JPH01274771A - Medical oxygen concentrating device - Google Patents

Medical oxygen concentrating device

Info

Publication number
JPH01274771A
JPH01274771A JP63101320A JP10132088A JPH01274771A JP H01274771 A JPH01274771 A JP H01274771A JP 63101320 A JP63101320 A JP 63101320A JP 10132088 A JP10132088 A JP 10132088A JP H01274771 A JPH01274771 A JP H01274771A
Authority
JP
Japan
Prior art keywords
solenoid valve
adsorption bed
gas
period
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63101320A
Other languages
Japanese (ja)
Other versions
JPH0363907B2 (en
Inventor
Noboru Sato
暢 佐藤
Kazukiyo Takano
和潔 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Sanyo Electronic Industries Co Ltd
Original Assignee
Research Development Corp of Japan
Sanyo Electronic Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan, Sanyo Electronic Industries Co Ltd filed Critical Research Development Corp of Japan
Priority to JP63101320A priority Critical patent/JPH01274771A/en
Publication of JPH01274771A publication Critical patent/JPH01274771A/en
Publication of JPH0363907B2 publication Critical patent/JPH0363907B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To produce concentrated oxygen gas efficiently and stably, and thereby improve inhaling efficiency by providing a compressor connected with the induction port of an absorption floor via No.1 solenoid valve, No.2 solenoid valve releasing the induction port selectively to atmosphere and a sensor detecting the phase of inhalation of a human. CONSTITUTION:The output of a sensor 11 is supplied to a controller 13 via an amplifier 12, and when the start of the inhaling phase of a patient 10 is detected, No.1 solenoid valve 2 during the induction period of pressurized air is opened, and No.2 solenoid valve 5 for the same period is closed so that compressed air from a compressor 4 is supplied into an absorption floor 1 via No.1 solenoid valve 2 so as to let concentrated oxygen gas produced be stored in a produced gas surging tank 7 through an exhaust port 16 of the absorption floor 1. Then, while a device is inoperative, No.1 and No.2 solenoid valves are closed, the pressure of concentrated oxygen gas at the surge tank 7 exceeds the push-through pressure of a check valve 8 so that the oxygen is forwarded to the patient 10 through a nose cannula 9 in such a way as to meet his inhaling phase. Following which, while pressure is released to atmosphere, No.2 solenoid valve 5 is opened, the induction port 1a of the absorption floor 1 is released to atmosphere via No.2 solenoid valve 5 and a silencer 6.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、圧力変動吸着型の医療用酸素濃縮装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a pressure fluctuation adsorption type medical oxygen concentrator.

(従来の技術) 圧力変動吸着型の医療用酸素濃縮装置は従来種々のもの
が提案されており、例えば、特公昭57−5571号公
報には、2つの吸着床を用い、一方の吸着床における吸
着サイクルの期間中に該吸着床によって生成された酸素
濃縮ガスの一部を他方の吸着床のパージに用いるように
して、これら各吸着床の動作サイクルを交互に行なうよ
うにしたものが開示されている。この酸素濃縮装置によ
れば。
(Prior Art) Various pressure fluctuation adsorption type medical oxygen concentrators have been proposed in the past. For example, in Japanese Patent Publication No. 57-5571, two adsorption beds are used, and one of the adsorption beds is A portion of the oxygen-enriched gas produced by the adsorption bed during an adsorption cycle is used to purge the other adsorption bed, such that the operating cycles of each adsorption bed are alternated. ing. According to this oxygen concentrator.

各吸着床が比較的小容量であっても、これらが互いにパ
ージされるので所望濃度の酸素濃縮ガスを産出できる利
点がある。
Even though each adsorption bed has a relatively small volume, it is advantageous that oxygen-enriched gas of a desired concentration can be produced because they are purged from each other.

また、特公昭57−52090号公報には40〜80メ
ツシユの比較的小さい粒子の吸着剤を、直径と長さに一
定の関係を有する吸着床に充填して各工程の操作に流れ
抵抗を生じさせるようにし、この吸着床に短時間圧縮空
気を導入した後、所定の停止時間経過後導入口を大気に
開放して減圧することにより、圧縮空気導入期間および
停止期間において酸素fiwJガスを得ると共に、大気
開放期間において圧力差により吸着床内に逆向きの流れ
を生じさせて吸着剤をパージするようにした医療用酸素
濃縮装置が開示されている。この医療用酸素濃縮装置に
よれば、圧縮空気導入期間、停止期間および大気開放期
間より成る吸着床の動作1サイクルを3〜30秒と極め
て短時間とすることができ、したがって全体として吸着
剤単位重量当りの生成ガスの生産量を比較的高くでき、
装置全体の小型軽量化が図れるという利点がある。また
、特公昭57−44361号公報には、複数の吸着床を
用い、各吸着床の動作1サイクルを圧縮空気導入期間、
停止期間、大気開放期間および生成物再加圧期間として
、この動作サイクルを吸着床間でタイミングをずらして
設定し、ある吸着床の圧縮空気導入期間に産出される生
成ガスの一部を、大気開放期間にある他の吸着床におけ
るパージガスとして用いると共に、生成物再加圧期間に
ある他の吸着床における生成物再加圧ガスとして用いる
ようにした医療用酸素濃縮装置が開示されている。
In addition, in Japanese Patent Publication No. 57-52090, relatively small adsorbent particles of 40 to 80 mesh are packed into an adsorption bed with a certain relationship between diameter and length, which creates flow resistance during the operation of each process. After introducing compressed air into the adsorption bed for a short period of time, the inlet is opened to the atmosphere to reduce the pressure after a predetermined stop time has elapsed, thereby obtaining oxygen fiwJ gas during the compressed air introduction period and the stop period. discloses a medical oxygen concentrator in which an adsorbent is purged by generating a reverse flow in an adsorption bed due to a pressure difference during an open atmosphere period. According to this medical oxygen concentrator, one cycle of operation of the adsorption bed, which consists of a compressed air introduction period, a stop period, and an atmosphere opening period, can be made extremely short at 3 to 30 seconds. The production amount of generated gas per weight can be relatively high,
This has the advantage that the entire device can be made smaller and lighter. Furthermore, in Japanese Patent Publication No. 57-44361, a plurality of adsorption beds are used, and one cycle of operation of each adsorption bed is divided into a compressed air introduction period,
This operation cycle is set at different timings between the adsorption beds as a shutdown period, an atmosphere release period, and a product repressurization period, so that a portion of the product gas produced during the compressed air introduction period of a certain adsorption bed is transferred to the atmosphere. A medical oxygen concentrator is disclosed for use as a purge gas in other adsorption beds during open periods and as a product repressurization gas in other adsorption beds during product repressurization periods.

一方、上記のような医療用酸素濃縮装置を用い、該装置
によって生成される濃縮酸素ガスを電磁弁等を介して呼
吸器や循環器系の疾患患者等に呼吸に同調して供給する
ようにした呼吸同調式酸素供給装置も従来種々提案され
ている。例えば、特公昭62−54023号公報には呼
吸気流から生成した電気信号に基づいた呼気相から吸気
相に移るタイミング信号に応答して電磁弁を介して各吸
気相の期間に酸素濃縮ガスを供給するようにした酸素ガ
ス供給装置が開示されている。
On the other hand, using a medical oxygen concentrator as described above, the concentrated oxygen gas generated by the device is supplied to patients with respiratory or circulatory system diseases through a solenoid valve or the like in synchronization with their breathing. Various breathing synchronized oxygen supply devices have been proposed. For example, Japanese Patent Publication No. 62-54023 discloses that oxygen-enriched gas is supplied during each inspiratory phase via a solenoid valve in response to a timing signal for transitioning from the expiratory phase to the inspiratory phase based on an electrical signal generated from the respiratory airflow. An oxygen gas supply device is disclosed.

(発明が解決しようとする課題) しかしながら、上述した従来の医療用酸素濃縮装置にあ
っては、患者の呼吸動作とは無関係に独立して作動する
よう構成されているため、例えば生成ガスを患者が必要
としない時期にそのガスを吸着床のパージに活用できな
かったり、患者の方へ大量に生成ガスを使った時期には
吸着床の方へは同時に十分量のガスがパージに廻らない
ということが起り、効率化に時間的なむらが生じるとい
う問題がある。また、このような問題を解決する方法と
して、吸着床で生成される酸素濃縮ガスを貯留するザー
ジタンクの容量を大きくすることが考えられるが、この
ようにすると装置全体が大型となり、また高価になると
いう問題がある。
(Problem to be Solved by the Invention) However, the conventional medical oxygen concentrator described above is configured to operate independently, regardless of the patient's breathing movement, and therefore, for example, it is difficult to direct the generated gas to the patient. When the gas is not needed, the gas cannot be used to purge the adsorption bed, and when a large amount of produced gas is used for patients, a sufficient amount of gas cannot be used to purge the adsorption bed at the same time. There is a problem that there is a problem that efficiency improvement occurs over time. In addition, one possible way to solve this problem is to increase the capacity of the surge tank that stores the oxygen-enriched gas generated in the adsorption bed, but this would make the entire device large and expensive. There is a problem.

この発明は、このような従来の問題点に着目してなされ
たもので、酸素濃縮ガスを効率良く常に安定して産出で
きると共に、装置全体を小型にできるよう適切に構成し
た医療用酸素濃縮装置を提供することを目的とする。
This invention was made by focusing on these conventional problems, and provides a medical oxygen concentrator that is appropriately configured so that it can efficiently and consistently produce oxygen-concentrated gas and the entire device can be made compact. The purpose is to provide

(課題を解決するための手段および作用)上記目的を達
成するため、この発明では吸着床と、この吸着床の導入
口に第1の電磁弁を介して連結したコンプレッサと、前
記導入口を選択的に大気に開放する第2のNEn弁と、
人の呼吸の相を検出するセンサと、このセンサの出力に
基づいて各呼吸サイクルにおいで吸気に同期して前記吸
着床に前記コンプレッサからの圧縮空気を導入し、次に
その圧縮空気の導入を停止した後前記吸着床の導入口を
大気に開放するように、前記第1および第2の電磁弁を
制御する制御手段とを具え、前記吸着床に対する圧縮空
気の導入期間およびそれに続く停止期間において前記吸
着床から酸素濃縮ガスを産出させると共に、その後の大
気開放期間において前記吸着床をパージするよう構成す
る。
(Means and effects for solving the problem) In order to achieve the above object, in this invention, an adsorption bed, a compressor connected to the inlet of the adsorption bed via a first electromagnetic valve, and the inlet are selected. a second NEn valve that is open to the atmosphere;
a sensor that detects the phase of a person's breathing; and based on the output of this sensor, compressed air from the compressor is introduced into the adsorption bed in synchronization with the intake in each breathing cycle, and then the introduction of the compressed air is and control means for controlling the first and second solenoid valves so as to open the inlet of the adsorption bed to the atmosphere after the adsorption bed is stopped, during a period of introduction of compressed air to the adsorption bed and a subsequent stop period. The adsorption bed is configured to produce oxygen-enriched gas from the adsorption bed and to purge the adsorption bed during a subsequent open-to-air period.

(実施例) 第1図はこの発明の第1実施例を示すものである。この
実施例では1個の吸着床1を用い、その導入口1aを第
1の電磁弁2および空気タンク3を介してコンプレッサ
4に連結すると共に、第2の電磁弁5およびサイレンサ
6を介して大気に開放し得るようにする。吸着床1の排
出口1bは生成ガス用サージタンク7およびチェックバ
ルブ8を介して鼻カニユーラ9に連結し、この鼻カニユ
ーラ9を通して患者10に酸素濃縮ガスを供給するよう
にする。また、患者10の呼気、吸気を検出するための
センサ11を設け、このセンサ11の出力に基づいて増
幅器12および制御部13を介して第1.2の電磁弁2
.5の駆動を制御するようにする。なお、センサ11は
呼気、吸気の気流の温度差を検出する熱電対、サーミス
タ、焦電センサ等を用いる他、湿度の変化を検出する湿
度センサあるいは圧力の変化を検出する圧力センサを用
いることもできるし、また筋電計を用いて腹部、胸部筋
肉の筋電図信号から呼気、吸気を検出するよう構成する
こともできる。
(Embodiment) FIG. 1 shows a first embodiment of the present invention. In this embodiment, one adsorption bed 1 is used, and its inlet 1a is connected to a compressor 4 via a first solenoid valve 2 and an air tank 3, and is connected to a compressor 4 via a second solenoid valve 5 and a silencer 6. Allow it to be exposed to the atmosphere. The outlet 1b of the adsorption bed 1 is connected via a product gas surge tank 7 and a check valve 8 to a nasal cannula 9 through which oxygen enriched gas is supplied to the patient 10. Further, a sensor 11 for detecting exhalation and inhalation of the patient 10 is provided, and based on the output of this sensor 11, the first and second electromagnetic valves 2
.. 5 is controlled. The sensor 11 may be a thermocouple, a thermistor, a pyroelectric sensor, etc. that detects the temperature difference between exhaled air and inhaled air, or a humidity sensor that detects changes in humidity or a pressure sensor that detects changes in pressure. Alternatively, it can be configured to detect exhalation and inspiration from electromyogram signals of abdominal and chest muscles using an electromyogram.

この実施例では、第1の電磁弁2を開、第2の電磁弁5
を閉として吸着床1に圧縮空気を導入する圧縮空気導入
期間、第1.第2の電磁弁2,5を共に閉として圧縮空
気の導入を停止させる停止期間および、第1の電磁弁2
を閉、第2の電磁弁5を開として吸着床lの導入口1a
をサイレンサ6を介して大気に開放する大気開放期間を
もって吸着床1の1動作サイクルとし、この動作サイク
ルをセンサ11の出力に基づいて患者10の各呼吸サイ
クルに同期して行う。ここで、人の呼吸回数は1分間に
ほぼ15回、すなわち呼吸1サイクルが約4秒であると
ころから、圧縮空気導入期間は呼気開始から0.4秒と
し、停止期間は圧縮空気導入期間の終了時から1.2秒
とし、大気開放期間は停止期間の終了時から次の呼吸サ
イクルにおける吸気開始までの時間とする。
In this embodiment, the first solenoid valve 2 is opened and the second solenoid valve 5 is opened.
is closed and compressed air is introduced into the adsorption bed 1 during the compressed air introduction period. A stop period in which the second solenoid valves 2 and 5 are both closed and the introduction of compressed air is stopped, and the first solenoid valve 2
is closed, and the second solenoid valve 5 is opened to open the inlet 1a of the adsorption bed 1.
The period of opening to the atmosphere through the silencer 6 constitutes one operation cycle of the adsorption bed 1, and this operation cycle is performed in synchronization with each respiratory cycle of the patient 10 based on the output of the sensor 11. Here, since the number of human breaths is approximately 15 times per minute, that is, one breathing cycle is approximately 4 seconds, the compressed air introduction period is set to 0.4 seconds from the start of exhalation, and the stop period is the same as the compressed air introduction period. It is 1.2 seconds from the end, and the atmosphere release period is the time from the end of the stop period to the start of inhalation in the next breathing cycle.

以下、この実施例における各部の詳細な構成について説
明する。
The detailed configuration of each part in this embodiment will be described below.

例えば、慢性呼吸不全患者が通常恒常流の酸素濃縮ガス
を鼻カニユーラを通して吸入する量は、平素でIPZ分
〜2!/分の人が多い。したがって上記構成において、
21/分の恒常流を発生させようとすると、呼吸1サイ
クルが約4秒で、その呼気期間および吸気期間の時間比
率がほぼ2:1であるから、呼吸1サイクルの吸気期間
に約44 ccの酸素濃縮ガスを生成する必要がある。
For example, a patient with chronic respiratory failure typically inhales a constant flow of oxygen-enriched gas through a nasal cannula of ~2 IPZ minutes! There are many people with / minutes. Therefore, in the above configuration,
If we try to generate a constant flow of 21/min, one respiratory cycle is about 4 seconds, and the time ratio between the expiratory period and the inspiratory period is approximately 2:1, so about 44 cc is generated during the inspiratory period of one respiratory cycle. It is necessary to generate oxygen-enriched gas.

そこで、この実施例では、吸着床1の容量を約1300
ccとしてこの吸着床1内に30〜90メツシユの結晶
ゼオライト分子篩より成る吸着剤を約900g充填する
と共に、空気タンク3の容量を約1000ccとし、コ
ンプレッサ4により呼吸1サイクル中の間(約4秒間)
に700−1000dの原料空気を3.5kg/cm2
・ゲージに圧縮して、その圧縮空気を0.4秒間の圧縮
空気導入期間において吸着床1内に送気するようにする
。また、吸着床1での生成酸素ガスの回収率と利用率の
向上を図るため、吸着床1で産出される酸素濃縮ガスを
生成ガス用サージタンク7に貯留すると共に、このサー
ジタンク7内の酸素濃縮ガスをチェックバルブ8を介し
て患者10の吸気相の開始時に患者10に供給し、その
後サージタンク7内に残っていたガスをパージガスとし
て吸着床1に逆流させる。かくして、チェックバルブ8
におけるプッシュスルー圧力分を患者10に送出利用す
る酸素濃縮ガス量とパージ再生用のガス量との間の効果
的バランスが得られるように調整する。すなわち、この
プッシュスルー圧力を低くすると患者10の方へ1辱ら
れるガス量が多くなってパージガス量が少なくなると共
に、得られる酸素濃縮ガスの濃度が低下する。これに対
し、プッシュスルー圧力を高くすると、患者10の方に
得られるガス量が低下してパージガス量が多くなると共
に、ガス濃度が高くなる。なお、この実施例における産
出酸素ガスの回収率は約22%である。
Therefore, in this example, the capacity of the adsorption bed 1 is set to about 1300.
Approximately 900 g of an adsorbent consisting of 30 to 90 mesh crystalline zeolite molecular sieve is filled into the adsorption bed 1 as cc, and the capacity of the air tank 3 is set to approximately 1000 cc, and the compressor 4 is used for one breathing cycle (approximately 4 seconds).
700-1000d of raw air at 3.5kg/cm2
- The compressed air is compressed to a gauge and the compressed air is delivered into the adsorption bed 1 during a compressed air introduction period of 0.4 seconds. In addition, in order to improve the recovery rate and utilization rate of the oxygen gas produced in the adsorption bed 1, the oxygen-enriched gas produced in the adsorption bed 1 is stored in the surge tank 7 for produced gas, and the surge tank 7 is Oxygen-enriched gas is supplied to the patient 10 via the check valve 8 at the beginning of the patient's 10 inspiratory phase, and the gas remaining in the surge tank 7 is then flowed back into the adsorption bed 1 as purge gas. Thus, check valve 8
The push-through pressure at is adjusted so as to obtain an effective balance between the amount of oxygen-enriched gas delivered to the patient 10 and the amount of gas for purge regeneration. That is, when this push-through pressure is lowered, the amount of gas delivered to the patient 10 increases, the amount of purge gas decreases, and the concentration of the oxygen-enriched gas obtained decreases. On the other hand, when the push-through pressure is increased, the amount of gas obtained for the patient 10 decreases, the amount of purge gas increases, and the gas concentration increases. Note that the recovery rate of the produced oxygen gas in this example is about 22%.

次に、この実施例の動作を説明する。Next, the operation of this embodiment will be explained.

センサ11の出力は増幅器12を経て制御部13に供給
され、該制御部13においてセンサ11の出力に基づい
て患者10の順次の呼吸サイクルにおける吸気相の開始
が検出される。制御部13は各呼吸サイクルにおいて吸
気相の開始を検出した時点で、その検出時点から0.4
秒(圧縮空気導入期間)の間第1の電磁弁2を開、第2
の電磁弁5を閉にし、その後1.2秒(停止期間)の間
第1、第2の電磁弁2.5を共に閉にした後、次の呼吸
サイクルにおける吸気相の開始が検出されるまでの間(
大気開放期間)第1の電磁弁2を閉、第2の電磁弁5を
開とする。
The output of the sensor 11 is fed via an amplifier 12 to a control unit 13 in which the start of an inspiratory phase in a sequential respiratory cycle of the patient 10 is detected based on the output of the sensor 11. When the control unit 13 detects the start of the inspiratory phase in each breathing cycle, the control unit 13
2 (compressed air introduction period), the first solenoid valve 2 is opened, and the second
After closing the first and second solenoid valves 2.5 for 1.2 seconds (stop period), the start of the inspiratory phase of the next breathing cycle is detected. Until (
Atmospheric release period) The first solenoid valve 2 is closed and the second solenoid valve 5 is opened.

一方、コンプレッサ4において圧縮された空気は空気タ
ンク3に貯留され、圧縮空気導入期間において第1の電
磁弁2を経て吸着床1内にその導入口1aから供給され
、これによって生成される酸素濃縮ガスは吸着床lの排
出口1bから生成ガス用サージタンク7に供給されて貯
留される。このサージタンク7には、圧縮空気導入期間
とそれに続く停止期間との間に酸素濃縮ガスが溜り、そ
の圧力が急速に高まってチェックバルブ8のプッシュス
ルー圧力を超え、鼻カニユーラ9を介して患者10にそ
の吸気相において送出される。その後、大気開放期間に
おいて第2の電磁弁5が開となり、吸着床1の導入口1
aが第2の電磁弁5およびサイレンサ6を経て大気に開
放されることにより、吸着床1内は吸着剤による通気抵
抗によって生じていた圧力低下部が、大気開放により導
入口1aの方から排出口1bの方向に進む。これにより
、吸着床1での酸素ガスの産出が停止すると共に、今ま
で患者10の方に流出していた生成ガス用サージタンク
7内の酸素濃縮ガスの圧力゛も低下し、これがプッシュ
スルー圧力以下になると、愚者10側への送出は止まり
、酸素濃縮ガスは吸着床1の排出口1bよりパージガス
として吸着床1内に逆流入する。したがって、この逆流
人は呼吸1サイクルが約4秒で、吸気開始から1.6秒
を経過した後となるので、呼吸1サイクルの吸気期間と
呼気期間の時間比率がほぼ1:2であることを考慮する
と、各呼吸サイクルの呼気期間において行われることに
なる。
On the other hand, the air compressed by the compressor 4 is stored in the air tank 3, and during the compressed air introduction period, it is supplied from the introduction port 1a into the adsorption bed 1 through the first electromagnetic valve 2, and the oxygen concentration produced thereby. The gas is supplied from the outlet 1b of the adsorption bed 1 to the generated gas surge tank 7 and stored therein. Oxygen-enriched gas accumulates in this surge tank 7 between the compressed air introduction period and the subsequent stop period, and its pressure rapidly increases to exceed the push-through pressure of the check valve 8 and is passed through the nasal cannula 9 to the patient. 10 in its inspiratory phase. After that, the second solenoid valve 5 is opened during the atmosphere opening period, and the inlet 1 of the adsorption bed 1 is opened.
a is opened to the atmosphere via the second solenoid valve 5 and silencer 6, the pressure drop inside the adsorption bed 1 caused by ventilation resistance due to the adsorbent is discharged from the inlet port 1a by opening to the atmosphere. Proceed in the direction of exit 1b. As a result, the production of oxygen gas in the adsorption bed 1 is stopped, and the pressure of the oxygen-enriched gas in the generated gas surge tank 7, which had been flowing out to the patient 10, also decreases, causing push-through pressure. When the amount is below, the delivery to the side 10 is stopped, and the oxygen-enriched gas flows back into the adsorption bed 1 as a purge gas from the outlet 1b of the adsorption bed 1. Therefore, for this person with regurgitation, one breathing cycle takes about 4 seconds, and 1.6 seconds have passed since the start of inspiration, so the time ratio between the inspiratory period and expiratory period in one breathing cycle is approximately 1:2. Taking this into consideration, it will be performed during the exhalation period of each breathing cycle.

第2図はこの発明の第2実施例を示すものである。この
実施例は、第1実施例のチェックバルブ8に代えて電磁
弁14を設け、この電磁弁14をセンサ1工の出力に基
づいて制御部13により各呼吸サイクルにおいてその吸
気開始に同期して開にすると共に、これを吸着床工の停
止期間後に閉とすることによって、その開放時間により
患者10に送出する酸素濃縮ガス量と吸着床1に逆流さ
せるパージガス量を調整し得るようにしたもので、その
他の構成は第1実施例と同様である。
FIG. 2 shows a second embodiment of the invention. In this embodiment, a solenoid valve 14 is provided in place of the check valve 8 of the first embodiment, and the solenoid valve 14 is controlled by the control unit 13 in synchronization with the start of inhalation in each breathing cycle based on the output of the sensor 1. By opening it and closing it after the adsorption bed has stopped, the amount of oxygen-enriched gas delivered to the patient 10 and the amount of purge gas flowing back into the adsorption bed 1 can be adjusted depending on the opening time. The other configurations are the same as in the first embodiment.

なお、この発明は上述した実施例にのみ限定されるもの
ではなく、幾多の変形または変更が可能である。例えば
、圧縮空気導入期間および停止期間は、上述した0、4
秒および1.2秒に限らず、呼吸サイクルの時間に応じ
て、例えば制御部13においてセンサ11の出力に基づ
いて順次の呼吸サイクルの時間を検出し、それに基づい
て次の呼吸サイクルの時間を予測し、その時間に応じて
自動的に調整することもできる。また、複数の吸着床を
用い、その各々の導入口を第1の電磁弁を介して共通の
コンプレッサに連結すると共に、第2の電磁弁を介して
大気に開放し得るようにし、各吸着床の排出口を共通の
生成ガス用サージタンクに連結して、これら複数の吸着
床を呼吸サイクルに同期して順次選択して同様に作動さ
せることにより、各吸着床において吸着剤の再生に使用
できる時間を長くするようにすることもできる。更に、
上述した実施例においては生成ガス用サージタンク7お
よび、チェックバルブ8や電磁弁14を用いたが、これ
らを省略して吸着床1の排出口1bから鼻カニユーラ9
を介して酸素濃縮ガスを患者10に直接供給するように
することもできる。更にまた、上述した実施例では吸気
の開始時に同期して吸着床1にコンプレッサ4からの圧
縮空気を導入するようにしたが、生成された酸素濃縮ガ
スが人の鼻腔へ送りこまれるまでに生じうる時間的遅れ
を少なくするために、人の呼気と吸気の間に一般的に若
干存在する呼吸気流停止期間を、センサ11の出力に基
づいて制御部13で弁別して、吸気の開始に先立つ呼吸
気流停止の開始時に圧縮空気の導入を開始するように制
御しても良い。また、センサ11の出力に基づいて、呼
気相の終わり部分から吸気相への転換時点までの呼吸気
流停止期間に、呼吸気流停止の開始時を起点とする遅れ
信号を制御部13においてタイマにより作り出し、これ
により鼻腔へ送りこまれる時間遅れを少なくするように
、呼吸気流停止期間中の任意の一定時に圧縮空気の導入
を開始して呼吸に同調させてもよい。
Note that this invention is not limited only to the embodiments described above, and numerous modifications and changes are possible. For example, the compressed air introduction period and the stop period are 0 and 4 as described above.
For example, the controller 13 detects the time of successive breathing cycles based on the output of the sensor 11, and the time of the next breathing cycle is determined based on the output of the sensor 11. It can also be predicted and automatically adjusted accordingly. In addition, a plurality of adsorption beds are used, each inlet of which is connected to a common compressor through a first solenoid valve, and can be opened to the atmosphere through a second solenoid valve. By connecting the outlet to a common product gas surge tank and sequentially selecting and operating these multiple adsorbent beds in synchronization with the breathing cycle, each adsorbent bed can be used for regeneration of the adsorbent. It is also possible to make the time longer. Furthermore,
In the embodiment described above, the generated gas surge tank 7, the check valve 8, and the solenoid valve 14 are used, but these are omitted and the nasal cannula 9 is connected from the discharge port 1b of the adsorption bed 1.
Oxygen-enriched gas can also be supplied directly to the patient 10 via the oxygen-enriched gas. Furthermore, in the above-described embodiment, compressed air from the compressor 4 is introduced into the adsorption bed 1 in synchronization with the start of intake, but this may occur before the generated oxygen-enriched gas is sent into the nasal cavity of the person. In order to reduce the time delay, the control unit 13 discriminates the respiratory airflow stop period that generally exists slightly between a person's exhalation and inhalation, based on the output of the sensor 11, so that the respiratory airflow starts before the start of inhalation. The introduction of compressed air may be controlled to start at the start of stopping. Further, based on the output of the sensor 11, a timer generates a delay signal starting from the start of stopping the respiratory airflow during the respiratory airflow stopping period from the end of the exhalation phase to the point of transition to the inhalation phase. The introduction of compressed air may be started at any fixed time during the respiratory airflow stop period to synchronize with respiration so as to reduce the time delay of air being sent into the nasal cavity.

(発明の効果) 以上述べたように、この発明によれば人の吸気に同期し
て酸素濃縮ガスを発生させ、呼気の期間すなわち酸素濃
縮ガスを必要としない期間に吸着床をパージして再生を
はかるようにしたので、酸素濃縮ガスを効率良く常に安
定して生成でき、人の吸入利用効率を向上できると共に
、装置全体も小型にできる。また、上述した実施例では
、コンプレッサは呼吸1サイクルの間に約1000dの
空気を3.5kg/cm”・ゲージに圧縮する能力を有
すればよいので、従来の恒常流産田型酸素濃縮装置に用
いられるコンプレッサに比べその容量を173〜1/6
とすることができる。したがって、装置全体を安価にで
きる。
(Effects of the Invention) As described above, according to the present invention, oxygen-enriched gas is generated in synchronization with human intake, and the adsorption bed is purged and regenerated during the exhalation period, that is, the period when oxygen-enriched gas is not required. As a result, oxygen-enriched gas can be efficiently and always stably generated, improving the efficiency of human inhalation and use, and making the entire device smaller. In addition, in the above-described embodiment, the compressor only needs to have the ability to compress approximately 1000 d of air to 3.5 kg/cm'' gauge during one breathing cycle, so it is not necessary to use the conventional constant-flow field type oxygen concentrator. Its capacity is 173 to 1/6 compared to the compressor used.
It can be done. Therefore, the entire device can be made inexpensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1実施例を示す図、第2図は同じ
(第2実施例を示す図である。 ■・・・吸着床      1a・・・導入口1b・・
・排出口      2・・・第1の電磁弁3・・・空
気タンク    4・・・コンプレッサ5・・・第2の
電磁弁   6・・・サイレンサ7・・・生成ガス用サ
ージタンク 8・・・チェックバルブ  9・・・鼻カニユーラIO
・・・患者       11・・・センサ12・・・
増幅器      13・・・制御部14・・・電磁弁 第1図 第2図 /A
Fig. 1 is a diagram showing a first embodiment of the present invention, and Fig. 2 is the same (a diagram showing a second embodiment). ■... Adsorption bed 1a... Inlet port 1b...
・Discharge port 2...First solenoid valve 3...Air tank 4...Compressor 5...Second solenoid valve 6...Silencer 7...Surge tank for generated gas 8... Check valve 9... Nasal cannula IO
...Patient 11...Sensor 12...
Amplifier 13...Control unit 14...Solenoid valve Fig. 1 Fig. 2/A

Claims (1)

【特許請求の範囲】 1、吸着床と、この吸着床の導入口に第1の電磁弁を介
して連結したコンプレッサと、前記導入口を選択的に大
気に開放する第2の電磁弁と、人の呼吸の相を検出する
センサと、このセンサの出力に基づいて各呼吸サイクル
において吸気に同期して前記吸着床に前記コンプレッサ
からの圧縮空気を導入し、次にその圧縮空気の導入を停
止した後前記吸着床の導入口を大気に開放するように、
前記第1および第2の電磁弁を制御する制御手段とを具
え、前記吸着床に対する圧縮空気の導入期間およびそれ
に続く停止期間において前記吸着床から酸素濃縮ガスを
産出させると共に、その後の大気開放期間において前記
吸着床をパージするよう構成したことを特徴とする医療
用酸素濃縮装置。 2、前記吸着床の排出口に生成ガス用サージタンクを介
してチェックバルブを連結し、このチェックバルブを通
して酸素濃縮ガスを取り出すよう構成すると共に、該チ
ェックバルブのプッシュスルー圧力により取り出しガス
量とパージガス量とを調節し得るよう構成したことを特
徴とする請求項1記載の医療用酸素濃縮装置。 3、前記吸着床の排出口に生成ガス用サージタンクを介
して電磁弁を連結し、この電磁弁を前記センサの出力に
基づいて前記制御部により各呼吸サイクルの吸気に同期
して開放して該電磁弁を通して酸素濃縮ガスを取り出す
よう構成すると共に、該電磁弁の開放時間を制御して取
り出しガス量とパージガス量とを調節し得るよう構成し
たことを特徴とする請求項1記載の医療用酸素濃縮装置
[Claims] 1. An adsorption bed, a compressor connected to an inlet of the adsorption bed via a first solenoid valve, and a second solenoid valve that selectively opens the inlet to the atmosphere; a sensor for detecting the phase of a person's breathing, and based on the output of this sensor, introduces compressed air from the compressor into the adsorption bed in synchronization with inspiration in each breathing cycle, and then stops introducing the compressed air; After that, the inlet of the adsorption bed is opened to the atmosphere,
control means for controlling the first and second electromagnetic valves, and producing oxygen-enriched gas from the adsorption bed during a period of introduction of compressed air to the adsorption bed and a subsequent stop period, and a subsequent period of opening to the atmosphere; A medical oxygen concentrator, characterized in that it is configured to purge the adsorption bed. 2. A check valve is connected to the discharge port of the adsorption bed via a generated gas surge tank, and the oxygen-enriched gas is taken out through this check valve, and the amount of taken-out gas and purge gas are controlled by the push-through pressure of the check valve. 2. The medical oxygen concentrator according to claim 1, wherein the medical oxygen concentrator is configured to be able to adjust the amount. 3. A solenoid valve is connected to the outlet of the adsorption bed via a generated gas surge tank, and the solenoid valve is opened in synchronization with the intake of each breathing cycle by the control unit based on the output of the sensor. 2. The medical device according to claim 1, wherein the oxygen enriched gas is taken out through the solenoid valve, and the amount of gas to be taken out and the amount of purge gas can be adjusted by controlling the opening time of the solenoid valve. Oxygen concentrator.
JP63101320A 1988-04-26 1988-04-26 Medical oxygen concentrating device Granted JPH01274771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63101320A JPH01274771A (en) 1988-04-26 1988-04-26 Medical oxygen concentrating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63101320A JPH01274771A (en) 1988-04-26 1988-04-26 Medical oxygen concentrating device

Publications (2)

Publication Number Publication Date
JPH01274771A true JPH01274771A (en) 1989-11-02
JPH0363907B2 JPH0363907B2 (en) 1991-10-03

Family

ID=14297518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63101320A Granted JPH01274771A (en) 1988-04-26 1988-04-26 Medical oxygen concentrating device

Country Status (1)

Country Link
JP (1) JPH01274771A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04246366A (en) * 1991-01-31 1992-09-02 Teijin Ltd Oxygen concentrating device
US5799652A (en) * 1995-05-22 1998-09-01 Hypoxico Inc. Hypoxic room system and equipment for Hypoxic training and therapy at standard atmospheric pressure
JP2005211392A (en) * 2004-01-30 2005-08-11 Teijin Pharma Ltd Medical oxygen concentrator
US7018443B2 (en) 2000-09-06 2006-03-28 Colorado Altitude Training Llc Method and system for reducing body weight in an enclosed atmospheric environment
KR100685983B1 (en) * 2000-09-21 2007-02-23 엘지전자 주식회사 Control device and control mathod in oxygen generator
CN106335880A (en) * 2016-03-15 2017-01-18 康泰医学系统(秦皇岛)股份有限公司 Gas channel control system and gas channel control method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04246366A (en) * 1991-01-31 1992-09-02 Teijin Ltd Oxygen concentrating device
US5799652A (en) * 1995-05-22 1998-09-01 Hypoxico Inc. Hypoxic room system and equipment for Hypoxic training and therapy at standard atmospheric pressure
US7018443B2 (en) 2000-09-06 2006-03-28 Colorado Altitude Training Llc Method and system for reducing body weight in an enclosed atmospheric environment
KR100685983B1 (en) * 2000-09-21 2007-02-23 엘지전자 주식회사 Control device and control mathod in oxygen generator
JP2005211392A (en) * 2004-01-30 2005-08-11 Teijin Pharma Ltd Medical oxygen concentrator
CN106335880A (en) * 2016-03-15 2017-01-18 康泰医学系统(秦皇岛)股份有限公司 Gas channel control system and gas channel control method

Also Published As

Publication number Publication date
JPH0363907B2 (en) 1991-10-03

Similar Documents

Publication Publication Date Title
US4648395A (en) Synchronized feed type oxygen concentrator for use in an open breathing system
US4211221A (en) Respirator
US10874817B1 (en) Pulsed pressure swing adsorption system and method
US5713349A (en) Inhalation therapy
CA2578246C (en) Method and apparatus for non-rebreathing positive airway pressure ventilation
US4681099A (en) Breath-synchronized concentrated-oxygen supplier
US7306657B2 (en) Oxygen concentrating apparatus
US11964105B2 (en) Oxygen gas concentrator with outlet accumulator
WO2020084993A1 (en) Nitric oxide administration device
JPH04231067A (en) Flow rate starting system and method for respiration aid ventilation
JP2002085566A (en) Oxygen condenser controller as well as recording medium therefor
JPH0565200B2 (en)
JPH01274771A (en) Medical oxygen concentrating device
JP3531215B2 (en) Medical oxygen gas supply device
JP7170743B2 (en) nitric oxide doser
JP2000037458A (en) Medical oxygen concentrator
CN116322854A (en) Method and apparatus for controlling operation in an oxygen concentrator
WO2020084995A1 (en) Relay administration device and nitrogen monoxide administration system
JPH01221170A (en) Gas feed device for respiration
CN114929318A (en) Method and apparatus for controlling an oxygen concentrator
JP4606655B2 (en) Breathing gas supply device
JPH07284533A (en) Oxygen enriched gas suction device
WO2020084992A1 (en) Nitric oxide administration device
JP2502812Y2 (en) Gas flow rate switching device for demand valve control
JPH1199203A (en) Gas feeding device for respiration