JPH04131690A - Tunnel furnace - Google Patents

Tunnel furnace

Info

Publication number
JPH04131690A
JPH04131690A JP25157490A JP25157490A JPH04131690A JP H04131690 A JPH04131690 A JP H04131690A JP 25157490 A JP25157490 A JP 25157490A JP 25157490 A JP25157490 A JP 25157490A JP H04131690 A JPH04131690 A JP H04131690A
Authority
JP
Japan
Prior art keywords
burners
furnace
combustion gas
burner
hot air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25157490A
Other languages
Japanese (ja)
Other versions
JPH0587749B2 (en
Inventor
Satoshi Taniguchi
聡 谷口
Koji Yamada
浩治 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP25157490A priority Critical patent/JPH04131690A/en
Publication of JPH04131690A publication Critical patent/JPH04131690A/en
Publication of JPH0587749B2 publication Critical patent/JPH0587749B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Tunnel Furnaces (AREA)

Abstract

PURPOSE:To permit the efficient heating of products to be baked and the prevention of the generation of variabilities in baking by a method wherein combustion gas from both burners positioned so as to be opposed is collided against each other in a furnace to produce ascending hot air from the place of the collision. CONSTITUTION:Burners 19, provided in respective left and right furnace walls 17, 18, are opposed and, therefore, combustion gas from both burners 19 collides against each other energetically under the operating condition of the group of the burners 19 in a piping space between supporting columns 14 or a space below the products to be baked whereby ascending hot air is produced. In this case, the supplying amount of combustion air per hour with respect to a pair of burners 19 is equal to each other and the ratio of bores of the burners 19 is 5:5, for example, whereby the discharging speed of the combustion gas from the burners 19 is equal to each other substantially. Accordingly, the colliding point of combustion gas from both burners 19 is positioned at the center between both furnace walls 17, 18 substantially. The discharging speed of the combustion gas in the burner 19 provided on the left side furnace wall 17 becomes slower while the same in the burner 19, provided on the right side furnace wall 18, becomes faster.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、バーナー群の設置態様を改良したトンネル炉
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a tunnel furnace with an improved arrangement of burner groups.

(従来の技術) 従来、トンネル炉では、バーナー群は左右の炉壁に互い
違いになるように設置されていた。このため、第5図に
示すようにバーナー1から吐出される燃焼ガスは、矢印
で示すように反対側の炉壁2に衝突し、これに沿って上
昇し、天井部3を伝ってバーナー1側の炉92上部に流
れ、ここからその炉壁2に沿って下降するという動きを
していた。このように従来のトンネル炉は、熱風が台車
4上に載せられている被焼成物5の周囲を循環するよう
に流れるため、炉壁2を必要以上に加熱して被焼成物5
の加熱効率が悪いという欠点があった。
(Prior Art) Conventionally, in a tunnel furnace, burner groups were installed alternately on the left and right furnace walls. Therefore, as shown in FIG. 5, the combustion gas discharged from the burner 1 collides with the furnace wall 2 on the opposite side as shown by the arrow, rises along this wall, and travels along the ceiling 3 to the burner 1. It flowed to the upper part of the furnace 92 on the side, and from there it moved downward along the furnace wall 2. In this way, in the conventional tunnel furnace, the hot air flows in a circular manner around the object to be fired 5 placed on the trolley 4, so that the furnace wall 2 is heated more than necessary and the object to be fired is heated.
The disadvantage was that the heating efficiency was poor.

(発明が解決しようとする課題) ところで、いわゆる重窓の分野では、バーナーからの熱
風を炉内の下部にて衝突させ、ここから熱風の上昇流を
生じさせる加熱方式が実用化されている。この方式をト
ンネル炉にも採用すれば、炉内の中心側すなわち被焼成
物側から加熱できるようになるから、炉壁を無駄に加熱
することがなくなって加熱効率の向上が期待できる。
(Problems to be Solved by the Invention) By the way, in the field of so-called double windows, a heating method has been put into practical use in which hot air from a burner collides at the lower part of the furnace to generate an upward flow of hot air from there. If this method is adopted in a tunnel furnace, it will be possible to heat from the center side of the furnace, that is, from the side of the object to be fired, so the furnace wall will not be heated unnecessarily, and an improvement in heating efficiency can be expected.

しかし、単にバーナーからの燃焼ガスを炉内下部にて衝
突させて上昇熱風を生じさせるだけでは、炉内の温度分
布が未だ不均一で、焼成むらを生じてしまう。
However, simply causing the combustion gas from the burner to collide at the lower part of the furnace to generate rising hot air will still result in uneven temperature distribution within the furnace, resulting in uneven firing.

そこで、この場合、車窓で試みられているように、対向
する両バーナーへの燃焼用空気の供給量比を時間的に変
化させることにより、各バーナーから吐出される燃焼ガ
スの衝突点ひいては熱風の上昇点を時間的に左右に移動
させて炉内温度分布の均一化を図ることも考えられる。
Therefore, in this case, by changing the supply amount ratio of combustion air to both opposing burners over time, as is being attempted at the car window, the collision point of the combustion gas discharged from each burner, and the hot air It is also conceivable to try to make the temperature distribution in the furnace uniform by temporally moving the rising point to the left and right.

しかしながら、上述の方式は、車窓では有効であったが
、トンネル炉では燃焼ガスの衝突点を炉壁側に移動させ
るときに上昇熱風が円滑に生成されず、炉内温度分布を
十分に均一化できず、結局、焼成むらの発生を十分に防
止することができないという問題があった。
However, while the above method was effective for car windows, in tunnel furnaces, rising hot air is not generated smoothly when the collision point of combustion gas is moved to the furnace wall, and the temperature distribution inside the furnace is not sufficiently uniform. Consequently, there was a problem in that the occurrence of uneven firing could not be sufficiently prevented.

従って、本発明の目的は、対向位置する両バーナーから
の燃焼ガスを炉内で衝突させてここから上昇熱風を生成
させることにより炉壁ではなく被焼成物を効率良く加熱
でき、しかも焼成むらの発生を防止することができるト
ンネル炉を提供するにある。
Therefore, it is an object of the present invention to efficiently heat the object to be fired instead of the furnace wall by colliding the combustion gases from both burners located opposite each other in the furnace and generating rising hot air from this, and also to prevent uneven firing. The objective is to provide a tunnel furnace that can prevent this from occurring.

[発明の構成] (課題を解決するための手段) 本発明のトンネル炉は、バーナー群を左右の各炉壁に互
いに対向して複数のバーナー対を構成するように設け、
対をなす両バーナーから吐出される各燃焼ガスの衝突点
を被焼成物の下方に位置させ、且つ、各バーナー対の燃
焼ガスの衝突点を台車の移動方向に沿ってトンネル炉の
幅方向に分散するように設定したところに特徴を有する
[Structure of the Invention] (Means for Solving the Problems) The tunnel furnace of the present invention includes burner groups provided on each of the left and right furnace walls so as to face each other to form a plurality of burner pairs,
The collision point of each combustion gas discharged from both burners forming a pair is located below the object to be fired, and the collision point of the combustion gas of each burner pair is located in the width direction of the tunnel furnace along the moving direction of the cart. Its distinctive feature is that it is set to be dispersed.

また、この場合、台車の移動方向についての棚組の開口
率を少なくとも一部が30%以下となるように設定する
ことが好ましい。
Moreover, in this case, it is preferable to set the opening ratio of the shelf assembly in the moving direction of the cart so that at least a portion thereof is 30% or less.

(作用) 対をなす両バーナーから吐出される各燃焼ガスは台車の
棚組下方において衝突するから、ここから上昇熱風が立
上がり、棚組上の被焼成物が効率的に加熱される。また
、各燃焼ガスの衝突点は台車の移動方向に沿ってトンネ
ル炉の幅方向に分散するように設定されているから、台
車がトンネル炉内を順次移動して行くという事情下では
、各燃焼ガスの衝突点すなわち上昇熱風の生成点がトン
ネル炉の幅方向に時間的に移動しなくとも、焼成むらの
発生はない。
(Function) Since the combustion gases discharged from the pair of burners collide below the shelf assembly of the truck, rising hot air rises from there, and the material to be burned on the shelf assembly is efficiently heated. In addition, since the collision points of each combustion gas are set to be distributed in the width direction of the tunnel furnace along the moving direction of the cart, each combustion gas is Even if the point of gas collision, that is, the point of generation of rising hot air, does not move temporally in the width direction of the tunnel furnace, uneven firing will not occur.

ところで、本発明者らによる研究によれば、対向する両
バーナーへの空気の供給量を互いに異ならせることによ
って燃焼ガスの衝突点をトンネル炉の中央から幅方向に
ずらそうという試みが失敗した原因は、トンネル炉特有
の炉内風であることが判明した。すなわち、トンネル炉
では、冷却帯及び焼成帯において多量の空気が炉内に打
ち込まれており、この空気は、冷却帯、焼成帯から予熱
帯側に流れる。このように予熱帯側に向かって流れる風
の速度は、台車の移動方向についての棚組の開口率が従
来は50%以上もあったため、秒速4〜5m程度にも達
する。このため、対向する両バーナーのうち空気供給量
を少なくした方のバーナーから吐出された燃焼ガスは、
その運動量が急速に小さくなるため、炉内風によってそ
の下流側に曲げられる傾向を呈する。従って、両バーナ
ーから吐出された燃焼ガスの衝突状態が不安定になり、
結局、十分な上昇熱風が生成されないのである。
By the way, according to research conducted by the present inventors, the reason why an attempt to shift the collision point of combustion gas from the center of the tunnel furnace in the width direction by varying the amount of air supplied to both opposing burners failed. It turns out that this is the in-furnace wind that is unique to tunnel furnaces. That is, in a tunnel furnace, a large amount of air is forced into the furnace in the cooling zone and the firing zone, and this air flows from the cooling zone and the firing zone to the preheating zone side. The speed of the wind flowing toward the preheating zone reaches about 4 to 5 meters per second because the opening ratio of the shelf assembly in the direction of movement of the truck has conventionally been 50% or more. Therefore, of the two opposing burners, the combustion gas discharged from the burner with a smaller air supply amount is
Since its momentum rapidly decreases, it tends to be bent downstream by the wind inside the furnace. Therefore, the collision state of the combustion gas discharged from both burners becomes unstable,
In the end, not enough rising hot air is generated.

この点、棚組の開口率を少なくとも一部が30%以下と
なるように設定しておけば、燃焼ガスの吐出域において
炉内風の勢いが弱められ、両バーナーから吐出された燃
焼ガスの方向を過剰に曲げてしまうことがなくなる。こ
のため、燃焼ガスが正面から勢い良く衝突して十分な上
昇熱風が一層円滑に生成されるようになる。
In this regard, if the opening ratio of the shelf assembly is set so that at least part of the opening ratio is 30% or less, the force of the wind inside the furnace will be weakened in the combustion gas discharge area, and the combustion gas discharged from both burners will be reduced. This prevents the direction from being excessively bent. For this reason, the combustion gas collides head-on with force, and a sufficient amount of rising hot air is generated more smoothly.

(実施例) 以下本発明の一実施例を第1図ないし第3図を参照して
説明する。
(Embodiment) An embodiment of the present invention will be described below with reference to FIGS. 1 to 3.

第2図は台車11の移動方向から見た炉内の構造を示し
ており、台車11上に耐火物製の棚組12が構成され、
その棚組12上に例えばH形の匣鉢13内に収納して被
焼成品(図示せず)が搭載されている。
FIG. 2 shows the structure inside the furnace as seen from the moving direction of the trolley 11, in which a refractory shelf assembly 12 is constructed on the trolley 11.
On the shelf assembly 12, a product to be fired (not shown) is mounted, housed in, for example, an H-shaped sagger 13.

棚組12の構造は次の通りである。台車11上には偏平
形状の複数の支柱14が横並びに列をなし、且つ、1台
の台車11上に複数列の支柱14列が形成されている。
The structure of the shelf assembly 12 is as follows. A plurality of flat support columns 14 are arranged side by side on the truck 11, and a plurality of columns 14 are formed on one truck 11.

各支柱14列の上には横支持バー15が載せられ、これ
らの横支持バー15の上にはこれと直交する方向に、複
数の縦支持バー16が組み合わされている。従って、こ
の棚組12によれば、横支持バー15及び縦支持バー1
6の組み合わせ部分を通して炉内の熱風は上下に流れる
ことができ、また、各支柱14間を通しても熱風は前後
及び左右(台車の移動方向及びその直交方向)に流れる
ことができる。ここで本実施例では特に、1台の台車1
1上に構成された複数列の支柱14列のうちの一列につ
いては、台車11の移動方向についての棚組の開口率が
30%以下となるように設定している。
A horizontal support bar 15 is placed on each column of 14 columns, and a plurality of vertical support bars 16 are combined on top of these horizontal support bars 15 in a direction perpendicular thereto. Therefore, according to this shelf assembly 12, the horizontal support bar 15 and the vertical support bar 1
The hot air in the furnace can flow up and down through the combined parts 6, and the hot air can also flow back and forth and left and right (in the moving direction of the cart and in the orthogonal direction thereof) between the respective supports 14. Here, in this embodiment, in particular, one trolley 1
Regarding one row of the plurality of 14 rows of columns constructed on the rack 1, the opening ratio of the shelf assembly in the moving direction of the cart 11 is set to be 30% or less.

一方、トンネル炉を構成する左右の各炉壁17゜18に
は、第2図に示すように下部に複数のバーナー19を台
車11の移動方向に沿って間欠的に設けている(例えば
台車11の長さが約2mのときには、1m置きに1個ず
つ設置する)。これらのバーナー19群は複数のバーナ
ー19対を構成するように左右の各炉壁17.18に対
向位置しており、ここから吐出された燃焼ガスは棚組1
2内において、即ち被焼成品の下方において正面衝突す
るように指向軸を合わせである。また、左右の炉壁17
,18に対をなして設けた2つのバーナー19に対する
燃焼用空気の時間当たり供給量は互いに等しいが、バー
ナー19対によっては、燃焼ガスを噴出する開口の口径
比が相違する。即ち、¥S1図に模式的に示すように、
図中の手前側に位置する第1列目のバーナー19対につ
いては、炉壁17に設けたバーナー19の口径と炉壁1
8に設けたバーナー19の口径との比は例えば6:4で
、第2列目のバーナー19対については同口径比は5:
5で、第3列目のバーナー19対については同口径比は
4:6である。本実施例で各バーナー対19は、第1図
に示した順序で繰り返し口径比が変化するように設定さ
れている。
On the other hand, as shown in FIG. 2, a plurality of burners 19 are intermittently provided at the bottom of each of the left and right furnace walls 17 and 18 that constitute the tunnel furnace along the moving direction of the truck 11 (for example, when the truck 11 When the length is about 2m, install one at every 1m). These burner 19 groups are located opposite to each of the left and right furnace walls 17 and 18 so as to constitute a plurality of burner 19 pairs, and the combustion gas discharged from these burners is sent to the shelf assembly 1.
2, that is, the orientation axes are aligned so as to collide head-on below the product to be fired. In addition, the left and right furnace walls 17
, 18, the amount of combustion air supplied per hour to the two burners 19 provided in pairs is equal to each other, but the aperture ratio of the openings through which combustion gas is ejected differs depending on the pair of burners 19. That is, as schematically shown in Figure ¥S1,
Regarding the 19 pairs of burners in the first row located on the front side in the figure, the diameter of the burners 19 provided on the furnace wall 17 and the furnace wall 1
The ratio of the diameter of the burner 19 provided in the second row to the diameter of the burner 19 is, for example, 6:4, and the diameter ratio of the burner 19 pair in the second row is 5:
5, and the aperture ratio for the 19 pairs of burners in the third row is 4:6. In this embodiment, each burner pair 19 is set so that the aperture ratio changes repeatedly in the order shown in FIG.

上記構成によれば、左右の各炉壁17,18に設けた各
バーナー19が対向しているから、バーナー19群の運
転状態では両バーナー19からの燃焼ガスが支柱14の
配置空間すなわち被焼成物の下方において勢い良く正面
衝突し、上昇熱風が生成される。ここで、対をなす2つ
のバーナー19に対する燃焼用空気の時間当たり供給量
は互いに等しく、例えば第1図の手前から第2列目のバ
ーナー19対については、口径比が5:5であるから、
燃焼ガスの吐出速度は略等しい。従って、両バーナー1
9からの燃焼ガスの衝突点は同図に示すように両炉壁1
7,18間の略中夫に位置する。しかし、同図の手前か
ら第1列目のバーナー19対については、口径比が6:
4であるから、燃焼ガスの吐出速度は左側の炉壁17に
設けたバーナー19側が遅く、右側の炉壁18に設けた
バーナー19側が早くなる。従って、両燃焼ガスの運動
量の差によって、衝突点は同図に示すように炉壁17寄
りとなる。また、第3列目のバーナー19対については
、口径比が逆に4:6であって燃焼ガスの吐出速度は左
側のバーナー19が遅く、右側のバーナー19が早くな
るから、やはり両燃焼ガスの運動量の差によって、衝突
点は同図に示すように逆に炉壁18寄りとなる。以下、
バーナー19対が配置されている領域の全体にわたり、
両燃焼ガスの衝突点すなわち上昇熱風の生成点は台車1
1の移動方向に沿ってトンネル炉の幅方向に繰り返しず
れるように位置することになる(第3図に燃焼ガスの衝
突点をO印を付して表す)。
According to the above configuration, since the burners 19 provided on the left and right furnace walls 17 and 18 face each other, when the burner 19 group is in operation, the combustion gas from both the burners 19 flows into the space where the support 14 is arranged, i.e., the space to be fired. It collides head-on with force below the object, generating rising hot air. Here, the amount of combustion air supplied per hour to the two burners 19 forming a pair is equal to each other; for example, for the pair of burners 19 in the second row from the front in FIG. 1, the diameter ratio is 5:5. ,
The discharge speeds of the combustion gases are approximately equal. Therefore, both burners 1
As shown in the figure, the collision point of the combustion gas from No. 9 is on both furnace walls 1.
It is located roughly between 7 and 18. However, for the 19 pairs of burners in the first row from the front in the figure, the aperture ratio is 6:
4, the discharge speed of combustion gas is slower at the burner 19 provided on the left furnace wall 17 and faster at the burner 19 provided on the right furnace wall 18. Therefore, due to the difference in momentum between the two combustion gases, the collision point is closer to the furnace wall 17 as shown in the figure. Regarding the 19 pairs of burners in the third row, the aperture ratio is 4:6, and the combustion gas discharge speed is slower for the left burner 19 and faster for the right burner 19, so both combustion gases Due to the difference in momentum, the collision point becomes closer to the furnace wall 18, as shown in the figure. below,
Throughout the area where 19 pairs of burners are located,
The point of collision of both combustion gases, that is, the point of generation of rising hot air, is at truck 1.
They are positioned so as to be repeatedly shifted in the width direction of the tunnel furnace along the direction of movement of the combustion gas (the collision point of the combustion gas is indicated by an O mark in FIG. 3).

このように、燃焼ガスが炉壁に沿って流れず、被焼成物
はその下方から立ち上がる上昇熱風によって加熱される
ようになることは、炉壁を無駄に加熱せずに燃焼ガスの
熱量を被焼成物の加熱に有効利用できることを意味する
から、熱効率を向上させることができる。また、上述の
ように上昇熱風の生成点がトンネル炉の幅方向に繰り返
しずれるように位置しているから、台車11が炉内を順
次移動するという事情下では、被焼成物は均等に加熱さ
れることになり、これをむらなく焼成することができる
In this way, the combustion gas does not flow along the furnace wall, and the object to be fired is heated by the rising hot air rising from below, which allows the heating of the combustion gas to be absorbed without wasting heating of the furnace wall. This means that it can be effectively used to heat the fired product, so thermal efficiency can be improved. In addition, as mentioned above, since the point where the rising hot air is generated is repeatedly shifted in the width direction of the tunnel furnace, the objects to be fired are heated evenly under the circumstances where the cart 11 sequentially moves inside the furnace. This means that it can be fired evenly.

また、前述したようにトンネル炉内では予熱帯側に向か
って炉内風が流れるという事情があるが、本実施例では
台車11の移動方向についての棚組12の開口率は30
%以下となるように設定しているから、炉内風の勢いは
従来に比べて弱くなる(従来の開口率は約50%以上で
あった)。この結果、各バーナー19から吐出された燃
焼ガスが炉内風によってその下流側に曲げられてしまう
ことが少なくなり、対をなす両バーナー19からの燃焼
ガスは、両者の運動量の差が大きくとも、確実に正面か
ら衝突するようになる。これにて、燃焼ガスの衝突点す
なわち上昇熱風の生成点を炉内幅方向の広い範囲に安定
的に分散させることができ、被焼成物の均一加熱に寄与
することになる。
Further, as mentioned above, there is a situation in which the wind inside the tunnel furnace flows toward the preheating zone side, but in this embodiment, the opening ratio of the shelf assembly 12 in the direction of movement of the cart 11 is 30.
% or less, the force of the wind inside the furnace is weaker than in the past (the conventional opening ratio was about 50% or more). As a result, the combustion gas discharged from each burner 19 is less likely to be bent downstream by the furnace wind, and the combustion gas from both burners 19 forming a pair is , it will definitely cause a head-on collision. Thereby, the collision points of the combustion gas, that is, the generation points of the rising hot air, can be stably dispersed over a wide range in the width direction of the furnace, contributing to uniform heating of the object to be fired.

なお、上記実施例では、対をなす2つのバーナー19に
対する燃焼用空気の時間当たり供給量は互いに等しくシ
、両バーナー19の口径比を異ならせて燃焼ガス速度に
差を付け、もってその衝突点を炉内幅方向に分散させる
ようにした。これによれば低速側の燃焼ガスも十分な量
が確保されるから、たとえ炉内風が強くてもその影響を
受は難くなり、上昇熱風を安定的に生成させることに最
も好ましい。
In the above embodiment, the amount of combustion air supplied per hour to the two burners 19 in the pair is equal to each other, and the aperture ratios of the two burners 19 are made different to create a difference in combustion gas velocity, thereby reducing the collision point. is distributed in the width direction inside the furnace. According to this, a sufficient amount of combustion gas on the low-velocity side is ensured, so even if the wind in the furnace is strong, it is hardly affected by it, and this is most preferable for stably generating rising hot air.

しかし、上記実施例のように、台車の移動方向について
棚組の開口率を少なくとも一部が30%以下となるよう
に設定すれば、燃焼ガスの吐出域における炉内風の勢い
自体を従来に比べて抑えることができるから、燃焼ガス
の衝突点を炉内幅方向に分散させるに当たって、対向す
る両バーナーへの燃焼用空気の供給量比を異ならせる構
成としても、従来に比して安定的に上昇熱風を生成する
ことができる。
However, as in the above embodiment, if the opening ratio of the shelf assemblies is set to be at least 30% in the moving direction of the trolley, the force of the wind inside the furnace in the combustion gas discharge area can be reduced to the conventional level. Since the collision points of combustion gas can be dispersed in the width direction of the furnace, the ratio of the amount of combustion air supplied to the two opposing burners can be changed, making it more stable than before. It can generate hot air rising to the top.

また、燃焼ガスの衝突点すなわち上昇熱風の生成点の配
置は、第3図に示したものに限らず、例えば第4図に示
すようにジグザグ状としても良く、要するに炉内幅方向
に分散位置させて被焼成物の均一加熱が可能な態様とす
れば良いものである。
Furthermore, the arrangement of the collision points of combustion gas, that is, the points of generation of rising hot air, is not limited to that shown in FIG. 3, but may be arranged in a zigzag pattern as shown in FIG. It is preferable to use an embodiment in which uniform heating of the object to be fired is possible.

[発明の効果] 以上述べたように、本発明によれば、被焼成物は炉内下
部から立ち上がる上昇熱風によって加熱されるから、熱
風が炉壁に沿って流れていた従来のトンネル炉に比べて
熱効率を向上させることができ、しかも上昇熱風の生成
点が炉内幅方向に分散しているから被焼成物を均一加熱
することができる。さらに、台車の移動方向について棚
組の開口率を少なくとも一部が30%以下となるように
設定したときには、燃焼ガスの吐出域における炉内風の
勢いを抑えることができて上昇熱風の生成点を炉内幅方
向に一層安定的に分散させることができ、被焼成物の均
一加熱に一層寄与するという優れた効果を奏する。
[Effects of the Invention] As described above, according to the present invention, the object to be fired is heated by the rising hot air rising from the lower part of the furnace, which is more effective than the conventional tunnel furnace in which the hot air flows along the furnace wall. Thermal efficiency can be improved, and since the points at which the rising hot air is generated are dispersed in the width direction of the furnace, the object to be fired can be heated uniformly. Furthermore, when the opening ratio of the shelf assemblies is set so that at least part of the opening ratio is 30% or less in the moving direction of the cart, the momentum of the in-furnace wind in the combustion gas discharge area can be suppressed, and the generation point of the rising hot air can be suppressed. can be more stably dispersed in the width direction of the furnace, which has an excellent effect of contributing to more uniform heating of the object to be fired.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明の一実施例を示し、第1図
は一部破断して示すトンネル炉の斜視図、第2図はトン
ネル炉の縦断面図、第3図は燃焼ガスの衝突点を示すた
めのトンネル炉の横断面図である。第4図は本発明の異
なる実施例を示す第3図相当図、第5図は従来のトンネ
ル炉を示す縦断面図である。 図面中、11は台車、12は棚組、14は支柱、17.
18は炉壁、19はバーナーである。
1 to 3 show one embodiment of the present invention, FIG. 1 is a partially cutaway perspective view of a tunnel furnace, FIG. 2 is a vertical sectional view of the tunnel furnace, and FIG. 3 is a combustion gas FIG. FIG. 4 is a view corresponding to FIG. 3 showing a different embodiment of the present invention, and FIG. 5 is a longitudinal sectional view showing a conventional tunnel furnace. In the drawing, 11 is a truck, 12 is a shelf assembly, 14 is a column, 17.
18 is a furnace wall, and 19 is a burner.

Claims (1)

【特許請求の範囲】 1、被焼成物を載置するための耐火物製の棚組を搭載し
た台車が内部を通り、炉壁に設けたバーナー群から炉内
に燃焼ガスを噴出させる構成のものにおいて、前記バー
ナー群は左右の各炉壁に互いに対向して複数のバーナー
対を構成するように設けられ、対をなす両バーナーから
吐出される各燃焼ガスの衝突点は前記被焼成物の下方に
位置し且つ各バーナー対の燃焼ガスの衝突点が前記台車
の移動方向に沿ってトンネル炉の幅方向に分散するよう
に設定されていることを特徴とするトンネル炉。 2、台車の移動方向について棚組の開口率は少なくとも
一部が30%以下に設定されていることを特徴とする請
求項1記載のトンネル炉。
[Claims] 1. A trolley carrying a refractory shelf assembly for placing objects to be fired passes through the furnace, and combustion gas is spouted into the furnace from a group of burners provided on the furnace wall. In the burner group, the burner groups are provided on the left and right furnace walls to face each other to form a plurality of burner pairs, and the collision point of each combustion gas discharged from the pair of burners is at the point of collision of the combustion gases discharged from the burners of the pair. 1. A tunnel furnace, characterized in that the tunnel furnace is located at a lower position and is set so that collision points of combustion gas of each pair of burners are distributed in the width direction of the tunnel furnace along the moving direction of the truck. 2. The tunnel furnace according to claim 1, wherein at least a portion of the shelf assembly has an opening ratio of 30% or less in the moving direction of the truck.
JP25157490A 1990-09-20 1990-09-20 Tunnel furnace Granted JPH04131690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25157490A JPH04131690A (en) 1990-09-20 1990-09-20 Tunnel furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25157490A JPH04131690A (en) 1990-09-20 1990-09-20 Tunnel furnace

Publications (2)

Publication Number Publication Date
JPH04131690A true JPH04131690A (en) 1992-05-06
JPH0587749B2 JPH0587749B2 (en) 1993-12-17

Family

ID=17224843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25157490A Granted JPH04131690A (en) 1990-09-20 1990-09-20 Tunnel furnace

Country Status (1)

Country Link
JP (1) JPH04131690A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029685A (en) * 1973-03-29 1975-03-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029685A (en) * 1973-03-29 1975-03-25

Also Published As

Publication number Publication date
JPH0587749B2 (en) 1993-12-17

Similar Documents

Publication Publication Date Title
KR101837832B1 (en) Selective oxy-fuel boost burner system and method for a regenerative furnace
CA2358434C (en) Continuous sintering furnace and use thereof
EP3098512A1 (en) Selective oxy-fuel burner and method for a rotary furnace using the burner
US3770408A (en) Annealing lehr
JPH04131690A (en) Tunnel furnace
US3485900A (en) Kiln operation
JP4620327B2 (en) Apparatus and combined spray unit for spraying fluid onto at least the surface of a thin element
RU2388980C1 (en) Heating furnace with improved zone of unloading
US6495092B1 (en) Combustion apparatus and melting furnace for nonferrous metals
US4504219A (en) Heating apparatus for circulatory-firing open baking furnaces and process for use of the apparatus
JPH0694368A (en) Heat accumulation type melting furnace and operating method thereof
JP4670715B2 (en) Sorting method of objects to be heated in continuous heating furnace group
RU2312907C1 (en) Regenerative heating pit
JPH04131691A (en) Tunnel furnace and baking method in tunnel furnace
JPH0228789B2 (en) KINNETSUSHOSEIRO
JPH11304367A (en) Regenerative burner in ceramic kiln
JPS6222366B2 (en)
JP3696351B2 (en) Regenerative burner
SU1037035A1 (en) Continuous furnace
RU2101638C1 (en) Open-hearth furnace regenerator
JPH04278180A (en) Tunnel furnace
SU759824A1 (en) Gas distributing arrangement for fluidised-bed furnace
JPS63267881A (en) Roller hearth kiln
AU2020404402A1 (en) Method and device for heating a furnace
JP2001049353A (en) Continuous annealing furnace