JPH0413174Y2 - - Google Patents

Info

Publication number
JPH0413174Y2
JPH0413174Y2 JP5607284U JP5607284U JPH0413174Y2 JP H0413174 Y2 JPH0413174 Y2 JP H0413174Y2 JP 5607284 U JP5607284 U JP 5607284U JP 5607284 U JP5607284 U JP 5607284U JP H0413174 Y2 JPH0413174 Y2 JP H0413174Y2
Authority
JP
Japan
Prior art keywords
spring
buckling
displacement
electrostrictive
piezoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5607284U
Other languages
Japanese (ja)
Other versions
JPS60168946U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5607284U priority Critical patent/JPS60168946U/en
Publication of JPS60168946U publication Critical patent/JPS60168946U/en
Application granted granted Critical
Publication of JPH0413174Y2 publication Critical patent/JPH0413174Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Impact Printers (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は電気、機械変換素子の運動を増幅し駆
動する機械的増幅機構に関し、さらに詳しくは電
歪あるいは圧電素子を駆動源として変位増幅を行
ない、主としてプリンタの如き印刷装置、あるい
はリレーの如き開閉器に適用する機械的増幅機構
に関する。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention relates to a mechanical amplification mechanism that amplifies and drives the motion of an electrical/mechanical transducer, and more specifically, it relates to a mechanical amplification mechanism that amplifies and drives the motion of an electrical or mechanical transducer. The present invention relates to mechanical amplification mechanisms mainly applied to printing devices such as printers or switches such as relays.

(従来技術とその問題点) 従来、電気機械変換素子による駆動装置はプリ
ンタ印字ヘツド等の印刷装置やリレー、スイツチ
等の開閉器に使用されている。例えばドツトイン
パクト式プリンタ印字ヘツドではその駆動源とし
てほとんどが電磁石あるいは永久磁石を用いてい
る。しかし、この方式は駆動時において銅損、鉄
損があり、必要とするエネルギに対し多大な入力
エネルギを与える必要があり、エネルギ変換効率
が低いという欠点がある。そのため近年は電歪素
子、あるいは圧電素子を駆動源として用い、消費
電力、発熱量を低減し高速動作の可能な機構が考
えられている。しかし、この方式においては駆動
源となを電歪あるいは圧電素子の変位が0.005〜
0.01mmと微少であるため通常のプリンタ印字ヘツ
ドやリレー機構の作用素子に必要な0.3mm〜0.5mm
の変位を得るように電歪あるは圧電素子の変位を
増幅することが必要である。この要求に対し従来
提案されているものの一例として第1図に示すよ
うな特開昭53−113625記載の機構がある。第1図
において調節ねじ1により上向き(印字方向)に
湾曲した湾曲ばね2の両端が保持要素3に固定さ
れ、また保持要素3の一方は圧電結晶装置4に座
着し、他方は固定保持部5に座着する。この構造
において圧電結晶装置4の励起により湾曲ばね2
をたわませ、湾曲ばね2の中央部に設けられた印
字針6を駆動している。このような方式は湾曲ば
ね2の軸方向に変位が与えられると衆知の座屈理
論で明らかのごときたわみが生じ容易に大きなた
わみ量が得られ、かつ構造も簡単である。しかし
ながら、このような座屈ばねを使用した機構では
座屈ばねのスナツプアクシヨン現象や逆方向への
たわみを防止し、安定動作をさせるために上記の
如く座屈ばねを調節ねじ等の手段により一方向に
たわませることが必要である。しかし、一方プリ
ンタ印字ヘツドやリレーをはじめとするこれら機
械的増幅機構においては高速駆動、小型軽量化が
要求されており、そのためには座屈ばね自身の固
有振動数の向上及び座屈ばね長の短縮化が必要と
なる。しかしこのとき座屈ばねの剛性を高めるに
したがい座屈ばねに作用する応力も大きくなり、
疲労限度を越えることがある。特に前記の如く初
期変位を大きくとると駆動時の応力は初期変位分
の応力が加えられ大幅に座屈ばねの疲労限度を超
える問題が生じ、増幅機構の高速化、小型化が困
難であつた。
(Prior Art and its Problems) Conventionally, drive devices using electromechanical transducers have been used in printing devices such as printer print heads, and switches such as relays and switches. For example, most dot impact printer print heads use electromagnets or permanent magnets as their driving source. However, this method has the disadvantage that there is copper loss and iron loss during driving, it is necessary to provide a large amount of input energy relative to the required energy, and the energy conversion efficiency is low. Therefore, in recent years, mechanisms have been considered that use electrostrictive elements or piezoelectric elements as drive sources to reduce power consumption and heat generation and enable high-speed operation. However, in this method, the displacement of the driving source and the electrostrictive or piezoelectric element is 0.005~
Because it is as small as 0.01 mm, it is 0.3 mm to 0.5 mm, which is required for normal printer print heads and relay mechanism operating elements.
It is necessary to amplify the displacement of the electrostrictive or piezoelectric element to obtain a displacement of . One example of what has been proposed in the past in response to this requirement is a mechanism as shown in FIG. In FIG. 1, both ends of a curved spring 2 curved upward (in the printing direction) by an adjusting screw 1 are fixed to a holding element 3, and one of the holding elements 3 is seated on a piezoelectric crystal device 4, and the other is a fixed holding part. Sit down at 5. In this structure, the excitation of the piezoelectric crystal device 4 causes the bending spring 2 to
is bent to drive the printing needle 6 provided at the center of the curved spring 2. In such a system, when a displacement is applied to the curved spring 2 in the axial direction, a deflection occurs as shown in the well-known buckling theory, and a large amount of deflection can be easily obtained, and the structure is simple. However, in a mechanism using such a buckling spring, in order to prevent the snap action phenomenon of the buckling spring or deflection in the opposite direction, and to ensure stable operation, the buckling spring must be adjusted by means such as an adjusting screw as described above. It is necessary to bend it in one direction. However, on the other hand, these mechanical amplification mechanisms such as printer print heads and relays are required to be driven at high speed, made smaller and lighter, and to achieve this, it is necessary to improve the natural frequency of the buckling spring itself and to reduce the length of the buckling spring. Shortening is necessary. However, as the rigidity of the buckling spring increases, the stress acting on the buckling spring also increases.
Fatigue limits may be exceeded. In particular, when the initial displacement is large as mentioned above, the stress during driving is equal to the initial displacement, causing a problem that greatly exceeds the fatigue limit of the buckling spring, making it difficult to speed up and downsize the amplification mechanism. .

(考案の目的) 本考案はこのような従来の欠点を除去し、小型
で高速駆動化ができかつ信頼性の高い機械増幅機
構を提供することにある。
(Purpose of the invention) The object of the present invention is to eliminate such conventional drawbacks and provide a mechanical amplification mechanism that is small, can be driven at high speed, and is highly reliable.

(考案の構成) 本考案によれば、電歪あるいは圧電素子の伸縮
運動を座屈ばね軸方向に伝達し、座屈ばねのたわ
みにより変位が拡大され、前記座屈ばねに設けら
れた作用素子により出力を得る機械的増幅機構に
おいて、前記座屈ばねが外力のない状態において
も湾曲した一定の形状を保つ成形ばねからなるこ
とを特徴とする機械的増幅機構が得られる。
(Structure of the invention) According to the invention, the expansion and contraction motion of the electrostrictive or piezoelectric element is transmitted in the axial direction of the buckling spring, the displacement is expanded by the deflection of the buckling spring, and the action element provided on the buckling spring is In the mechanical amplification mechanism that obtains an output, there is obtained a mechanical amplification mechanism characterized in that the buckling spring is a shaped spring that maintains a constant curved shape even in a state where no external force is applied.

(構成の詳細な説明) 本考案は上述の構成をとることにより従来の問
題点を解決した。座屈ばねを用いた機構において
高速化、小型化を図るにはまず座屈ばねの固有振
動数を高めることが必要となる。いま、板ばねの
長さをとし、長さをtとすると固有振動数fは
f∝t/2の関係があるように、fを大きくす
るためにはを小さくし、tを大きくする必要が
ある。一方、座屈ばねの初期変位をδ0、電歪ある
いは圧電素子の励起による座屈ばねの変形量をδ1
とすると座屈ばねのたわみにより生ずる最大応力
σはσ∝(δ0+δ1)t/2の関係があり、が
小さく、tが大きいと応力は増大する。このよう
な中で前記したようにプリンタ印字ヘツドやリレ
ー等ではδ1は0.3〜0.5mmにするのが通常であり、
このとき初期変位δ0はδ1と同等量にしても全応力
の半分が初期変位をとることにより占められてい
ることになる。しかも増幅機構の製作においては
初期変位のばらつきもあるため、その調整時間を
短縮するためにはδ0を極力大きくしなければなら
ない。すなわちδ0を大きくすれば製作コストが低
下できる。そのため全応力の60〜80%が初期変位
により占められ、そのため固有振動数fの増大化
が困難となつていた。
(Detailed explanation of configuration) The present invention solves the conventional problems by adopting the above-mentioned configuration. In order to increase the speed and reduce the size of a mechanism using a buckling spring, it is first necessary to increase the natural frequency of the buckling spring. Now, let the length of the leaf spring be, and let the length be t, then the natural frequency f has the relationship f∝t/ 2 , so in order to increase f, it is necessary to decrease and increase t. be. On the other hand, δ 0 is the initial displacement of the buckling spring, and δ 1 is the amount of deformation of the buckling spring due to electrostriction or excitation of the piezoelectric element.
Then, the maximum stress σ caused by the deflection of the buckling spring has a relationship of σ∝(δ 01 )t/ 2 , where is small, and when t is large, the stress increases. Under these circumstances, as mentioned above, it is normal for δ1 to be 0.3 to 0.5 mm for printer print heads, relays, etc.
In this case, even if the initial displacement δ 0 is made equivalent to δ 1 , half of the total stress is occupied by the initial displacement. Furthermore, since there are variations in the initial displacement in manufacturing the amplification mechanism, δ 0 must be made as large as possible in order to shorten the adjustment time. That is, by increasing δ 0 , manufacturing costs can be reduced. Therefore, 60 to 80% of the total stress is accounted for by the initial displacement, making it difficult to increase the natural frequency f.

本考案では前記座屈ばねを通常時に必要な初期
変位と同等となるように、外力がなくても湾曲し
た形状を保つ成形ばねにした。本考案の成形ばね
は例えばブレス及び熱矯正により得ることができ
るし、また梁の形状をもち、ばね性があればプラ
スチツクや複合材料でも可能で、注出成形により
得られる。本考案により、前記応力の式において
初期変位時の応力はなくなるために結局成形ばね
に作用する応力σはσ∝δ1t/2と考えること
ができる。すなわち成形ばねが作動したときの変
位量δ1が従来と同じならば応力は少なくとも半分
以下となるし、また従来と同じ応力になるように
tを大きくし、を小さくすれば2倍の固有振動
数のばねを得ることができる。したがつて本考案
によれば、小型、高速駆動のできる機械的増幅機
構が得られる。
In the present invention, the buckling spring is a molded spring that maintains its curved shape even without external force so that the initial displacement is equivalent to that required under normal conditions. The shaped spring of the present invention can be obtained, for example, by pressing and heat straightening, or it can also be made of plastic or composite material, as long as it has the shape of a beam and has spring properties, and can be obtained by injection molding. According to the present invention, the stress at the initial displacement is eliminated from the stress equation, so that the stress σ that ultimately acts on the shaped spring can be considered as σ∝δ 1 t/ 2 . In other words, if the amount of displacement δ 1 when the formed spring operates is the same as before, the stress will be at least half less, and if t is increased and t is made smaller so that the stress is the same as before, the natural vibration will be doubled. You can get a few springs. Therefore, according to the present invention, a mechanical amplification mechanism that is compact and can be driven at high speed can be obtained.

(実施例) 以下本考案の実施例を図面を参照して説明す
る。第2図は本考案の一実施例を示す成形ばねの
斜視図である。第1図において、成形ばね7はブ
レス、熱矯正によりたわませてあり、また中央部
には出力となる作用素子である印字針8を設けて
いる。前記の如く、成形ばね7は板状でなくても
梁の形式であれば良く、また一方向の初期変位が
あれば第1図の弓状でなくても良い。第3図は本
考案の一実施例である印字ヘツド形態を示す側面
図である。第3図において、電歪あるいは圧電素
子9の一端はベース10に固定され、他端はベー
ス10に接続する。このとき成形ばね7は予め外
力がない状態でも湾曲した形状であるので、成形
ばね7には応力が作用していない。また成形ばね
7上の印字針8後部には成形ばね7の復帰動作の
衝撃を減衰するバツクストツプ11を設ける。こ
こで電歪あるいは圧電素子9に電圧を印加するこ
とにより電歪あるいは圧電素子9は軸方向に伸び
ての変位12は成形ばね7の軸方向に伝達され
る。そこで成形ばね7は衆知の座屈理論の如く軸
方向に与えられた変位に対し、初期変位方向、す
なわち印字針8の方向に変形13をおこし、成形
ばね7の中央部の印字針8で最大変位が得られ
る。そこで印字針8はリボンガイド14を介し、
インクリボン15、印字用紙16、プラテン17
を打撃し印字動作が行なわれる。また印加電圧の
停止により電歪あるいは圧電素子9は元の長さに
復帰し、同時に成形ばね7も復帰し、その後バツ
クストツプ11により動作が減衰される。
(Example) Examples of the present invention will be described below with reference to the drawings. FIG. 2 is a perspective view of a molded spring showing an embodiment of the present invention. In FIG. 1, the molded spring 7 has been bent by pressing or heat straightening, and a printing needle 8, which is an operating element serving as an output, is provided in the center. As mentioned above, the shaped spring 7 does not need to be plate-shaped as long as it is in the form of a beam, and as long as there is an initial displacement in one direction, it does not have to be in the arcuate shape of FIG. 1. FIG. 3 is a side view showing a print head configuration according to an embodiment of the present invention. In FIG. 3, one end of the electrostrictive or piezoelectric element 9 is fixed to a base 10, and the other end is connected to the base 10. At this time, since the shaped spring 7 has a curved shape even in the absence of an external force, no stress is acting on the shaped spring 7. Further, a backstop 11 is provided at the rear of the printing needle 8 on the molded spring 7 to attenuate the impact of the return movement of the molded spring 7. By applying a voltage to the electrostrictive or piezoelectric element 9, the electrostrictive or piezoelectric element 9 extends in the axial direction, and the displacement 12 is transmitted to the shaped spring 7 in the axial direction. Therefore, according to the well-known buckling theory, the shaped spring 7 causes deformation 13 in the initial displacement direction, that is, in the direction of the printing needle 8, in response to the displacement given in the axial direction, and the maximum deformation occurs at the printing needle 8 in the center of the shaped spring 7. displacement is obtained. Therefore, the printing needle 8 passes through the ribbon guide 14,
Ink ribbon 15, printing paper 16, platen 17
The printing operation is performed by hitting the . Furthermore, when the applied voltage is stopped, the electrostrictive or piezoelectric element 9 returns to its original length, and at the same time, the shaped spring 7 also returns, and thereafter its operation is damped by the backstop 11.

次に本考案の他の実施例を第4図、第5図に示
す。第4図において、電歪あるいは圧電素子9の
変位を伝達し増幅するための二本のレバーアーム
18とそのレバーアーム18で挾むように支持さ
れた成形ばね7から構成され、また成形ばね7に
は作用素子としての印字針8が設けられている。
このような方式においても本考案は適用でき効果
を得る。また第5図は、電歪あるいは圧電素子9
の伸縮方向の一端を共通に接続し、かつ前記電歪
あるいは圧電素子9の他端と支点によりそれぞれ
接続した変位増幅のための二本のレバーアーム1
9とそのレバーアーム19で挾み支持した成形ば
ね7により構成され、その成形ばね7には印字針
8が設けられている。この方式においても本考案
は適用できる。
Next, other embodiments of the present invention are shown in FIGS. 4 and 5. In FIG. 4, it is composed of two lever arms 18 for transmitting and amplifying the displacement of an electrostrictive or piezoelectric element 9, and a molded spring 7 supported so as to be sandwiched between the lever arms 18. A printing needle 8 is provided as an active element.
Even in such a system, the present invention can be applied and produce effects. FIG. 5 also shows an electrostrictive or piezoelectric element 9.
two lever arms 1 for displacement amplification, one end of which is connected in common in the expansion/contraction direction, and the other end of the electrostrictive or piezoelectric element 9 is connected by a fulcrum, respectively;
9 and a molded spring 7 supported by a lever arm 19, and a printing needle 8 is provided on the molded spring 7. The present invention can also be applied to this method.

以上の本考案の実施例において、成形ばねの支
持は固定支持でも回転支持でも可能である。また
プリンタ印字ヘツドに適用しているが成形ばね上
の印字針の代わりにリレー用接点を設け可動接点
として適用し、固定接点を加えることによりリレ
ー、スイツチ等にも適用できる。さらに前記実施
例において駆動源として積層した電歪あるいは圧
電素子を例示しているが、横効果、縦効果のある
電歪、圧電素子でも良い。
In the embodiments of the present invention described above, the molded spring can be supported either fixedly or rotatably. Furthermore, although it is applied to a printer print head, a relay contact is provided in place of the printing needle on a molded spring, and it is applied as a movable contact, and by adding a fixed contact, it can also be applied to relays, switches, etc. Furthermore, although stacked electrostrictive or piezoelectric elements are exemplified as drive sources in the above embodiments, electrostrictive or piezoelectric elements having transverse or longitudinal effects may also be used.

(考案の効果) 本考案によれば、従来の縦70mm、横40mmの大型
印字ヘツドが半分の寸法に小型化でき、駆動周波
数も2倍程度まで向上できた。また成形ばねの初
期変位を大きくとつても応力は小さいため製作コ
ストも安く、また寿命が長く信頼性の高い印字ヘ
ツドが得られた。
(Effects of the invention) According to the invention, the conventional large print head measuring 70 mm in length and 40 mm in width can be reduced in size to half, and the driving frequency can be increased to about twice as much. Furthermore, even if the initial displacement of the molded spring is large, the stress is small, so the manufacturing cost is low, and a printing head with a long life and high reliability can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の一実施例を示す側面図、第2図
は本考案の一実施である成形ばねを示す斜視図、
第3図は本考案の一実施例を示す側面図、第4図
は本考案の他の実施例を示す側面図、第5図は本
考案の他の実施例を示す側面図を示す。 図中各記号はそれぞれ次のものを示す。1……
調節ねじ、2……湾曲ばね、3……保持要素、4
……圧電結晶装置、5……固定保持部、6……印
字針、7……成形ばね、8……印字針、9……電
歪あるいは圧電素子、10……ベース、11……
バツクストツプ、12……電歪あるいは圧電素子
の変位、13……成形ばねの変形、14……リボ
ンガイド、15……インクリボン、16……印字
用紙、17……プラテン、18……レバーアー
ム、19……レバーアーム。
FIG. 1 is a side view showing a conventional embodiment, and FIG. 2 is a perspective view showing a molded spring that is an embodiment of the present invention.
FIG. 3 is a side view showing one embodiment of the invention, FIG. 4 is a side view showing another embodiment of the invention, and FIG. 5 is a side view showing another embodiment of the invention. Each symbol in the figure indicates the following. 1...
Adjustment screw, 2... Curved spring, 3... Holding element, 4
... Piezoelectric crystal device, 5 ... Fixed holding part, 6 ... Printing needle, 7 ... Molded spring, 8 ... Printing needle, 9 ... Electrostrictive or piezoelectric element, 10 ... Base, 11 ...
Back stop, 12... Displacement of electrostrictive or piezoelectric element, 13... Deformation of formed spring, 14... Ribbon guide, 15... Ink ribbon, 16... Print paper, 17... Platen, 18... Lever arm, 19...Lever arm.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 電歪あるいは圧電素子の伸縮運動を座屈ばね軸
方向に伝達し、座屈ばねのたわみにより変位が拡
大され、前記座屈ばねに設けられた作用素子によ
り出力を得る機械的増幅機構において、前記座屈
ばねが外力のない状態においても湾曲した一定の
形状を保つ成形ばねからなることを特徴とする機
械的増幅機構。
In the mechanical amplification mechanism, the expansion and contraction motion of the electrostrictive or piezoelectric element is transmitted in the axial direction of the buckling spring, the displacement is expanded by the deflection of the buckling spring, and an output is obtained by an operating element provided on the buckling spring. A mechanical amplification mechanism characterized in that the buckling spring consists of a shaped spring that maintains a constant curved shape even in the absence of external force.
JP5607284U 1984-04-17 1984-04-17 mechanical amplification mechanism Granted JPS60168946U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5607284U JPS60168946U (en) 1984-04-17 1984-04-17 mechanical amplification mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5607284U JPS60168946U (en) 1984-04-17 1984-04-17 mechanical amplification mechanism

Publications (2)

Publication Number Publication Date
JPS60168946U JPS60168946U (en) 1985-11-09
JPH0413174Y2 true JPH0413174Y2 (en) 1992-03-27

Family

ID=30579332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5607284U Granted JPS60168946U (en) 1984-04-17 1984-04-17 mechanical amplification mechanism

Country Status (1)

Country Link
JP (1) JPS60168946U (en)

Also Published As

Publication number Publication date
JPS60168946U (en) 1985-11-09

Similar Documents

Publication Publication Date Title
JPS6081568A (en) Mechanical amplifying mechanism
US4435666A (en) Lever actuator comprising a longitudinal-effect electroexpansive transducer and designed to prevent actuation from degrading the actuator
US4547086A (en) Piezoelectrically driven printing mechanism for dot matrix printers
US4647808A (en) Piezoelectric actuator
US4675568A (en) Mechanical amplification mechanism for electromechanical transducer
US6331037B1 (en) Drive arrangement for a writing head
JPS61177177A (en) Actuator with piezoelectric element
JPH0413174Y2 (en)
JPS59175386A (en) Mechanical amplifying mechanism
JPH0519470B2 (en)
KR830009942A (en) Lever driver composed of longitudinal effect electric expansion transducer prevents actuator deterioration
JPH0519912B2 (en)
JPS59177980A (en) Mechanical amplifying mechanism
JP2897258B2 (en) Piezo actuator
JPS59150756A (en) Printing mechanism
JPS63130175A (en) Moving piezoelectric element actuator-unit
JPS59178985A (en) Mechanical amplifying mechanism
JPH0519910B2 (en)
JPH0364313B2 (en)
JP2691558B2 (en) Print head
JPS60220527A (en) Mechanical amplifying mechanism
JPS61185834A (en) Latch type piezo-electric actuator
JPH04221646A (en) Wire dot printing head printing hammer
JPS61193867A (en) Printing hammer
JPS60222261A (en) Printing wire driver for printhead