JPH04132030A - Magneto-optical recording film - Google Patents

Magneto-optical recording film

Info

Publication number
JPH04132030A
JPH04132030A JP25027290A JP25027290A JPH04132030A JP H04132030 A JPH04132030 A JP H04132030A JP 25027290 A JP25027290 A JP 25027290A JP 25027290 A JP25027290 A JP 25027290A JP H04132030 A JPH04132030 A JP H04132030A
Authority
JP
Japan
Prior art keywords
elements
magneto
film
optical recording
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25027290A
Other languages
Japanese (ja)
Inventor
Fumiyoshi Kirino
文良 桐野
Junko Nakamura
純子 中村
Yoshinori Miyamura
宮村 芳徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Maxell Ltd
Original Assignee
Hitachi Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Maxell Ltd filed Critical Hitachi Ltd
Priority to JP25027290A priority Critical patent/JPH04132030A/en
Priority to US07/702,936 priority patent/US5814400A/en
Publication of JPH04132030A publication Critical patent/JPH04132030A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To plan higher perpendicular magnetic anisotropy energy, lower saturation magnetization and larger coercive force by adding other elements into the iron family elements of alternately laminated films of noble metal elements and the iron family elements. CONSTITUTION:The multilayered films alternately laminated with the noble metal elements 3 and the iron family elements 2 are formed by alternately laminating at least one kind of the elements selected from Pt, Pd, Rh, and Au and at least one kind of the elements selected from Pt, Pd, Rh, Au, Nb, Ti, Ta, and Cr. The arbitrary control of magnetic characteristics, such as coercive force, Curie temp. and perpendicular magnetic anisotropy energy, is executed by arbitrarily selecting the concn. of the elements added to the Fe and Co at this time. The desired disk characteristics are obtd. in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レーザー光による記録、再生、消去を行う光
磁気記録において、特に高信頼性を有し、超高密度記録
が可能な光磁気記録材料に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to magneto-optical recording that performs recording, reproduction, and erasing using laser light, and is particularly applicable to magneto-optical recording that has particularly high reliability and is capable of ultra-high density recording. Concerning recording materials.

〔従来の技術〕[Conventional technology]

近年の高度情報化社会の進展により高密度でしかも大容
量のファイルメモリーへのニーズが高まる中で、これに
応えるものとして光メモリーが注目されている。再生専
用型、追記型につづいて近年多くの企業から書換え型の
光ディスクとして、光磁気記録装置が実用化された。そ
して、現在ではその高性能化をめざし、多くの研究機関
で研究開発が進められている。その1つに、記録密度の
更なる向上があり、その手法として短波長の光を用いて
微小記録磁区を形成することが有望視されている。その
場合、問題となるのは現在広く用いられているPbFe
Co系光磁気材料では用いる光の波長が短くなるのにつ
れて、記録膜の示す磁気光学効果が小さく、安定した再
生ができない場合があるという点である。その問題を解
決した公知な例としてE P 0304873A 1を
あげることができる。これは、光磁気記録膜としてpt
とCoとを交互に積層した多層構造を有する膜を用いた
例である。
With the recent development of an advanced information society, the need for high-density and large-capacity file memory is increasing, and optical memory is attracting attention as a solution to meet this demand. Following read-only and write-once types, many companies have put magneto-optical recording devices into practical use as rewritable optical disks in recent years. Research and development is currently underway at many research institutions with the aim of improving its performance. One of these is the further improvement of recording density, and forming minute recording magnetic domains using short wavelength light is seen as a promising method. In that case, the problem is PbFe, which is currently widely used.
The problem with Co-based magneto-optical materials is that as the wavelength of the light used becomes shorter, the magneto-optic effect exhibited by the recording film becomes smaller and stable reproduction may not be possible. EP 0304873A 1 can be cited as a known example that solved this problem. This is used as a magneto-optical recording film.
This is an example using a film having a multilayer structure in which Co and Co are alternately laminated.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術では、保磁力が光磁気記録に用いるに必ず
しも十分な大きさを有しておらず、かつ垂直磁気異方性
も小さく、垂直磁化膜としての安定性に欠けることがあ
り、ディスクに情報を記録した場合その保存に十分な信
頼性が確保できないといった問題を生じていた。
In the above conventional technology, the coercive force is not necessarily large enough to be used for magneto-optical recording, and the perpendicular magnetic anisotropy is also small, resulting in lack of stability as a perpendicularly magnetized film. A problem has arisen in that when information is recorded, it is not possible to ensure sufficient reliability in its storage.

本発明の目的は、光磁気記録に要求される保磁力、垂直
磁気異方性エネルギー等の磁気的特性に優れた光磁気記
録材料を提供することにより、超高密度光磁気記録を実
現することにある。すなわち微小記録領域の形成が可能
な光磁気記録媒体を提供することができる。
An object of the present invention is to realize ultra-high-density magneto-optical recording by providing a magneto-optical recording material that has excellent magnetic properties such as coercive force and perpendicular magnetic anisotropy energy required for magneto-optical recording. It is in. That is, it is possible to provide a magneto-optical recording medium in which a minute recording area can be formed.

〔課題を解決するための手段〕[Means to solve the problem]

微小記録磁区を形成して記録密度の向上をはかる方法の
一つとして、短波長光を用いる方法が有望視されている
。しかし、現製品のTbFeC。
A method using short wavelength light is seen as a promising method for improving recording density by forming minute recording magnetic domains. However, the current product TbFeC.

系材料では、用いる光の波長が短くなるのにつれてカー
(Kerr)回転角が減少し、安定した再生が困難な場
合が生じる。
In such materials, as the wavelength of the light used becomes shorter, the Kerr rotation angle decreases, and stable reproduction may become difficult.

これに対し、ptやPdといった貴金属元素とFe、C
oといった鉄族元素とを交互に積層した多層膜が短波長
光による高密度記録に有用であることが知られている。
On the other hand, noble metal elements such as pt and Pd and Fe, C
It is known that a multilayer film in which iron group elements such as iron and iron are alternately laminated is useful for high-density recording using short wavelength light.

しかし、この膜は保磁力。However, this film has a coercive force.

垂直磁気異方性の大きさなどの磁気的特性が必ずしも光
磁気記録に好適とはいえなかった。
Magnetic properties such as the magnitude of perpendicular magnetic anisotropy were not necessarily suitable for magneto-optical recording.

この問題を解決するために、ptとCOの交互積層膜に
おいてCoにPt、Pd、Rh、Au。
In order to solve this problem, in an alternate laminated film of pt and CO, Pt, Pd, Rh, and Au are added to Co.

Nb、Ti、Ta、、Cr等の内より選ばれる少なくと
も1種類の元素を含む合金とPt、Pd。
An alloy containing at least one element selected from Nb, Ti, Ta, Cr, etc., and Pt, Pd.

Rh、Auの内より選ばれる少なくとも1種類の元素と
を交互に積層した多層膜を用いると、保磁力及び垂直磁
気異方性の増大をはかることができ、超高密度光磁気記
録に好適な材料を得ることができた。そして、さらにT
 b −F e −Coに代表される希土類−鉄族元素
よりなる合金を先の多層膜と磁気的に結合するように作
製することで、さらに光磁気記録膜としての磁気的特性
並びに磁気光学特性を向上・させることができた。すな
わち、光磁気記録膜全体としてみたときの保磁力並びに
垂直磁気異方性を増大させることができた。これは。
By using a multilayer film in which at least one element selected from Rh and Au is alternately laminated, coercive force and perpendicular magnetic anisotropy can be increased, making it suitable for ultra-high density magneto-optical recording. I was able to obtain the materials. And further T
By manufacturing an alloy made of rare earth-iron group elements represented by b -Fe -Co so as to be magnetically coupled with the above multilayer film, magnetic properties and magneto-optical properties as a magneto-optical recording film can be further improved. I was able to improve/improve. That is, it was possible to increase the coercive force and perpendicular magnetic anisotropy of the magneto-optical recording film as a whole. this is.

元素添加により飽和磁化と制御できるためである。This is because saturation magnetization can be controlled by adding elements.

また、Coに元素を添加することによりキュリー温度も
合わせて制御できるので、記録感度を任意に選択できる
。以上のことから、本発明を用いることにより1、保磁
力及び垂直磁気異方性の増大、さらにはキュリー温度の
制御が可能となり、容易に所望の特性を有するディスク
を得ることができた。
Furthermore, since the Curie temperature can also be controlled by adding elements to Co, the recording sensitivity can be arbitrarily selected. From the above, by using the present invention, 1. it became possible to increase the coercive force and perpendicular magnetic anisotropy, and also to control the Curie temperature, making it possible to easily obtain a disk having desired characteristics.

〔作用〕[Effect]

Pt、Pd、Rh、Auの内より選ばれる少なくとも1
種の元素と、Pt、Pd、Rh、Au。
At least one selected from Pt, Pd, Rh, and Au
seed elements, Pt, Pd, Rh, and Au.

Nb、Ti、Ta、Crの内より選ばれる少なくとも1
種の元素を含むFeもしくはCOの合金とを交互に積層
するとFeやCOに添加した元素濃度を任意に選択する
ことにより、保磁力、キュリー温度、垂直磁気異方性エ
ネルギー等の磁気特性を任意に制御できる。これにより
、所望のディスク特性が得られた。これは、Feもしく
はCoに元素を添加することにより、これら鉄族元素の
磁気特性を制御できるからである。
At least one selected from Nb, Ti, Ta, and Cr
By alternately stacking Fe or CO alloys containing seed elements, magnetic properties such as coercive force, Curie temperature, and perpendicular magnetic anisotropy energy can be adjusted arbitrarily by selecting the element concentration added to Fe or CO. can be controlled. As a result, desired disc characteristics were obtained. This is because by adding elements to Fe or Co, the magnetic properties of these iron group elements can be controlled.

〔実施例〕〔Example〕

以下、本発明の詳細を実施例1〜2を用いて説明する。 The details of the present invention will be explained below using Examples 1 and 2.

[実施例1] 本実施例において作製した光磁気記録膜の断面構造を示
す模式図を第1図に示す。作製手順は以下に述べるとお
りである。
[Example 1] FIG. 1 is a schematic diagram showing the cross-sectional structure of the magneto-optical recording film produced in this example. The manufacturing procedure is as described below.

プラスチックもしくはガラスの基板1上に、遷移金属元
素層2としてCo、5Nb、を、そして貴金属元素層3
としてptを選び、この両者を交互に積層し、多層記録
膜をスパッタ法により作製した。ターゲットにCo円板
上にNbチップを均一配置した複合体ターゲット及びp
t内円板用いた二元同時スパッタ法を用いた。その時の
条件は放電ガスを使用し、圧力は5 X 10−’To
rr、投入RF主電力CoNbが4.2W/cJ、Pt
が6.6W/、ffl、基板回転数は12Orpmであ
る。このようにして作製した記録膜の各層の膜厚はCo
Nb層が5人、pt層が12人で、多層膜全体の膜厚は
150人である。
On a plastic or glass substrate 1, a transition metal element layer 2 of Co, 5Nb, and a noble metal element layer 3 are formed.
PT was selected as the material, and both were alternately laminated to produce a multilayer recording film by sputtering. A composite target in which Nb chips are uniformly arranged on a Co disk and p
A two-dimensional simultaneous sputtering method using a t-circular disk was used. The conditions at that time were to use a discharge gas and the pressure was 5 x 10-'To
rr, input RF main power CoNb is 4.2W/cJ, Pt
is 6.6 W/, ffl, and the substrate rotation speed is 12 Orpm. The thickness of each layer of the recording film produced in this way was Co
The Nb layer has 5 layers, the PT layer has 12 layers, and the total thickness of the multilayer film is 150 layers.

このようにして作製した光磁気記録膜の垂直磁気異方性
エネルギーは、7 X 10 serg/ dであり、
Nbを含まないCo / P を交互積層多層膜のそれ
の9 X 10 ’erg/ alに比べて大きく増大
しており、垂直磁化膜として安定に存在できることがわ
かる。
The perpendicular magnetic anisotropy energy of the magneto-optical recording film thus prepared was 7 x 10 serg/d,
It can be seen that the Co/P layer, which does not contain Nb, is greatly increased compared to the 9×10' erg/al of the alternately laminated multilayer film, and can exist stably as a perpendicular magnetization film.

また、飽和磁化Msは170emu/ccで、Nbを含
まない膜の700 emu/ cc に比べ著しく小さ
いことがわかる。また保磁力Hcは6KOeでNbを含
まない場合のIKOeに比べて大きく増大した。
Further, it can be seen that the saturation magnetization Ms is 170 emu/cc, which is significantly smaller than 700 emu/cc of the film not containing Nb. Furthermore, the coercive force Hc was 6KOe, which was significantly increased compared to IKOe without Nb.

これにより、記録した情報を安定に保存できた。This allowed the recorded information to be stored stably.

また、Kerr回転角の温度依存性を第2図に示す。Further, the temperature dependence of the Kerr rotation angle is shown in FIG.

(P t / Co 1oo−xN b x)n交互積
層多層膜においてNb濃度:Xをそれぞれ0,4,7a
t%と増加していくと、それにつれてキュリー温度は、
380℃、305℃、205℃と低下した。このように
Nb濃度を制御することによりキュリー温度を任意に選
択できる。しかし、Nbを20at%以上添加すると逆
に磁性を失い、垂直磁気異方性が消失した。この効果は
Nbに限らず、Pt、Pct。
(P t / Co 1oo-xN b x)n Nb concentration:
As the Curie temperature increases with t%,
The temperature decreased to 380°C, 305°C, and 205°C. By controlling the Nb concentration in this manner, the Curie temperature can be arbitrarily selected. However, when 20 at % or more of Nb was added, the magnetism was conversely lost and the perpendicular magnetic anisotropy disappeared. This effect is not limited to Nb, but also Pt and Pct.

Rh、Au、Ti、Cr、Ta、W、Moを添加しても
同様である。ただし、WとMoは1oat%添加で磁性
が消失した。それ以外の元素を添加したときの磁性に与
える挙動は同じで、約20%の添加で磁気特性が消失し
た。ここで、Pt、Pd。
The same holds true when Rh, Au, Ti, Cr, Ta, W, and Mo are added. However, when W and Mo were added at 1 oat%, the magnetism disappeared. When other elements were added, the behavior on magnetism was the same, and the magnetic properties disappeared when about 20% was added. Here, Pt, Pd.

Rh、Auを添加すると、反射率が増大し、ディスクの
性能指数(J、θk)が増大するので安定した再生信号
が得られた。このように元素添加により容易に磁気特性
の制御が可能であることから、所望ディスク特性を容易
に得ることがでた。
When Rh and Au were added, the reflectance increased and the figure of merit (J, θk) of the disk increased, so a stable reproduction signal was obtained. Since magnetic properties can be easily controlled by adding elements in this way, desired disk properties can be easily obtained.

[実施例2] 本実施例において作製した光磁気記録膜の断面構造を示
す模式図を第3図に示す。
[Example 2] FIG. 3 is a schematic diagram showing the cross-sectional structure of the magneto-optical recording film produced in this example.

プラスチックもしくはガラスの基板1上に、実施例1と
同一のスパッタ条件にて、貴金属元素3としてptを、
遷移金属元素層2としてCogoTi□0を交互に積層
した多層膜を形成した。pt層の厚さは10人、CoT
i層のそれは5人とし、この交互積層多層膜層全体の厚
さは130人とした。
On a plastic or glass substrate 1, pt was added as a noble metal element 3 under the same sputtering conditions as in Example 1.
As the transition metal element layer 2, a multilayer film in which CogoTi□0 was alternately laminated was formed. The thickness of the PT layer is 10, CoT.
The number of people in the i-layer was 5, and the total thickness of this alternately laminated multilayer film layer was 130 people.

この多層膜と磁気的に結合するように、その上に希土類
−鉄族元素層4としてTb2.Fe、□CO□。Nb。
A rare earth-iron group element layer 4 of Tb2. Fe, □CO□. Nb.

層を870人の膜厚に形成した。成膜はスパッタ法を用
いて行ない、その時の条件はターゲットにTbFeCo
Nb合金を、放電ガスにArを使用し、放電ガス圧力は
5 X 10−’Torr、投入RF電力密度は4.2
W/cdである。
The layer was formed to a thickness of 870 layers. Film formation was performed using a sputtering method, and the conditions were that the target was TbFeCo.
Nb alloy was used, Ar was used as the discharge gas, the discharge gas pressure was 5 x 10-'Torr, and the input RF power density was 4.2.
It is W/cd.

このようにして作製した記録膜の垂直磁気異方性はTb
FeCoNb膜に支配されており、1x10’erg/
cdと著しく大きかった。またこの膜のKerr回転角
の温度依存性を第4図に示す。比較のためにTiを含ま
ない(pt/Co)nとT b F e Co N b
交互結合膜のそれを合わせて示した。それによると、(
Pt/CoTi)n/TbFeCoNb膜ではキュリー
温度がほぼ200℃であるのに対し、(Pt/Co)l
l/TbFeCoNb膜のそれは340℃であり、Ti
を添加したことによりキュリー温度を制御できた。この
効果はTi以外にPt、Pd、Rh、Au、Nb、Ta
、Crの内のいずれか1種類或いは複数の種類の元素を
用いても同様である。またCO以外にFeを使用しCも
或いはFeCo合金でも良く、また、pt以外にPd、
Rh、Au或いはこれらの合金を用いても同様の効果が
得られる。また、希土類−鉄族合金層において、Tb以
外にHa、Dy、Gdを用いても同様である。またこの
希土類−鉄族合金層と(Pt/CoX)交互積層多層膜
(X=Nb。
The perpendicular magnetic anisotropy of the recording film thus prepared is Tb
It is dominated by the FeCoNb film and has a 1x10'erg/
The CD was noticeably large. Further, the temperature dependence of the Kerr rotation angle of this film is shown in FIG. For comparison, Ti-free (pt/Co)n and T b Fe Co N b
Those of the alternately bonded membrane are also shown. according to it,(
In Pt/CoTi)n/TbFeCoNb film, the Curie temperature is approximately 200°C, whereas in (Pt/Co)l
that of the l/TbFeCoNb film is 340°C, and that of the Ti
By adding , the Curie temperature could be controlled. In addition to Ti, this effect also applies to Pt, Pd, Rh, Au, Nb, and Ta.
, Cr, or more than one type of element may be used. In addition to CO, Fe may be used, C or FeCo alloy may be used, and Pd, Pd, and Pt may be used instead of PT.
Similar effects can be obtained by using Rh, Au, or an alloy thereof. Further, the same effect can be obtained even if Ha, Dy, or Gd is used in addition to Tb in the rare earth-iron alloy layer. Moreover, this rare earth-iron group alloy layer and a (Pt/CoX) alternately laminated multilayer film (X=Nb).

Ti、 Ta、 Cr、 Pt、 Pd、 Rh、 A
u)との磁気的特性を適宜制御することで磁気特性を任
意に制御できる。
Ti, Ta, Cr, Pt, Pd, Rh, A
The magnetic properties can be arbitrarily controlled by appropriately controlling the magnetic properties with u).

〔発明の効果〕〔Effect of the invention〕

本発明によれば、貴金属元素と鉄族元素との交互積層膜
において鉄族元素中に他の元素を添加すると、垂直磁気
異方性エネルギーの増大、飽和磁化の低下、保磁力の増
大をはかることができ、記録したデータ保持に対する信
頼性向上に効果がある。また、添加元素濃度を適宜選択
することで。
According to the present invention, when other elements are added to the iron group element in an alternately laminated film of noble metal elements and iron group elements, the perpendicular magnetic anisotropy energy is increased, the saturation magnetization is decreased, and the coercive force is increased. This is effective in improving the reliability of recorded data retention. Also, by appropriately selecting the concentration of added elements.

キュリー温度や磁気的特性の温度特性を制御でき、ディ
スクの記録感度をはじめとする諸性能を任意に選べる。
Curie temperature and temperature characteristics of magnetic properties can be controlled, and various performances such as recording sensitivity of the disk can be arbitrarily selected.

その結果として、ディスクと駆動系で最大の性能を得る
ことができる。
As a result, maximum performance can be obtained from the disk and drive system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第3図は本発明の実施例になる光磁気記録膜
の断面模式図、第2図及び第4図は本発明の実施例の光
磁気記録膜のKerr回転角の温度依存性を示す特性図
である。 1・・・基板、2・・・遷移金属元素層、3・・・蒸金
属元素纂斤;ア(C) 4ガニT (′C)
1 and 3 are schematic cross-sectional views of magneto-optical recording films according to embodiments of the present invention, and FIGS. 2 and 4 show temperature dependence of the Kerr rotation angle of magneto-optical recording films according to embodiments of the present invention. FIG. DESCRIPTION OF SYMBOLS 1...Substrate, 2...Transition metal element layer, 3...Vaporized metal element layer; A (C) 4GaniT ('C)

Claims (1)

【特許請求の範囲】 1、レーザー光或いは磁界或いはその両方を用いて記録
、再生成いは消去を行う光磁気記録において、その記録
膜としてPt、Pd、Rh、或いはAuの内より選ばれ
る少なくとも1種類の元素よりなる層と、Fe、Coの
内より選ばれる少なくとも1種類の元素を主体としこれ
にPt、Pd、Rh、Au、Nb、Ti、Ta、Crの
内より選ばれる少なくとも1種類の元素を含む合金より
なる層とを交互に積層した多層膜としたことを特徴とす
る光磁気記録膜。 2、特許請求の範囲第1項記載の多層膜と磁気的に結合
するように希土類元素と鉄族元素よりなる合金層もしく
は交互積層膜よりなる層を設けたことを特徴とする光磁
気記録膜。 3、特許請求の範囲第2項記載の希土類元素としてTb
、Dy、Ho、或いはGdの内より選ばれる少なくとも
1種類の元素と鉄族元素としてFe、Coの内より選ば
れる少なくとも1種類の元素とを用いたことを特徴とす
る光磁気記録膜。 4、特許請求の範囲第1項記載のFe、Coの内より選
ばれる少なくとも1種類の元素にpt、Pd、Rh、A
u、Nb、Ti、Ta、Crの内より選ばれる少なくと
も1種類の元素を含む合金層とPt、Pd、Rh、Au
の内より選ばれる少なくとも1種類の層とを交互に積層
した多層膜或いはこの多層膜の上に特許請求の範囲第2
項及び第3項の層を磁気的に結合するように設けた多層
膜において、Fe、Coに添加する元素の濃度を制御す
ることにより、その記録膜の磁気的特性を制御したこと
を特徴とする光磁気記録膜。
[Claims] 1. In magneto-optical recording in which recording, reproduction, or erasing is performed using laser light or a magnetic field or both, the recording film is at least one selected from Pt, Pd, Rh, or Au. A layer consisting of one type of element, and a layer mainly composed of at least one type of element selected from Fe and Co, and at least one type selected from Pt, Pd, Rh, Au, Nb, Ti, Ta, and Cr. 1. A magneto-optical recording film characterized in that it is a multilayer film in which layers made of an alloy containing the elements are alternately laminated. 2. A magneto-optical recording film characterized in that an alloy layer made of a rare earth element and an iron group element or a layer made of an alternately laminated film is provided so as to be magnetically coupled to the multilayer film according to claim 1. . 3. Tb as the rare earth element described in claim 2
, Dy, Ho, or Gd, and at least one element selected from Fe and Co as an iron group element. 4. At least one element selected from Fe and Co described in claim 1, including pt, Pd, Rh, and A.
an alloy layer containing at least one element selected from u, Nb, Ti, Ta, and Cr; and Pt, Pd, Rh, and Au.
A multilayer film in which at least one type of layer selected from
In the multilayer film provided to magnetically couple the layers of item 1 and item 3, the magnetic properties of the recording film are controlled by controlling the concentration of elements added to Fe and Co. magneto-optical recording film.
JP25027290A 1990-05-18 1990-09-21 Magneto-optical recording film Pending JPH04132030A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP25027290A JPH04132030A (en) 1990-09-21 1990-09-21 Magneto-optical recording film
US07/702,936 US5814400A (en) 1990-05-18 1991-05-20 Magneto-optical recording medium and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25027290A JPH04132030A (en) 1990-09-21 1990-09-21 Magneto-optical recording film

Publications (1)

Publication Number Publication Date
JPH04132030A true JPH04132030A (en) 1992-05-06

Family

ID=17205430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25027290A Pending JPH04132030A (en) 1990-05-18 1990-09-21 Magneto-optical recording film

Country Status (1)

Country Link
JP (1) JPH04132030A (en)

Similar Documents

Publication Publication Date Title
US6893746B1 (en) Magnetic recording medium with high thermal stability, method for producing the same, and magnetic recording apparatus
JPH04150010A (en) Magnetooptical recording medium
US5639563A (en) Magneto-optical recording medium
JPH04132030A (en) Magneto-optical recording film
JPH0550400B2 (en)
JP2989575B2 (en) Magneto-optical recording medium
US5529854A (en) Magneto-optic recording systems
JP2814604B2 (en) Recording / playback method
JP3381960B2 (en) Magneto-optical recording medium
JP2846067B2 (en) Magneto-optical recording film
JP2910287B2 (en) Magneto-optical recording medium
JP2942060B2 (en) Magneto-optical recording medium and method of manufacturing the same
JP2929918B2 (en) Magneto-optical recording medium and reproducing method thereof
JP3069135B2 (en) Method for manufacturing magneto-optical recording medium
JPH0414641A (en) Structure for magneto-optical recording film and its recording method
JP3000385B2 (en) Magneto-optical recording method
JPH04186545A (en) Structure of optomagnetic recording film
JP2657243B2 (en) Magneto-optical recording medium
JPH0559497B2 (en)
JPH01162257A (en) Magneto-optical recording medium
JPH05314561A (en) Magneto-optical recording film
JPH04163744A (en) Magnetooptical recording medium
JPH03235237A (en) Structure of magneto-optical recording medium
JPH04186707A (en) Structure of magnetooptic recording film
JPH03235236A (en) Structure of magneto-optical recording medium