JPH0363907B2 - - Google Patents

Info

Publication number
JPH0363907B2
JPH0363907B2 JP63101320A JP10132088A JPH0363907B2 JP H0363907 B2 JPH0363907 B2 JP H0363907B2 JP 63101320 A JP63101320 A JP 63101320A JP 10132088 A JP10132088 A JP 10132088A JP H0363907 B2 JPH0363907 B2 JP H0363907B2
Authority
JP
Japan
Prior art keywords
adsorption bed
gas
solenoid valve
period
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63101320A
Other languages
Japanese (ja)
Other versions
JPH01274771A (en
Inventor
Noboru Sato
Kazukyo Takano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electronic Industries Co Ltd
Original Assignee
Sanyo Electronic Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electronic Industries Co Ltd filed Critical Sanyo Electronic Industries Co Ltd
Priority to JP63101320A priority Critical patent/JPH01274771A/en
Publication of JPH01274771A publication Critical patent/JPH01274771A/en
Publication of JPH0363907B2 publication Critical patent/JPH0363907B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、圧力変動吸着型の医療用酸素濃縮
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a pressure fluctuation adsorption type medical oxygen concentrator.

(従来の技術) 圧力変動吸着型の医療用酸素濃縮装置は従来
種々のものが提案されており、例えば、特公昭57
−5571号公報には、2つの吸着床を用い、一方の
吸着床における吸着サイクルの期間中に該吸着床
によつて生成された酸素濃縮ガスの一部を他方の
吸着床のパージに用いるようにして、これら各吸
着床の動作サイクルを交互に行なうようにしたも
のが開示されている。この酸素濃縮装置によれ
ば、各吸着床が比較的小容量であつても、これら
が互いにパージされるので所望濃度の酸素濃縮ガ
スを産出できる利点がある。
(Prior art) Various types of pressure fluctuation adsorption type medical oxygen concentrators have been proposed in the past.
Publication No. 5571 discloses a method using two adsorption beds and using a portion of the oxygen-enriched gas produced by one adsorption bed during the adsorption cycle in the other adsorption bed to purge the other adsorption bed. It is disclosed that the operating cycles of each of these adsorption beds are performed alternately. This oxygen concentrator has the advantage that even though each adsorption bed has a relatively small capacity, it can produce oxygen-enriched gas at a desired concentration because they are purged from each other.

また、特公昭57−52090号公報には40〜80メツ
シユの比較的小さい粒子の吸着剤を、直径と長さ
に一定の関係を有する吸着床に充填して各工程の
操作に流れ抵抗を生じさせるようにし、この吸着
床に短時間圧縮空気を導入した後、所定の停止時
間経過後導入口を大気に開放して減圧することに
より、圧縮空気導入期間および停止期間において
酸素濃縮ガスを得ると共に、大気開放期間におい
て圧力差により吸着床内に逆向きの流れを生じさ
せて吸着剤をパージするようにした単一吸着床の
酸素濃縮法が開示されている。この酸素濃縮法に
よれば、圧縮空気導入期間、停止期間および大気
開放期間より成る吸着床の動作1サイクルを3〜
30秒と極めて短時間とすることができ、したがつ
て全体として吸着剤単位重量当りの生成ガスの生
産量を比較的高くでき、装置全体の小型軽量化が
図れるという利点がある。また、特公昭57−
44361号公報には、複数の吸着床を用い、各吸着
床の動作1サイクルを圧縮空気導入期間、停止期
間、大気開放期間および生成物再加圧期間とし
て、この動作サイクルを吸着床間でタイミングを
ずらして設定し、ある吸着床の圧縮空気導入期間
に産出される生成ガスの一部を、大気開放期間に
ある他の吸着床におけるパージガスとして用いる
と共に、生成物再加圧期間にある他の吸着床にお
ける生成物再加圧ガスとして用いるようにした酸
素濃縮法が開示されている。
In addition, in Japanese Patent Publication No. 57-52090, relatively small adsorbent particles of 40 to 80 mesh are packed into an adsorption bed with a certain relationship between diameter and length to create flow resistance during operation of each process. After introducing compressed air into the adsorption bed for a short period of time, the inlet is opened to the atmosphere and the pressure is reduced after a predetermined stoppage period has elapsed, thereby obtaining oxygen-enriched gas during the compressed air introduction period and the stoppage period. , discloses a single bed oxygen enrichment method in which a pressure difference causes a reverse flow within the bed during an open atmosphere period to purge the adsorbent. According to this oxygen enrichment method, one cycle of operation of the adsorption bed consisting of a period of introducing compressed air, a period of stopping, and a period of opening to the atmosphere is performed from three to three times.
The process can be carried out in an extremely short time of 30 seconds, which has the advantage that the production amount of generated gas per unit weight of adsorbent can be relatively high as a whole, and the entire apparatus can be made smaller and lighter. In addition, special public service 1987-
Publication No. 44361 discloses that a plurality of adsorption beds are used, one cycle of operation of each adsorption bed is defined as a compressed air introduction period, a stop period, an atmosphere release period, and a product repressurization period, and the timing of this operation cycle is adjusted between the adsorption beds. A part of the product gas produced during the compressed air introduction period of one adsorption bed is used as purge gas in the other adsorption bed which is in the atmosphere open period, and a part of the product gas produced in the compressed air introduction period of one adsorption bed is used as purge gas in the other adsorption bed which is in the product repressurization period. An oxygen enrichment process for use as a product repressurization gas in an adsorption bed is disclosed.

一方、上記のような酸素濃縮装置を用い、該装
置によつて生成される濃縮酸素ガスを電磁弁等を
介して呼吸器や循環器系の疾患患者等に呼吸に同
調して供給するようにした呼吸同調式酸素供給装
置も従来種々提案されている。例えば、特公昭62
−54023号公報には呼吸気流から生成した電気信
号に基づいた呼気相から吸気相に移るタイミング
信号に応答して電磁弁を介して各吸気相の期間に
酸素濃縮ガスを供給するようにした酸素ガス供給
装置が開示されている。
On the other hand, using an oxygen concentrator as described above, the concentrated oxygen gas generated by the device is supplied to patients with respiratory or circulatory system diseases through a solenoid valve or the like in synchronization with their breathing. Various breathing synchronized oxygen supply devices have been proposed. For example, Tokko Sho 62
-Publication No. 54023 discloses an oxygen-enriched gas which is supplied during each inspiratory phase via a solenoid valve in response to a timing signal for transition from an expiratory phase to an inspiratory phase based on an electrical signal generated from the respiratory airflow. A gas supply device is disclosed.

(発明が解決しようとする課題) しかしながら、上述した従来の医療用酸素濃縮
装置にあつては、患者の呼吸動作とは無関係に独
立して作動するよう構成されているため、例えば
生成ガスを患者が必要としない時期にそのガスを
吸着床のパージに活用できなかつたり、患者の方
へ大量に生成ガスを使つた時期には吸着床の方へ
は同時に十分量のガスがパージに廻らないという
ことが起り、効率化に時間的なむらが生じるとい
う問題がある。また、このような問題を解決する
方法として、吸着床で生成される酸素濃縮ガスを
貯留するサージタンクの容量を大きくすることが
考えられるが、このようにすると装置全体が大型
となり、また高価になるという問題がある。
(Problem to be Solved by the Invention) However, the conventional medical oxygen concentrator described above is configured to operate independently, regardless of the patient's breathing movement, and therefore, for example, it is difficult to direct the generated gas to the patient. When the gas is not needed, the gas cannot be used to purge the adsorption bed, and when a large amount of produced gas is used for patients, not enough gas can be used to purge the adsorption bed at the same time. There is a problem that there is a problem that efficiency improvement occurs over time. In addition, one possible way to solve this problem is to increase the capacity of the surge tank that stores the oxygen-enriched gas generated in the adsorption bed, but this would make the entire device large and expensive. There is a problem with becoming.

この発明は、このような従来の問題点に着目し
てなされたもので、酸素濃縮ガスを効率良く常に
安定して産出できると共に、装置全体を小型にで
きるよう適切に構成した医療用酸素濃縮装置を提
供することを目的とする。
This invention was made by focusing on these conventional problems, and provides a medical oxygen concentrator that is appropriately configured so that it can efficiently and consistently produce oxygen-concentrated gas and the entire device can be made compact. The purpose is to provide

(課題を解決するための手段および作用) 上記目的を達成するため、この発明では吸着床
と、この吸着床の導入口に第1の電磁弁を介して
連結したコンプレツサと、前記導入口を選択的に
大気に開放する第2の電磁弁と、人の呼吸の相を
検出するセンサと、このセンサの出力に基づいて
各呼吸サイクルにおいて吸気に同期して前記吸着
床に前記コンプレツサからの圧縮空気を導入し、
次にその圧縮空気の導入を停止した後、前記吸着
床の導入口を大気に開放するように、前記第1お
よび第2の電磁弁を制御する制御手段とを具え、
前記吸着床に対する圧縮空気の導入期間およびそ
れに続く停止期間において前記吸着床から酸素濃
縮ガスを産出させると共に、その後の大気開放期
間において前記吸着床をパージするよう構成した
ことによつて人の呼吸に同期して酸素濃縮装置を
作動させる。
(Means and effects for solving the problem) In order to achieve the above object, in the present invention, an adsorption bed, a compressor connected to the inlet of the adsorption bed via a first solenoid valve, and the inlet are selected. a second solenoid valve that opens to the atmosphere; a sensor that detects the phase of a person's breathing; and based on the output of this sensor, compressed air from the compressor is delivered to the adsorption bed in synchronization with the intake in each breathing cycle. introduced,
and a control means for controlling the first and second solenoid valves so as to open the inlet of the adsorption bed to the atmosphere after stopping the introduction of the compressed air;
By configuring the adsorption bed to produce oxygen-enriched gas during a period of introduction of compressed air to the adsorption bed and a subsequent stop period, and purging the adsorption bed during a subsequent period of opening to the atmosphere, Operate the oxygen concentrator in synchronization.

(実施例) 第1図はこの発明の第1実施例を示すものであ
る。この実施例では1個の吸着床1を用い、その
導入口1aを第1の電磁弁2および空気タンク3
を介してコンプレツサ4に連結すると共に、第2
の電磁弁5およびサイレンサ6を介して大気に開
放し得るようにする。吸着床1の排出口1bは生
成ガス用サージタンク7およびチエツクバルブ8
を介して鼻カニユーラ9に連結し、この鼻カニユ
ーラ9を通して患者10に酸素濃縮ガスを供給す
るようにする。また、患者10の呼気、吸気を検
出するためのセンサ11を設け、このセンサ11
の出力に基づいて増幅器12および制御部13を
介して第1,2の電磁弁2,5の駆動を制御する
ようにする。なお、センサ11は呼気、吸気の気
流の温度差を検出する熱電対、サーミスタ、焦電
センサ等を用いる他、湿度の変化を検出する湿度
センサあるいは呼気、吸気の圧力の変化を検出す
る圧力センサを用いることもできるし、また筋電
計を用いて腹部、胸部筋肉の筋電図信号から呼
気、吸気を検出するよう構成することもできる。
(Embodiment) FIG. 1 shows a first embodiment of the present invention. In this embodiment, one adsorption bed 1 is used, and its inlet port 1a is connected to a first solenoid valve 2 and an air tank 3.
is connected to the compressor 4 via the
can be opened to the atmosphere via a solenoid valve 5 and a silencer 6. The discharge port 1b of the adsorption bed 1 is connected to a generated gas surge tank 7 and a check valve 8.
The nasal cannula 9 is connected to the nasal cannula 9 through which oxygen-enriched gas is supplied to the patient 10. Further, a sensor 11 for detecting exhalation and inhalation of the patient 10 is provided, and this sensor 11
The driving of the first and second solenoid valves 2 and 5 is controlled via the amplifier 12 and the control section 13 based on the output of the solenoid valve. In addition, the sensor 11 uses a thermocouple, thermistor, pyroelectric sensor, etc. that detects the temperature difference between expiratory and inhaled airflows, as well as a humidity sensor that detects changes in humidity, or a pressure sensor that detects changes in the pressure of exhaled and inhaled air. Alternatively, an electromyograph can be used to detect exhalation and inspiration from electromyogram signals of abdominal and chest muscles.

この実施例では、第1の電磁弁2を開、第2の
電磁弁5を閉として吸着床1に圧縮空気を導入す
る圧縮空気導入期間、第1、第2の電磁弁2,5
を共に閉として圧縮空気の導入を停止させる停止
期間および、第1の電磁弁2を閉、第2の電磁弁
5を開として吸着床1の導入口1aをサイレンサ
6を介して大気に開放する大気開放期間をもつて
吸着床1の1動作サイクルとし、この動作サイク
ルをセンサ11の出力に基づいて患者10の各呼
吸サイクルに同期して行う。ここで、人の平均的
呼吸回数は1分間にほぼ15回、すなわち呼吸1サ
イクルが約4秒であるところから、圧縮空気導入
期間は呼気開始から約0.4秒とし、その後停止期
間は圧縮空気導入期間の終了時から1.2秒までと
し、大気開放期間は停止期間の終了時から次の呼
吸サイクルにおける吸気開始までの時間とする。
In this embodiment, during the compressed air introduction period in which the first solenoid valve 2 is opened and the second solenoid valve 5 is closed to introduce compressed air into the adsorption bed 1, the first and second solenoid valves 2, 5 are
during a stop period in which both are closed to stop the introduction of compressed air, and the first solenoid valve 2 is closed and the second solenoid valve 5 is opened to open the inlet 1a of the adsorption bed 1 to the atmosphere via the silencer 6. One operation cycle of the adsorption bed 1 includes a period of opening to the atmosphere, and this operation cycle is performed in synchronization with each breathing cycle of the patient 10 based on the output of the sensor 11. Here, since the average number of human breaths is approximately 15 times per minute, that is, one breathing cycle is approximately 4 seconds, the compressed air introduction period is approximately 0.4 seconds from the start of expiration, and the compressed air is introduced during the subsequent stop period. 1.2 seconds from the end of the period, and the air release period is the time from the end of the stop period to the start of inspiration in the next breathing cycle.

以下、この実施例における各部の詳細な構成に
ついて説明する。
The detailed configuration of each part in this embodiment will be described below.

例えば、慢性呼吸不全患者が通常恒常流の酸素
濃縮ガスを鼻カニユーラを通して吸入する量は、
平素で1/分〜2/分の人が多い。したがつ
て上記構成において、2/分の恒常流を吸入し
ている患者に必要な酸素を発生させようとする
と、呼吸1サイクルが約4秒で、その呼気期間お
よび吸気期間の時間比率がほぼ2:1であるか
ら、呼吸1サイクルの呼気期間は平均で1.33秒で
その間に約44c.c.の酸素濃縮ガスを生成する必要が
ある。
For example, a patient with chronic respiratory failure typically inhales a constant flow of oxygen-enriched gas through a nasal cannula.
There are many people who usually run 1/min to 2/min. Therefore, in the above configuration, when trying to generate the necessary oxygen for a patient who is inhaling a constant flow of 2/min, one breathing cycle takes about 4 seconds, and the time ratio of the expiratory period and the inspiratory period is approximately Since the ratio is 2:1, the exhalation period of one breathing cycle is on average 1.33 seconds, during which approximately 44 c.c. of oxygen-enriched gas must be produced.

そこで、この実施例では、吸着床1の容量を約
360c.c.としてこの吸着床1内に30〜90メツシユの
結晶ゼオライト分子篩より成る吸着剤を約260g
充填すると共に、空気タンク3の容量を約1000c.c.
とし、コンプレツサ4により呼吸1サイクル中の
間(約4秒間)に700〜1000mlの原料空気を3.5Kg
f/cm2・Gに圧縮して、その圧縮空気を約0.4秒
間の圧縮空気導入期間において吸着床1内に送気
するようにする。また、吸着床1での生成酸素ガ
スの回収率と利用率の向上を図るため、吸着床1
で産出される酸素濃縮ガスを生成ガス用サージタ
ンク7に貯留すると共に、このサージタンク7内
の酸素濃縮ガスをチエツクバルブ8を介して患者
10の吸気相の開始時に患者10に供給し、その
後サージタンク7内に残つていたガスをパージガ
スとして吸着床1に逆流される。かくして、チエ
ツクバルブ8におけるプツシユスルー圧力分を患
者10に送出利用する酸素濃縮ガス量とパージ再
生用のガス量との間の効果的バランスが得られる
ように調整する。すなわち、このプツシユスルー
圧力を低くすると患者10の方へ得られるガス量
が多くなつてパージガス量が少なくなると共に、
得られる酸素濃縮ガスの濃度が低下する。これに
対し、プツシユスルー圧力を高くすると、患者1
0の方に得られるガス量が低下してパージガス量
が多くなると共に、ガス濃度が高くなる。なお、
この実施例における産出酸素ガスの回収率は約22
%である。
Therefore, in this embodiment, the capacity of the adsorption bed 1 is set to approximately
Approximately 260 g of adsorbent consisting of 30 to 90 mesh crystalline zeolite molecular sieve is placed in this adsorption bed 1 as 360 c.c.
At the same time as filling, the capacity of air tank 3 is increased to approximately 1000 c.c.
Then, compressor 4 delivers 700 to 1000 ml of raw air to 3.5 kg during one breathing cycle (approximately 4 seconds).
f/cm 2 ·G, and the compressed air is fed into the adsorption bed 1 during a compressed air introduction period of about 0.4 seconds. In addition, in order to improve the recovery rate and utilization rate of the oxygen gas produced in the adsorption bed 1,
The oxygen-enriched gas produced in the generated gas is stored in the generated gas surge tank 7, and the oxygen-enriched gas in the surge tank 7 is supplied to the patient 10 through the check valve 8 at the beginning of the patient's 10 inspiratory phase. The gas remaining in the surge tank 7 is used as purge gas to flow back into the adsorption bed 1. In this way, the push-through pressure in the check valve 8 is adjusted to provide an effective balance between the amount of oxygen-enriched gas delivered to the patient 10 and the amount of gas for purge regeneration. That is, when the push-through pressure is lowered, the amount of gas delivered to the patient 10 increases, and the amount of purge gas decreases.
The concentration of the resulting oxygen-enriched gas decreases. On the other hand, if the push-through pressure is increased, the patient
The amount of gas obtained decreases toward 0, the amount of purge gas increases, and the gas concentration increases. In addition,
The recovery rate of the produced oxygen gas in this example is approximately 22
%.

次に、この実施例の動作を説明する。 Next, the operation of this embodiment will be explained.

センサ11の出力は増幅器12を経て制御部1
3に供給され、該制御部13においてセンサ11
の出力に基づいて患者10の順次の呼吸サイクル
における吸気相の開始が検出される。制御部13
は各呼吸サイクルにおいて吸気相の開始を検出し
た時点で、その検出時点から0.4秒(圧縮空気導
入期間)の間第1の電磁弁2を開、第2の電磁弁
5を閉にし、その後1.2秒まで(停止期間)の間
第1、第2の電磁弁2,5を共に閉にした後、次
の呼吸サイクルにおける吸気相の開始が検出され
るまでの間(大気開放期間)第1の電磁弁2を
閉、第2の電磁弁5を開とする。
The output of the sensor 11 is sent to the controller 1 via the amplifier 12.
3 and is supplied to the sensor 11 in the control section 13.
The beginning of the inspiratory phase of the patient's 10 sequential breathing cycle is detected based on the output of the patient's 10. Control unit 13
At the time when the start of the inspiratory phase is detected in each breathing cycle, the first solenoid valve 2 is opened for 0.4 seconds (compressed air introduction period) from the time of detection, the second solenoid valve 5 is closed, and then the second solenoid valve 5 is closed for 1.2 seconds. After both the first and second solenoid valves 2 and 5 are closed for up to 2 seconds (stop period), the first solenoid valve The solenoid valve 2 is closed and the second solenoid valve 5 is opened.

一方、コンプレツサ4において圧縮された空気
は空気タンク3に貯留され、圧縮空気導入期間に
おいて第1の電磁弁2を経て吸着床1内にその導
入口1aから供給され、これによつて生成される
酸素濃縮ガスは吸着床1の排出口1bから生成ガ
ス用サージタンク7に供給されて貯留される。こ
のサージタンク7には、圧縮空気導入期間とそれ
に続く停止期間との間に酸素濃縮ガスが溜り、そ
の圧力が急速に高まつてチエツクバルブ8のプツ
シユスルー圧力を超え、鼻カニユーラ9を介して
患者10にその吸気相において送出される。その
後、大気開放期間において第2の電磁弁5が開と
なり、吸着床1の導入口1aが第2の電磁弁5お
よびサイレンサ6を経て大気に開放されることに
より、低圧力部位が導入口1aの方から排出口1
bの方向に進む。これにより、吸着床1での酸素
ガスの産出が停止すると共に、今まで患者10の
方に流出していた生成ガス用サージタンク7内の
酸素濃縮ガスの圧力も低下し、これがプツシユス
ルー圧力以下になると患者10側への送出は止ま
り、酸素濃縮ガスは吸着床1の排出口1bよりパ
ージガスとして吸着床1内に逆流入する。したが
つて、この逆流入は呼吸1サイクルが約4秒で、
吸気開始から1.6秒を経過した後となるので、呼
吸1サイクルの吸気期間と吸気期間の時間比率が
ほぼ1:2であることを考慮すると、各呼吸サイ
クルの呼気期間において行われることになる。
On the other hand, the air compressed in the compressor 4 is stored in the air tank 3, and during the compressed air introduction period, it is supplied from the introduction port 1a into the adsorption bed 1 through the first electromagnetic valve 2, and thereby the air is generated. The oxygen-enriched gas is supplied from the outlet 1b of the adsorption bed 1 to the generated gas surge tank 7 and stored therein. Oxygen-enriched gas accumulates in this surge tank 7 between the compressed air introduction period and the subsequent stop period, and its pressure rapidly increases to exceed the push-through pressure of the check valve 8 and is passed through the nasal cannula 9 to the patient. 10 in its inspiratory phase. After that, during the atmosphere opening period, the second solenoid valve 5 is opened, and the inlet 1a of the adsorption bed 1 is opened to the atmosphere via the second solenoid valve 5 and the silencer 6, so that the low pressure area is moved to the inlet 1a. Exhaust port 1 from
Proceed in direction b. As a result, the production of oxygen gas in the adsorption bed 1 is stopped, and the pressure of the oxygen-enriched gas in the generated gas surge tank 7, which had been flowing out to the patient 10, also decreases, and this drops below the push-through pressure. Then, the delivery to the patient 10 side is stopped, and the oxygen-enriched gas flows back into the adsorption bed 1 as a purge gas from the outlet 1b of the adsorption bed 1. Therefore, one breathing cycle of this reverse inflow takes about 4 seconds,
Since this occurs 1.6 seconds after the start of inspiration, it is performed in the expiration period of each breathing cycle, considering that the time ratio between the inspiratory period and the inspiratory period in one breathing cycle is approximately 1:2.

第2図はこの発明の第2実施例を示すものであ
る。この実施例は、第1実施例のチエツクバルブ
8に代えて電磁弁14を設け、この電磁弁14を
センサ11の出力に基づいて制御部13により各
呼吸サイクルにおいてその吸気開始に同期して開
にすると共に、これを吸着床1の停止期間中に閉
とすることによつて、その開放時間により患者1
0に送出する酸素濃縮ガス量と吸着床1に逆流さ
せるパージガス量を調整し得るようにしたもの
で、その他の構成は第1実施例と同様である。
FIG. 2 shows a second embodiment of the invention. In this embodiment, a solenoid valve 14 is provided in place of the check valve 8 of the first embodiment, and the solenoid valve 14 is opened by the control unit 13 in synchronization with the start of inhalation in each breathing cycle based on the output of the sensor 11. At the same time, by closing it during the period when the adsorption bed 1 is stopped, the patient 1 can be
The amount of oxygen-enriched gas sent to the vacuum cleaner and the amount of purge gas flowing back into the adsorption bed 1 can be adjusted, and the other configurations are the same as those of the first embodiment.

なお、この発明は上述した実施例にのみ限定さ
れるものではなく、幾多の変形または変更が可能
である。例えば、圧縮空気導入期間および停止期
間は、上述した0.4秒および1.2秒に限らず、呼吸
サイクルの時間に応じて、例えば制御部13にお
いてセンサ11の出力に基づいて順次の呼吸サイ
クルの時間を検出し、それに基づいて次の呼吸サ
イクルの時間を予測し、その時間に応じて自動的
に調整することもできる。また、複数の吸着床を
用い、その各々の導入口を第1の電磁弁を介して
共通のコンプレツサに連結すると共に、第2の電
磁弁を介して大気に開放し得るようにし、各吸着
床の排出口を共通の生成ガス用サージタンクに連
結して、これら複数の吸着床を呼吸サイクルに同
期して順次選択して同様に作動させることによ
り、各吸着床において吸着剤の再生に使用できる
時間を長くするようにすることもできる。更に、
上述した実施例においては生成ガス用サージタン
ク7および、チエツクバルブ8や電磁弁14を用
いたが、これらを省略して吸着床1の排出口1b
から鼻カニユーラ9を介して酸素濃縮ガスを患者
10に直接供給するようにすることもできる。更
にまた、上述した実施例では吸気の開始時に同期
して吸着床1にコンプレツサ4からの圧縮空気を
導入するようにしたが、生成された酸素濃縮ガス
が人の鼻腔へ送りこまれるまでに生じうる時間的
遅れを少なくするために、人の呼気と吸気の間に
一般的に若干存在する呼吸気流停止期間を、セン
サ11の出力に基づいて制御部13で弁別して、
吸気の開始に先立つ呼吸気流停止の開始時に圧縮
空気の導入を開始するように制御しても良い。ま
た、センサ11の出力に基づいて、吸気相の終わ
り部分から吸気相への転換時点までの呼吸気流停
止期間に、呼吸気流停止の開始時を起点とする遅
れ信号を制御部13内においてタイマにより作り
出し、これにより鼻腔へ送りこまれる時間遅れを
少なくするように、呼吸気流停止期間中の任意の
一定時に吸着床内へ圧縮空気の導入を開始して呼
吸に同調させてもよい。
Note that this invention is not limited only to the embodiments described above, and numerous modifications and changes are possible. For example, the compressed air introduction period and the stop period are not limited to the above-mentioned 0.4 seconds and 1.2 seconds; for example, the control unit 13 detects the time of successive breathing cycles based on the output of the sensor 11, depending on the breathing cycle time. It can also predict the time of the next breathing cycle based on that and automatically adjust accordingly. In addition, a plurality of adsorption beds are used, each inlet of which is connected to a common compressor through a first solenoid valve, and can be opened to the atmosphere through a second solenoid valve. By connecting the outlet to a common product gas surge tank and sequentially selecting and operating these multiple adsorbent beds in synchronization with the breathing cycle, each adsorbent bed can be used for regeneration of the adsorbent. It is also possible to make the time longer. Furthermore,
In the embodiment described above, the surge tank 7 for generated gas, the check valve 8, and the solenoid valve 14 were used, but these were omitted and the discharge port 1b of the adsorption bed 1 was used.
It is also possible to supply oxygen-enriched gas directly to the patient 10 via the nasal cannula 9. Furthermore, in the embodiment described above, compressed air from the compressor 4 is introduced into the adsorption bed 1 in synchronization with the start of intake, but this may occur before the generated oxygen-enriched gas is sent into the nasal cavity of the person. In order to reduce the time delay, the control unit 13 discriminates the respiratory airflow stop period that generally exists slightly between a person's exhalation and inhalation based on the output of the sensor 11.
The introduction of compressed air may be controlled to start at the start of respiratory airflow stop prior to the start of inspiration. Also, based on the output of the sensor 11, a timer is used in the control unit 13 to generate a delay signal starting from the start of stopping the respiratory airflow during the respiratory airflow stopping period from the end of the inspiratory phase to the point of transition to the inspiratory phase. The introduction of compressed air into the adsorbent bed may be initiated at any fixed time during the period of respiratory airflow cessation to synchronize with respiration, so as to reduce the time delay between the air flow and its delivery to the nasal cavity.

(発明の効果) 以上述べたように、この発明によれば人の吸気
に同期して酸素濃縮ガスを発生させ、呼気の期間
すなわち酸素濃縮ガスを必要としない期間に吸着
床をパージして再生をはかるようにしたので、酸
素濃縮ガスを効率良く常に安定して生成でき、人
の吸入利用効率を向上できると共に、装置全体も
小型にできる。また、上述した実施例では、コン
プレツサは呼吸1サイクルの間に約1000mlの空気
を3.5Kgf/cm2・Gに圧縮する能力を有すればよ
いので、従来の恒常流産出型酸素濃縮装置に用い
られるコンプレツサに比べその容量を1/3〜1/6と
することができる。したがつて、装置全体を安価
にできる。
(Effects of the Invention) As described above, according to the present invention, oxygen-enriched gas is generated in synchronization with human intake, and the adsorption bed is purged and regenerated during the exhalation period, that is, the period when oxygen-enriched gas is not required. As a result, oxygen-enriched gas can be efficiently and always stably generated, improving the efficiency of human inhalation and use, and making the entire device smaller. In addition, in the above-mentioned embodiment, the compressor only needs to have the ability to compress approximately 1000 ml of air to 3.5 Kgf/cm 2 G during one breathing cycle. The capacity can be reduced to 1/3 to 1/6 compared to conventional compressors. Therefore, the entire device can be made inexpensive.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1実施例を示す図、第2
図は同じく第2実施例を示す図である。 1……吸着床、1a……導入口、1b……排出
口、2……第1の電磁弁、3……空気タンク、4
……コンプレツサ、5……第2の電磁弁、6……
サイレンサ、7……生成ガス用サージタンク、8
……チエツクバルブ、9……鼻カニユーラ、10
……患者、11……センサ、12……増幅器、1
3……制御部、14……電磁弁。
FIG. 1 is a diagram showing a first embodiment of the present invention, and FIG.
The figure also shows the second embodiment. DESCRIPTION OF SYMBOLS 1... Adsorption bed, 1a... Inlet, 1b... Outlet, 2... First electromagnetic valve, 3... Air tank, 4
...Compressor, 5...Second solenoid valve, 6...
Silencer, 7...Surge tank for generated gas, 8
...Check valve, 9...Nasal cannula, 10
...Patient, 11...Sensor, 12...Amplifier, 1
3...Control unit, 14...Solenoid valve.

Claims (1)

【特許請求の範囲】 1 吸着床と、この吸着床の導入口に第1の電磁
弁を介して連結したコンプレツサと、前記導入口
を選択的に大気に開放する第2の電磁弁と、人の
呼吸の相を検出するセンサと、このセンサの出力
に基づいて各呼吸サイクルにおいて吸気に同期し
て前記吸着床に前記コンプレツサからの圧縮空気
を導入し、次にその圧縮空気の導入を停止した
後、前記吸着床の導入口を大気に開放するよう
に、前記第1および第2の電磁弁を制御する制御
手段とを具え、 前記吸着床に対する圧縮空気の導入期間および
それに続く停止期間において前記吸着床から酸素
濃縮ガスを産出させると共に、その後の大気開放
期間において前記吸着床をパージするよう構成す
ることによつて人の呼吸に同期して作動すること
を特徴とする医療用酸素濃縮装置。 2 前記吸着床の排出口に生成ガス用サージタン
クを介してチエツクバルブを連結し、このチエツ
クバルブを通して酸素濃縮ガスを取り出すよう構
成すると共に、該チエツクバルブのプツシユスル
ー圧力により取り出して利用するガス量とパージ
ガス量とを調節し得るよう構成したことを特徴と
する請求項1記載の医療用酸素濃縮装置。 3 前記吸着床の排出口に生成ガス用サージタン
クを介して電磁弁を連結し、この電磁弁を前記セ
ンサの出力に基づいて前記制御部により各呼吸サ
イクルの吸気に同期して開放して該電磁弁を通し
て酸素濃縮ガスを取り出すよう構成すると共に、
該電磁弁の開放時間を制御して取り出して利用す
るガス量とパージガス量とを調節し得るよう構成
したことを特徴とする請求項1記載の医療用酸素
濃縮装置。
[Scope of Claims] 1. An adsorption bed, a compressor connected to an inlet of the adsorption bed via a first solenoid valve, a second solenoid valve that selectively opens the inlet to the atmosphere, a sensor for detecting the phase of respiration of the compressor, and based on the output of this sensor, compressed air from the compressor is introduced into the adsorption bed in synchronization with the intake in each breathing cycle, and then the introduction of the compressed air is stopped. and control means for controlling the first and second electromagnetic valves so as to open the inlet of the adsorption bed to the atmosphere, during the introduction period of compressed air to the adsorption bed and the subsequent stop period. 1. A medical oxygen concentrator, which operates in synchronization with human breathing by producing oxygen-enriched gas from an adsorption bed and purging the adsorption bed during a subsequent open atmosphere period. 2. A check valve is connected to the discharge port of the adsorption bed via a surge tank for produced gas, and the oxygen-enriched gas is taken out through this check valve, and the amount of gas to be taken out and used is determined by the push-through pressure of the check valve. 2. The medical oxygen concentrator according to claim 1, wherein the medical oxygen concentrator is configured to be able to adjust the amount of purge gas. 3. A solenoid valve is connected to the discharge port of the adsorption bed via a surge tank for produced gas, and the solenoid valve is opened in synchronization with the intake of each breathing cycle by the control unit based on the output of the sensor. configured to extract the oxygen-enriched gas through the solenoid valve;
2. The medical oxygen concentrator according to claim 1, wherein the amount of gas to be extracted and used and the amount of purge gas can be adjusted by controlling the opening time of the solenoid valve.
JP63101320A 1988-04-26 1988-04-26 Medical oxygen concentrating device Granted JPH01274771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63101320A JPH01274771A (en) 1988-04-26 1988-04-26 Medical oxygen concentrating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63101320A JPH01274771A (en) 1988-04-26 1988-04-26 Medical oxygen concentrating device

Publications (2)

Publication Number Publication Date
JPH01274771A JPH01274771A (en) 1989-11-02
JPH0363907B2 true JPH0363907B2 (en) 1991-10-03

Family

ID=14297518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63101320A Granted JPH01274771A (en) 1988-04-26 1988-04-26 Medical oxygen concentrating device

Country Status (1)

Country Link
JP (1) JPH01274771A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2776992B2 (en) * 1991-01-31 1998-07-16 帝人株式会社 Oxygen concentrator
US5799652A (en) * 1995-05-22 1998-09-01 Hypoxico Inc. Hypoxic room system and equipment for Hypoxic training and therapy at standard atmospheric pressure
EP1318866A4 (en) 2000-09-06 2006-06-28 Colorado Altitude Training Llc Altitude simulation method and system
KR100685983B1 (en) * 2000-09-21 2007-02-23 엘지전자 주식회사 Control device and control mathod in oxygen generator
JP2005211392A (en) * 2004-01-30 2005-08-11 Teijin Pharma Ltd Medical oxygen concentrator
CN106335880A (en) * 2016-03-15 2017-01-18 康泰医学系统(秦皇岛)股份有限公司 Gas channel control system and gas channel control method

Also Published As

Publication number Publication date
JPH01274771A (en) 1989-11-02

Similar Documents

Publication Publication Date Title
US4681099A (en) Breath-synchronized concentrated-oxygen supplier
US10874817B1 (en) Pulsed pressure swing adsorption system and method
US4648395A (en) Synchronized feed type oxygen concentrator for use in an open breathing system
US4211221A (en) Respirator
US6837244B2 (en) Oxygen enriching apparatus, controller for the oxygen enriching apparatus, and recording medium for the controller
JPH04231067A (en) Flow rate starting system and method for respiration aid ventilation
CA2578246A1 (en) Method and apparatus for non-rebreathing positive airway pressure ventilation
WO2020084993A1 (en) Nitric oxide administration device
WO1994027664A1 (en) Inhalation therapy
JP2002085566A (en) Oxygen condenser controller as well as recording medium therefor
EP3463538B1 (en) Oxygen gas concentrator with outlet accumulator
WO2017106636A1 (en) Use of an oxygen concentrator for cpap therapy
CN115916311A (en) Power management in portable oxygen concentrator
JPH0565200B2 (en)
EP2379147A2 (en) Phasic respiratory therapy
JPH0363907B2 (en)
WO2024131144A1 (en) Control method for breathing machine and breathing machine
JP3531215B2 (en) Medical oxygen gas supply device
WO2020084994A1 (en) Nitric oxide administration device
JP2000037458A (en) Medical oxygen concentrator
JP2019107042A (en) Oxygen concentrator and its control method, and control program for oxygen concentrator
CN116322854A (en) Method and apparatus for controlling operation in an oxygen concentrator
WO2020084995A1 (en) Relay administration device and nitrogen monoxide administration system
CN114929318A (en) Method and apparatus for controlling an oxygen concentrator
JPH01221170A (en) Gas feed device for respiration