立ち下がりでIC4−1をトリガし、第2電磁弁11A
の動作信号S−6−1を作りだす。これは4M−1によ
り第2電磁弁11Aの開閉機構12Aに接続されており
、第2電磁弁11Aを開にする。そして実施例1と同様
に吸着塔9Aが動作し、バッファタンク17Aを介して
貯溜タンク21に酸素を送る。
FIG. 6 shown next is a specific example of the cycle generation circuit of the fifth region. Each time the exhalation trigger signal S-3 is input, the flip-flop circuit (IC5) is inverted, and the output terminals Ql and Q2 are inverted.
The output signal is sent to mono multi circuits IC2-1 and IC2-2 via ANDI and AND2. IC
When Ql of 5 is on, ANDI is active and IC2 of 13A
-1 to generate signal S-5-1. This is the 1iii1i! due to the wiring 4H-1! Opening/closing mechanism 8 of valve 7A
A, and the first one opens the magnetic valve 7A. Then, at the falling edge of S-5-1, IC3-1 is triggered in the same manner as described above to create a stop time S-8, and then, at the falling edge of S-8, IC4-1 is triggered, and the second solenoid valve 11A
The operation signal S-6-1 is generated. This is connected to the opening/closing mechanism 12A of the second solenoid valve 11A through 4M-1, and opens the second solenoid valve 11A. Then, the adsorption tower 9A operates in the same manner as in Example 1, and sends oxygen to the storage tank 21 via the buffer tank 17A.

次の呼気でフリップフロップIC5のQ2がオンになる
ため、今度はAND2が生きて138のIC2−2を起
動させて信号S−5−2を発生する。これは配線4H−
2により第1電磁弁7Bの開閉機構8Bに接続されてお
りて第1電磁弁7Bを開にする。そしてS−5−2の立
ち下がりでIC3−2をトリガし、停止時間S−8の立
ち下がりでIC4−2をトリガして第2を磁弁12Bの
動作信号S−6−2を作りだす、これは配線4M−2に
より第2を磁弁11Bの開閉機構12Bに接続されてお
り、第2ii磁弁lIBを開にする。そして吸着塔9B
が動作してバッファタンク17Bを介して貯溜タンク2
1に酸素を送る。
Since Q2 of flip-flop IC5 is turned on at the next exhalation, AND2 is activated this time and activates IC2-2 of 138 to generate signal S-5-2. This is wiring 4H-
2 is connected to the opening/closing mechanism 8B of the first solenoid valve 7B to open the first solenoid valve 7B. Then, at the falling edge of S-5-2, IC3-2 is triggered, and at the falling edge of stop time S-8, IC4-2 is triggered to generate a second operation signal S-6-2 for the magnetic valve 12B. This is connected to the opening/closing mechanism 12B of the magnetic valve 11B through the wiring 4M-2, and opens the second magnetic valve IIB. And adsorption tower 9B
operates and the storage tank 2 is transferred via the buffer tank 17B.
Send oxygen to 1.

このようにして、複数呼吸で1系列の吸着塔機構を駆動
するので、時間的余裕が生じ、早い呼吸数を持つ患者に
対する追従性を向上させることができる。
In this way, since one series of adsorption tower mechanisms is driven by multiple breaths, time leeway is created and follow-up ability for patients with rapid breathing rates can be improved.

(発明の効果) 本発明の新規特徴とする構成およびその効果は次の点に
ある。
(Effects of the Invention) The novel features of the present invention and its effects are as follows.

(1)吸着塔の酸素発生サイクルを人等の呼吸パターン
の1サイクルに同期させて、高性能吸着剤を充填した吸
着塔を単基又は複塔式で使用して、呼吸1サイクル毎に
当該吸着塔の酸素発生サイクルを最適な条件で1サイク
ルだけ運転できる酸素濃縮プログラムで作動する酸素濃
縮器を設けることが可能となる。
(1) Synchronize the oxygen generation cycle of the adsorption tower with one cycle of the breathing pattern of people, etc., and use adsorption towers filled with high-performance adsorbent in a single or double tower type, and It becomes possible to provide an oxygen concentrator that operates with an oxygen concentration program that allows the oxygen generation cycle of the adsorption tower to be operated for only one cycle under optimal conditions.

(2)酸素濃縮器によって人等の呼吸器系に濃縮酸素ガ
スを供給し、外気と混合吸気させる開放式呼吸回路にお
いて、該人等の呼吸気流の温度変化を鼻孔前に設置した
温度検出手段(センサ)等により検出して、当該検出信
号を電子回路によって呼気相と吸気相に弁別し、当該呼
気相開始毎に同期して、またはそれより任意に遅らせて
吸気相開始時迄に酸素濃縮サイクルプログラムを吸着行
程、脱着行程、パージ行程よりなるlサイクルづつ稼働
させることができるので、制御方式が簡単で正確な制御
が可能となる。
(2) In an open breathing circuit that supplies concentrated oxygen gas to the respiratory system of a person using an oxygen concentrator and inhales the air mixed with outside air, a temperature detection means installed in front of the nostrils detects temperature changes in the respiratory airflow of the person. (sensor), etc., and the detection signal is differentiated into the expiratory phase and the inspiratory phase by an electronic circuit, and oxygen concentration is carried out in synchronization with each expiratory phase start or arbitrarily delayed by the start of the inspiratory phase. Since the cycle program can be run in one cycle each consisting of an adsorption process, a desorption process, and a purge process, the control system is simple and accurate control is possible.

(3)発生させた濃縮酸素ガスを、逆止弁・オリフィス
を通してバッファタンクに貯め、減圧による脱着行程が
済んだ後でバッファタンクから逆流させてパージに使用
でき、当該重塔方式を応用すれば二基方式に限らず多塔
方式でも使えるので、呼吸速度の遅速にも関係なく対応
制御できる。
(3) The generated concentrated oxygen gas can be stored in a buffer tank through a check valve and orifice, and after the desorption process due to reduced pressure is completed, it can be made to flow back from the buffer tank and used for purging. Since it can be used not only in a two-unit system but also in a multi-tower system, it can be controlled regardless of slow breathing rates.

(4)発生させた濃縮酸素ガスの一部を、呼吸ガス用に
設けた貯溜タンクに一時貯溜できることによりfi縮酸
素ガスの供給は安定して行える。
(4) A part of the generated concentrated oxygen gas can be temporarily stored in a storage tank provided for breathing gas, so that the fi-condensed oxygen gas can be stably supplied.

(5)貯溜タンクに貯った濃縮酸素ガスが、吸着塔の再
生用パージガスとして使用されないように、該貯溜タン
クの上流側に一方弁を設けたことにより濃縮酸素ガスの
供給を安定してできる。
(5) To ensure that the concentrated oxygen gas stored in the storage tank is not used as purge gas for regeneration of the adsorption tower, a one-way valve is provided on the upstream side of the storage tank to ensure a stable supply of concentrated oxygen gas. .

(6)貯溜タンクに貯った濃縮酸素ガスを、当該人等の
呼吸開始時に同期して酸素ガス供給用に設けた吸気同調
電磁弁を開放して、素早く所定量を放出し、該人等の呼
吸器系に安定的に供給されるので吸入利用効率が上昇す
る。
(6) A predetermined amount of the concentrated oxygen gas stored in the storage tank is quickly released by opening the intake synchronized solenoid valve provided for supplying oxygen gas in synchronization with the start of breathing of the person, etc. The inhalation utilization efficiency is increased because it is stably supplied to the respiratory system.

本発明の効果を更に要約すると下記の通りである。A further summary of the effects of the present invention is as follows.

(1)呼吸1サイクルに、酸素発生の1サイクルが同期
すればよいために、呼吸同期制御を設けることにより呼
吸の速度とは無関係に全サイクル行程を自動的に制御す
る管理機構を省くことができる。これにより、当該酸素
濃縮装置の構成部品点数が少なくなるために、構造がシ
ンプルで、システムが簡素化でき、故障等の低減が図れ
る。
(1) Since one cycle of oxygen generation only needs to be synchronized with one cycle of breathing, providing a breathing synchronization control eliminates the need for a management mechanism that automatically controls the entire cycle regardless of the breathing rate. can. As a result, the number of component parts of the oxygen concentrator is reduced, so the structure is simple, the system can be simplified, and failures and the like can be reduced.

(2)また、吸着塔は単基式でも複塔弐でもよく、吸着
塔を重塔化とすると構造の簡素化が図れる。
(2) Furthermore, the adsorption tower may be of a single type or a multi-layer type, and the structure can be simplified if the adsorption tower is made into multiple towers.

また吸着塔を複式とすると、呼吸のピッチが早くなって
も追従できるようその制御の精度の向上が図れる。
Moreover, if the adsorption tower is made of multiple types, the precision of its control can be improved so that it can follow even if the respiration pitch becomes faster.

(3)本発明によると構成部品点数が少なく、吸着行程
、吸入効果ともに無駄がないので小型軽量化が図れる。
(3) According to the present invention, the number of component parts is small, and there is no waste in both the suction stroke and the suction effect, making it possible to reduce the size and weight.

(4)貯溜タンク21が吸気同調電磁弁22の前に設け
られているので、患者に供給できる濃縮酸素ガスの量の
安定化が図れる。
(4) Since the storage tank 21 is provided before the intake tuning solenoid valve 22, the amount of concentrated oxygen gas that can be supplied to the patient can be stabilized.

(5)構成部品点数が少ないために、製作費の低コスト
化が期待できる。
(5) Since the number of component parts is small, manufacturing costs can be expected to be reduced.

(6)小型軽量化と省エネルギー化が図れるために、車
載用、携帯用の酸素濃縮装置の開発が可能となる。
(6) Since it can be made smaller, lighter, and more energy efficient, it becomes possible to develop oxygen concentrators for use in vehicles and for portable use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明呼吸同期式酸素発生装置の実施の一例態
様を示す回路図、 第2図は同制御信号パターン図、 第3図は本発明の呼気・吸気弁別回路の詳細の一例を示
す回路図、 第4図は本発明のサイクル発生回路を示す回路図、 第5図は本発明の他の一例態様を示す回路図、第6図は
そのサイクル発生回路の詳細の一例を示す回路図である
。 1・・・電源 IA・・・電源スィッチ 2・・・運転回路 3・・・コンプレッサー 4A、4B、4C,4D、4E、4F、4G。 4H,4M・・・導線 5A  5B、5C,5D、5E、5F、5G5H・−
・導管 6・・・サージタンク 7.7A、7B・・・第1電磁弁 8.8A、8B・・・第1電磁弁の開閉機構9.9A、
9B・・・吸着塔 10・・・サイレンサー 11 、IIA、 IIB・・・第2電磁弁12.12
A、 12B・・・第2電磁弁の開閉機構13.13A
、 13B・・・サイクル発生回路14・・・呼気・吸
気弁別回路 15.15A、 15B・・・逆止弁 16.16A、 16B・・・オリフィス17.17A
、 17B・・・バッファタンク18・・・運転弁 19・・・運転弁の開閉機構 20.20A、 20B・・・一方弁 21・・・貯溜タンク 22・・・吸気同調電磁弁 23・・・吸気同調電磁弁の開閉機構 24・・・鼻カニユーラ 24S・・・呼吸気センサ S、−1・・・呼吸信号 S−2・・・吸気トリガ信号 S−3・・・呼気トリガ信号 S−4・・・吸気同調電磁弁駆動信号 S−5・・・第1電磁弁駆動信号 S−6・・・第2fli弁駆動信号 S−7・・・遅れ時間信号 S−8・・・停止時間信号 26・・・呼気・吸気弁別回路 27・・・微分回路 28・・・単基式吸着塔用サイクル発生回路29・・・
複塔式吸着塔用サイクル発生回路第1図 第5図
Fig. 1 is a circuit diagram showing an embodiment of the respiratory synchronized oxygen generator of the present invention, Fig. 2 is a control signal pattern diagram thereof, and Fig. 3 is a detailed example of the exhalation/inhalation discrimination circuit of the present invention. Circuit diagram: FIG. 4 is a circuit diagram showing a cycle generation circuit of the present invention; FIG. 5 is a circuit diagram showing another embodiment of the present invention; FIG. 6 is a circuit diagram showing an example of details of the cycle generation circuit. It is. 1...Power supply IA...Power switch 2...Driving circuit 3...Compressor 4A, 4B, 4C, 4D, 4E, 4F, 4G. 4H, 4M...Conductor 5A 5B, 5C, 5D, 5E, 5F, 5G5H・-
- Conduit 6... Surge tank 7.7A, 7B... First solenoid valve 8.8A, 8B... Opening/closing mechanism of first solenoid valve 9.9A,
9B... Adsorption tower 10... Silencer 11, IIA, IIB... Second solenoid valve 12.12
A, 12B... Second solenoid valve opening/closing mechanism 13.13A
, 13B... Cycle generation circuit 14... Exhalation/inhalation discrimination circuit 15.15A, 15B... Check valve 16.16A, 16B... Orifice 17.17A
, 17B...Buffer tank 18...Driving valve 19...Driving valve opening/closing mechanism 20.20A, 20B...One-way valve 21...Storage tank 22...Intake tuning solenoid valve 23... Inhalation synchronized solenoid valve opening/closing mechanism 24...Nasal cannula 24S...Respiration sensor S, -1...Respiration signal S-2...Inhalation trigger signal S-3...Expiration trigger signal S-4 ...Intake synchronized solenoid valve drive signal S-5...First solenoid valve drive signal S-6...Second fli valve drive signal S-7...Delay time signal S-8...Stop time signal 26...Exhalation/inhalation discrimination circuit 27...Differential circuit 28...Single-base adsorption tower cycle generation circuit 29...
Cycle generation circuit for double-column adsorption tower Figure 1 Figure 5

Claims (1)

【特許請求の範囲】 1、圧縮された空気中の窒素を選択的かつ迅速に吸着す
る吸着剤を充填した単数または複数の吸着塔と、この吸
着塔の導入口に第1の電磁弁を介して連結したコンプレ
ッサーまたは圧縮空気源と、前記の導入口を断続的に大
気圧または陰圧源に開放する第2の電磁弁と、吸入装置
またはその近くに設けた人等の呼吸の相を検出するセン
サと、このセンサの出力変化から吸気相と呼気相とを弁
別して必要な信号を送出する呼気・吸気弁別回路と、当
該弁別回路からの信号により呼吸サイクルの呼気相や吸
気相との開始時、またはこれら呼吸信号の開始時から電
気的に任意に遅延させた時期に、第1の電磁弁を開いて
吸着塔へ圧縮空気を導入し、一定の圧になる迄は加圧し
てから後濃縮酸素ガスが通り抜けるようにした吸着塔と
、ついで第1の電磁弁を閉鎖した後第2の電磁弁を開い
て吸着塔から大気圧または陰圧源へ吸着された窒素や水
分を多量に含むガスを排除する脱着パージ相とを最適の
パターンで1サイクル毎に運行するようにプログラム制
御するサイクル発生回路と、当該吸着塔から発生して通
り抜けた濃縮酸素ガスを貯めるバッファタンクと、これ
に一方弁を介して貯溜タンクを接続し、この貯溜タンク
と前記吸入装置を吸気同調電磁弁を介して導管で接続し
、前記呼気相・吸気相弁別回路からの信号で、呼吸サイ
クルの吸気相の初めに同期してこの吸気同調電磁弁を開
いて、貯溜された濃縮酸素ガスを一気に吐きだして吸入
装置の方へ送出してから、所定時間後または次の呼気の
始めに同期して前記吸気同調電磁弁を閉鎖するよう構成
したことを特徴とする医療用酸素濃縮装置。 2、前記吸着塔から産出された濃縮酸素ガスは、それを
貯める前記バッファタンク内に貯められて、前記第2の
電磁弁が開いた脱着相においては吸着塔のパージに使わ
れるほか、一定の圧になった以後は反対方向に一方弁を
介して別の貯溜タンクに貯められてから、吸気同調弁の
開かれた吸気相の初めに同期して所定量以上の濃縮酸素
ガスを安定して送出されるように構成することを特徴と
する請求項1に記載の医療酸素濃縮装置。 3、前記吸着塔の後に一定の狭搾を持たせたオリフィス
状のガス通路と逆止弁を併設して、一定圧以上では吸着
塔で生成された濃縮酸素ガスはバッファタンクの方向へ
は多量に抜けるが、脱着パージ行程時にはパージに必要
な量だけ吸着塔内に逆流しうるように構成するとともに
、バッファタンクの下流側にさらに一方弁を介して別の
貯溜タンクを設け、更にその下流には前記呼気・吸気弁
別回路からの信号に同期して開閉する吸気同調電磁弁と
、当該人等の呼吸器へ該濃縮酸素ガスを吹送する吸入装
置を設けたことを特徴とする請求項1に記載の酸素濃縮
装置。 4、呼吸センサにより呼吸の温度に同調して呼吸信号を
取りだす行程と、センサよりの呼吸信号を入力した呼気
・吸気弁別回路において、呼吸信号の山と谷に応じてそ
れぞれ吸気トリガ信号および呼気トリガ信号を取りだす
段階と、吸気トリガ信号および呼気トリガ信号を受けた
サイクル発生回路において、吸気又は呼気トリガ信号よ
り適当な遅れ時間をおいてサイクル発生回路を起動させ
るトリガ信号を作り、これにより第1の電磁弁を開ける
段階と、一定の圧になるまで加圧した状態で保つ段階と
、次いで第2の電磁弁を開いて吸着塔内のガスを大気中
又は陰圧源へ排出しながら生成濃縮酸素ガスの一部を利
用して、吸着塔の吸着剤の再生を行う段階を具備した請
求項1ないし3項の何れか一項に記載の医療用酸素濃縮
装置。 5、呼吸回路を外気に開放した状態で濃縮酸素ガスを人
等の呼吸系に供給するために圧縮された空気中の窒素を
選択的かつ迅速に吸着する吸着剤を充填した単式または
複式の吸着塔と、この吸着塔の導入口に第1の電磁弁を
介して連結したコンプレッサー又は圧縮空気源と、前記
導入口を断続的に大気圧又は陰圧源に開放する第2の電
磁弁と、吸入装置またはその近くに設けた人等の呼吸の
相を検出するセンサと、このセンサの出力変化から吸気
相と呼気相とを弁別してサイクル発生に必要なトリガ信
号と、吸気同調電磁弁を開閉する信号とを送出する呼気
・吸気弁別回路と、前記呼気・吸気弁別回路よりの信号
に基づいて遅れ時間を付加したトリガ信号により吸着塔
への圧縮空気供給通路を開閉する第1の電磁弁および大
気と連通するサイレンサ又は陰圧源を吸着塔に連結する
通路を開閉し吸着塔の排気を行う第2の電磁弁の開閉タ
イミングをセットしたプログラムを内蔵し、前記呼気・
吸気弁別回路から供給されるトリガ信号を受けて1サイ
クル毎の運転を指令するサイクル発生回路をもった呼吸
同調酸素濃縮システムにおいて、前記センサより呼吸の
温度等に対応して呼吸信号を取りだす行程と、センサよ
りの呼吸信号を入力した呼気・吸気弁別回路において、
呼吸信号の山と谷に応じてそれぞれ吸気トリガ信号およ
び呼気トリガ信号を取りだす行程と、吸気トリガ信号お
よび呼気トリガ信号を受けたサイクル発生回路において
、吸気トリガ信号又は呼気トリガ信号より適当な休止時
間をおいてサイクルを開始するトリガ信号を作り、これ
により第1電磁弁を作動させる段階と、ついで一定の圧
に加圧した状態で一定量の濃縮酸素ガスが通り抜けるの
を待った後に第2の電磁弁を開く段階と、前記吸気トリ
ガ信号又は呼気トリガ信号に引続く吸気トリガ信号と同
期して吸気同調電磁弁の駆動信号を作動させる行程とを
1サイクルとするサイクル発生手段とを具備したことを
特徴とする医療用酸素濃縮方法。
[Claims] 1. One or more adsorption towers filled with an adsorbent that selectively and quickly adsorbs nitrogen in compressed air, and a first electromagnetic valve connected to the inlet of the adsorption tower. a compressor or compressed air source connected to the inhaler, a second solenoid valve that intermittently opens the inlet to atmospheric pressure or a negative pressure source, and an inhaler installed at or near the inhaler to detect the phase of respiration of a person, etc. an exhalation/inhalation discrimination circuit that discriminates between the inhalation phase and expiration phase based on changes in the output of this sensor and sends the necessary signals, and a signal from the discrimination circuit that starts the expiration phase or inspiratory phase of the breathing cycle. At the same time, or at a time that is electrically delayed arbitrarily from the start of these breathing signals, the first solenoid valve is opened to introduce compressed air into the adsorption tower, pressurize it until it reaches a constant pressure, and then An adsorption tower through which concentrated oxygen gas passes, and then a first solenoid valve is closed and a second solenoid valve is opened to contain a large amount of nitrogen and moisture adsorbed from the adsorption tower to an atmospheric pressure or negative pressure source. A cycle generation circuit that program-controls a desorption purge phase that eliminates gas in an optimal pattern for each cycle, a buffer tank that stores concentrated oxygen gas that has been generated and passed through the adsorption tower; A storage tank is connected through a valve, and the storage tank and the inhalation device are connected by a conduit through an inspiratory tuning solenoid valve, and a signal from the exhalation phase/inspiration phase discrimination circuit is used to detect the beginning of the inspiratory phase of the breathing cycle. The intake synchronized solenoid valve is opened in synchronization with , and the stored concentrated oxygen gas is exhaled all at once and sent to the inhaler.Then, after a predetermined time or in synchronization with the beginning of the next exhalation, the intake synchronized solenoid valve is opened. A medical oxygen concentrator characterized in that the valve is configured to close. 2. The concentrated oxygen gas produced from the adsorption tower is stored in the buffer tank, and is used for purging the adsorption tower during the desorption phase when the second electromagnetic valve is opened. After reaching the pressure, it is stored in another storage tank via a one-way valve in the opposite direction, and then synchronized with the beginning of the intake phase when the intake synchronization valve is opened to stably supply a predetermined amount or more of concentrated oxygen gas. The medical oxygen concentrator of claim 1, wherein the medical oxygen concentrator is configured to be delivered. 3. An orifice-shaped gas passage with a certain degree of constriction and a check valve are installed after the adsorption tower, so that when the pressure exceeds a certain pressure, a large amount of concentrated oxygen gas generated in the adsorption tower flows toward the buffer tank. However, during the desorption purge process, the structure is configured so that only the amount necessary for purging can flow back into the adsorption tower, and another storage tank is provided downstream of the buffer tank via a one-way valve, and further downstream of that. Claim 1, further comprising: an intake synchronized solenoid valve that opens and closes in synchronization with a signal from the exhalation/inhalation discrimination circuit; and an inhalation device that blows the concentrated oxygen gas into the respiratory organ of the person. Oxygen concentrator as described. 4. A process in which a breathing sensor synchronizes with the temperature of breathing and extracts a breathing signal, and an inhalation trigger signal and an exhalation trigger signal are generated depending on the peaks and troughs of the breathing signal in the exhalation/inspiration discrimination circuit that receives the breathing signal from the sensor. In the step of taking out the signal, and in the cycle generation circuit receiving the inhalation trigger signal and the expiration trigger signal, a trigger signal is generated to start the cycle generation circuit after an appropriate delay time from the inhalation or expiration trigger signal, and this causes the first trigger signal to be activated. A step of opening a solenoid valve, a step of keeping the pressure in a pressurized state until it reaches a constant pressure, and then a step of opening a second solenoid valve and discharging the gas in the adsorption tower to the atmosphere or a negative pressure source while generating concentrated oxygen. The medical oxygen concentrator according to any one of claims 1 to 3, further comprising a step of regenerating an adsorbent in an adsorption tower using a part of the gas. 5. Single or double adsorption system filled with an adsorbent that selectively and quickly adsorbs nitrogen in compressed air to supply concentrated oxygen gas to the human respiratory system with the breathing circuit open to the outside air. a tower, a compressor or compressed air source connected to the inlet of the adsorption tower via a first solenoid valve, and a second solenoid valve that intermittently opens the inlet to atmospheric pressure or a negative pressure source; A sensor installed on or near the inhaler to detect the phase of a person's breathing, and a trigger signal required to generate a cycle by distinguishing between the inhalation phase and expiration phase based on changes in the output of this sensor, and the opening/closing of the inhalation synchronized solenoid valve. a first electromagnetic valve that opens and closes a compressed air supply passage to the adsorption tower based on a trigger signal to which a delay time is added based on the signal from the expiration/intake discrimination circuit; It has a built-in program that sets the opening/closing timing of the second solenoid valve that opens and closes the passage connecting the silencer or negative pressure source communicating with the atmosphere to the adsorption tower and exhausts the adsorption tower.
In a respiration synchronized oxygen concentrator system having a cycle generation circuit which receives a trigger signal supplied from an inhalation discrimination circuit and commands operation for each cycle, a process of extracting a respiration signal from the sensor in response to the temperature of respiration, etc. In the exhalation/inhalation discrimination circuit that inputs the respiration signal from the sensor,
In the process of extracting the inspiratory trigger signal and expiratory trigger signal according to the peaks and troughs of the breathing signal, and in the cycle generation circuit that receives the inspiratory trigger signal and the expiratory trigger signal, an appropriate pause time is determined from the inspiratory trigger signal or the expiratory trigger signal. creating a trigger signal to start the cycle, thereby activating the first solenoid valve, and then, after waiting for a certain amount of concentrated oxygen gas to pass through while pressurized to a certain pressure, the second solenoid valve is activated. It is characterized by comprising a cycle generating means in which one cycle includes the step of opening and the step of activating the drive signal of the intake synchronized solenoid valve in synchronization with the intake trigger signal subsequent to the intake trigger signal or the expiration trigger signal. Medical oxygen concentration method.
JP25381990A 1990-09-21 1990-09-21 Medical oxygen concentration apparatus and method Granted JPH04132560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25381990A JPH04132560A (en) 1990-09-21 1990-09-21 Medical oxygen concentration apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25381990A JPH04132560A (en) 1990-09-21 1990-09-21 Medical oxygen concentration apparatus and method

Publications (2)

Publication Number Publication Date
JPH04132560A true JPH04132560A (en) 1992-05-06
JPH0565200B2 JPH0565200B2 (en) 1993-09-17

Family

ID=17256580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25381990A Granted JPH04132560A (en) 1990-09-21 1990-09-21 Medical oxygen concentration apparatus and method

Country Status (1)

Country Link
JP (1) JPH04132560A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016512743A (en) * 2013-03-15 2016-05-09 ザ ジェネラル ホスピタル コーポレイション Inhalation synthesis of nitric oxide
US10239038B2 (en) 2017-03-31 2019-03-26 The General Hospital Corporation Systems and methods for a cooled nitric oxide generator
US10279139B2 (en) 2013-03-15 2019-05-07 The General Hospital Corporation Synthesis of nitric oxide gas for inhalation
US10286176B2 (en) 2017-02-27 2019-05-14 Third Pole, Inc. Systems and methods for generating nitric oxide
US10328228B2 (en) 2017-02-27 2019-06-25 Third Pole, Inc. Systems and methods for ambulatory generation of nitric oxide
US11045620B2 (en) 2019-05-15 2021-06-29 Third Pole, Inc. Electrodes for nitric oxide generation
US11479464B2 (en) 2019-05-15 2022-10-25 Third Pole, Inc. Systems and methods for generating nitric oxide
US11497878B2 (en) 2014-10-20 2022-11-15 The General Hospital Corporation Systems and methods for synthesis of nitric oxide
US11617850B2 (en) 2016-03-25 2023-04-04 The General Hospital Corporation Delivery systems and methods for electric plasma synthesis of nitric oxide
US11691879B2 (en) 2020-01-11 2023-07-04 Third Pole, Inc. Systems and methods for nitric oxide generation with humidity control
US11827989B2 (en) 2020-06-18 2023-11-28 Third Pole, Inc. Systems and methods for preventing and treating infections with nitric oxide
US11833309B2 (en) 2017-02-27 2023-12-05 Third Pole, Inc. Systems and methods for generating nitric oxide
US11975139B2 (en) 2021-09-23 2024-05-07 Third Pole, Inc. Systems and methods for delivering nitric oxide
US12011544B2 (en) 2020-03-27 2024-06-18 The General Hospital Corporation Inspiratory synthesis of nitric oxide

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10646682B2 (en) 2013-03-15 2020-05-12 The General Hospital Corporation Inspiratory synthesis of nitric oxide
US10279139B2 (en) 2013-03-15 2019-05-07 The General Hospital Corporation Synthesis of nitric oxide gas for inhalation
US10293133B2 (en) 2013-03-15 2019-05-21 The General Hospital Corporation Inspiratory synthesis of nitric oxide
US10773047B2 (en) 2013-03-15 2020-09-15 The General Hospital Corporation Synthesis of nitric oxide gas for inhalation
US10434276B2 (en) 2013-03-15 2019-10-08 The General Hospital Corporation Inspiratory synthesis of nitric oxide
JP2016512743A (en) * 2013-03-15 2016-05-09 ザ ジェネラル ホスピタル コーポレイション Inhalation synthesis of nitric oxide
US11497878B2 (en) 2014-10-20 2022-11-15 The General Hospital Corporation Systems and methods for synthesis of nitric oxide
US11617850B2 (en) 2016-03-25 2023-04-04 The General Hospital Corporation Delivery systems and methods for electric plasma synthesis of nitric oxide
US10532176B2 (en) 2017-02-27 2020-01-14 Third Pole, Inc. Systems and methods for generating nitric oxide
US10286176B2 (en) 2017-02-27 2019-05-14 Third Pole, Inc. Systems and methods for generating nitric oxide
US10695523B2 (en) 2017-02-27 2020-06-30 Third Pole, Inc. Systems and methods for generating nitric oxide
US10328228B2 (en) 2017-02-27 2019-06-25 Third Pole, Inc. Systems and methods for ambulatory generation of nitric oxide
US10946163B2 (en) 2017-02-27 2021-03-16 Third Pole, Inc. Systems and methods for generating nitric oxide
US11911566B2 (en) 2017-02-27 2024-02-27 Third Pole, Inc. Systems and methods for ambulatory generation of nitric oxide
US11033705B2 (en) 2017-02-27 2021-06-15 Third Pole, Inc. Systems and methods for ambulatory generation of nitric oxide
US11833309B2 (en) 2017-02-27 2023-12-05 Third Pole, Inc. Systems and methods for generating nitric oxide
US11376390B2 (en) 2017-02-27 2022-07-05 Third Pole, Inc. Systems and methods for generating nitric oxide
US10576239B2 (en) 2017-02-27 2020-03-03 Third Pole, Inc. System and methods for ambulatory generation of nitric oxide
US11524134B2 (en) 2017-02-27 2022-12-13 Third Pole, Inc. Systems and methods for ambulatory generation of nitric oxide
US10239038B2 (en) 2017-03-31 2019-03-26 The General Hospital Corporation Systems and methods for a cooled nitric oxide generator
US11007503B2 (en) 2017-03-31 2021-05-18 The General Hospital Corporation Systems and methods for a cooled nitric oxide generator
US11479464B2 (en) 2019-05-15 2022-10-25 Third Pole, Inc. Systems and methods for generating nitric oxide
US11478601B2 (en) 2019-05-15 2022-10-25 Third Pole, Inc. Electrodes for nitric oxide generation
US11045620B2 (en) 2019-05-15 2021-06-29 Third Pole, Inc. Electrodes for nitric oxide generation
US11691879B2 (en) 2020-01-11 2023-07-04 Third Pole, Inc. Systems and methods for nitric oxide generation with humidity control
US12011544B2 (en) 2020-03-27 2024-06-18 The General Hospital Corporation Inspiratory synthesis of nitric oxide
US11827989B2 (en) 2020-06-18 2023-11-28 Third Pole, Inc. Systems and methods for preventing and treating infections with nitric oxide
US11975139B2 (en) 2021-09-23 2024-05-07 Third Pole, Inc. Systems and methods for delivering nitric oxide

Also Published As

Publication number Publication date
JPH0565200B2 (en) 1993-09-17

Similar Documents

Publication Publication Date Title
US4648395A (en) Synchronized feed type oxygen concentrator for use in an open breathing system
US4681099A (en) Breath-synchronized concentrated-oxygen supplier
US10874817B1 (en) Pulsed pressure swing adsorption system and method
US6446630B1 (en) Cylinder filling medical oxygen concentrator
JP4293581B2 (en) Oxygen concentrator, control device, and recording medium
JPH04132560A (en) Medical oxygen concentration apparatus and method
US6837244B2 (en) Oxygen enriching apparatus, controller for the oxygen enriching apparatus, and recording medium for the controller
JP4709529B2 (en) Oxygen concentrator
WO2020084993A1 (en) Nitric oxide administration device
CN115916311A (en) Power management in portable oxygen concentrator
JP7170743B2 (en) nitric oxide doser
JPH01274771A (en) Medical oxygen concentrating device
US20230201512A1 (en) Methods and apparatus for controlling operations in an oxygen concentrator
US20220379066A1 (en) Methods and apparatus for control of oxygen concentrator
JP2000037458A (en) Medical oxygen concentrator
JP2023521979A (en) Methods and apparatus for providing concentrated therapeutic gas for respiratory disorders
WO2020084995A1 (en) Relay administration device and nitrogen monoxide administration system
CN113304376A (en) Portable oxygen generation and respiration all-in-one machine for clinical anesthesia process and use method
JPH07284533A (en) Oxygen enriched gas suction device
JP4606655B2 (en) Breathing gas supply device
JP7004840B2 (en) Nitric oxide administration device
JP2834717B2 (en) Respiratory gas supply device
JP2502812Y2 (en) Gas flow rate switching device for demand valve control
CA1313245C (en) High frequency jet ventilation technique and apparatus
JP2002065856A (en) Concentrated oxygen feeder

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term