JPH04131385A - Method for reinforcing aluminum parts - Google Patents

Method for reinforcing aluminum parts

Info

Publication number
JPH04131385A
JPH04131385A JP2251739A JP25173990A JPH04131385A JP H04131385 A JPH04131385 A JP H04131385A JP 2251739 A JP2251739 A JP 2251739A JP 25173990 A JP25173990 A JP 25173990A JP H04131385 A JPH04131385 A JP H04131385A
Authority
JP
Japan
Prior art keywords
aluminum
layer
powder
reinforcing material
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2251739A
Other languages
Japanese (ja)
Inventor
Tadashi Kamimura
正 上村
Akira Tsujimura
辻村 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2251739A priority Critical patent/JPH04131385A/en
Publication of JPH04131385A publication Critical patent/JPH04131385A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To provide the aluminum parts which are decreased in the amt. of the intermetallic compds. to be formed, are improved in mechanical properties, such as brittleness and hardness, and have the toughness to thermal cracking by increasing the Vf value of a reinforcing material to aluminum and preventing the segregation of the reinforcing material to the aluminum. CONSTITUTION:The free control to increase or decrease the Vf value of the reinforcing material 7 as compared with the Vf value of the conventional materials is possible if the reinforcing material 7 which does not react with the aluminum, for example, the oxide, nitride and carbide, such as, for example, Al2O3, Si3N4 and SiC, are coated with aluminum powder 9 and this coated powder is used as a sintering raw material. The amt. of the metallic compds. to be formed at the boundary between the 1st layer 5 and the 2nd layer 12 is decreased by specifying the VF value of the 1st layer 5 to >=30%. The reinforcing material 7 is dispersed without segregation and the stable 1st layer 5 is formed if the 1st layer 5 is formed by remelting this sintered material 4 with a high-density energy beam. Then, the thermal cracking of the reinforcing part 2 is prevented by effectively utilizing the buffer effect of the 1st layer 5 to the 2nd layer 12 and the thermal cracking of the aluminum parts 1 is prevented.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は、シリンダヘッドやピストンなどのアルミニウ
ム部品の強化方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for strengthening aluminum parts such as cylinder heads and pistons.

[従来の技術] スチール等の一般材料と比較して軽量かつ冷却性の良い
アルミニウムは、一般機械部品、構造部材の材料として
広く背反し、内燃機関においてもシリンダヘッドやピス
トンなどに用いられている。しかし熱負荷や機械的負荷
の厳しい部分に対応するため、また近年の高出力化、タ
ーボ化の傾向に対応していくために、アルミニウム部品
にはより高い耐久性が求められ、その局部的な強化方法
の研究が行われている。燃焼ガスエネルギに直接晒され
高温化されてしまうシリンダヘッドやピストンでは、特
に燃焼面に起こる熱亀裂の改善を求められている。熱亀
裂は、熱応力に対して断面の少ない部分、すなわち形状
的に肉厚の薄い部分に集中的に発生する。例えばシリン
ダヘッドにおける熱亀裂は、吸気・排気ボート間の隔壁
及び吸気・排気ボートのそれぞれとホットプラグ取付穴
または燃料噴射ノズル取付穴間の隔壁に発生しやすく、
ピストンでは、キャビティ上部を縁取るスキッシュリッ
プに発生しやすい0局部的な強化方法としては例えば、
アルミ合金鋳物製シリンダヘッドの負荷部分に、Fe、
Ni、Co、■、Zr、Ceのうち1種以上を高密度エ
ネルギによって再溶融・合金化し、軽量で熱伝導性等に
優れる等のアルミ合金鋳物の特質を損ねることなく、ア
ルミ合金の特定部位を強化する提案(特開昭62−38
786号公報)かなされている。
[Prior art] Aluminum is lighter and has better cooling properties than general materials such as steel, so it is widely used as a material for general mechanical parts and structural members, and is also used for cylinder heads and pistons in internal combustion engines. . However, in order to handle areas with severe thermal and mechanical loads, as well as to respond to the recent trend toward higher output and turbos, aluminum parts are required to have higher durability. Research on strengthening methods is underway. In cylinder heads and pistons that are directly exposed to combustion gas energy and heated to high temperatures, there is a particular need to improve thermal cracks that occur on the combustion surfaces. Thermal cracks occur intensively in areas where the cross section is small in response to thermal stress, that is, in areas where the wall thickness is thin. For example, thermal cracks in cylinder heads tend to occur in the partition between the intake and exhaust boats and between each of the intake and exhaust boats and the hot plug mounting hole or fuel injection nozzle mounting hole.
For pistons, local strengthening methods that tend to occur on the squish lip that borders the upper part of the cavity include:
Fe,
By remelting and alloying one or more of Ni, Co, ■, Zr, and Ce using high-density energy, specific parts of the aluminum alloy can be remelted and alloyed using high-density energy, without impairing the characteristics of aluminum alloy castings such as light weight and excellent thermal conductivity. Proposal to strengthen the
No. 786).

しかし、この提案による強化方法は、アルミ母材に耐熱
金属を直接再溶融させて合金化するものであり、脆い(
伸びがきわめて少ない)、硬い(被剛性の低下)などの
性質を持つ金属開化合物が多く生成され易いという問題
がある。なお、合金化と同時に金属間化合物を均一に分
散させる方法も研究されているが、金属間化合物の析出
量を制卸することは技術的に難しく実用に供されていな
い。
However, the proposed strengthening method involves directly remelting and alloying the heat-resistant metal into the aluminum base material, which is brittle (
There is a problem in that a large amount of metal open compounds with properties such as extremely low elongation) and hardness (reduced rigidity) are likely to be generated. A method of uniformly dispersing intermetallic compounds at the same time as alloying is also being researched, but it is technically difficult to control the amount of intermetallic compounds precipitated, but this method has not been put to practical use.

そこで本出願人は、先に、アルミ母材にA1□0.複合
材を再溶融一体化した後、この複合材上に、Co、Ni
、Ti、Mo、Zrなどの耐熱金属を単独もしくは複合
状態で再溶融肉盛り溶接して、金属間化合物の生成量を
減少し、同時にA J 203を積極的に緩衝材として
利用して、脆さ、硬さなどの機械的性質を改善した「内
燃機関部品の強化方法」 (特願平1−221558号
)を提案している。
Therefore, the applicant first applied A1□0. After remelting and integrating the composite material, Co, Ni
, Ti, Mo, Zr, and other heat-resistant metals are re-melted and built-up welded singly or in combination to reduce the amount of intermetallic compounds produced, and at the same time actively utilize AJ 203 as a buffer material to reduce brittleness. We have proposed a ``Method for Strengthening Internal Combustion Engine Parts'' (Japanese Patent Application No. 1-221558) that improves mechanical properties such as strength and hardness.

[発明が解決しようとする課題] ところで、l□0.複合材は、Al2O,及びアルミニ
ウム粉体の配合材料を焼結して得られるものであるが、
配合段階においてAlxOsを均一に分散させることが
離しいため、再溶融時に、AJ20mが偏析する部位が
生じて熱収縮に対する耐亀裂性がばらついてしまうとい
う問題があった。特に、AjxOsのVf値(体積比)
を大きくしたい場合でもVf値が30%を越えると偏析
が大きすぎてもはや使用には供し得ない。
[Problem to be solved by the invention] By the way, l□0. The composite material is obtained by sintering a mixture of Al2O and aluminum powder,
Since it is difficult to uniformly disperse AlxOs in the blending stage, there is a problem in that during remelting, AJ20m segregates in some areas, resulting in variations in crack resistance against heat shrinkage. In particular, the Vf value (volume ratio) of AjxOs
Even if it is desired to increase the Vf value, if the Vf value exceeds 30%, segregation will be too large and it can no longer be used.

[課題を解決するための手段] 上記課題を解決することを目的として本発明は、アルミ
ニウムと非反応な強化材の表面をアルミニウム粉体で被
覆して焼結材を成形し、この焼結材をアルミニウム部品
の表面に融接して第1層を形成した後、この第1層の表
面に耐熱金属を融接して第2層を形成したものである。
[Means for Solving the Problems] In order to solve the above problems, the present invention forms a sintered material by coating the surface of a reinforcing material that does not react with aluminum with aluminum powder, and forms a sintered material. A first layer is formed by fusion welding the metal to the surface of an aluminum component, and then a second layer is formed by fusion welding a heat-resistant metal to the surface of the first layer.

[作用コ 本発明では、アルミニウムと反応することのない強化材
、例えばAN 20v 、Si3N4 。
[Operation] In the present invention, reinforcing materials that do not react with aluminum, such as AN 20v, Si3N4.

SiCなどの酸化物、窒化物、炭化物を、アルミニウム
粉体で被覆し、この被覆粉体を焼結原料とする。つまり
、本発明では焼結前の原料段階においてアルミニウムと
強化材との体積比を調節し、またアルミニウムに対して
強化材を均一に分散させた焼結材を得る。そしてこの焼
結材をアルミニウム部品の強化部分表面に強化材を偏析
なく融接して第1層を形成する。また第1層の表面に第
2層を形成しても強化材の体積比の増加により金属間化
合物の生成量が減少し、第1層のもつ緩衝作用を有効に
生かして融接時の熱収縮による熱亀裂の発生を防止する
ことができる。
An oxide, nitride, or carbide such as SiC is coated with aluminum powder, and this coated powder is used as a sintering raw material. That is, in the present invention, the volume ratio of aluminum and reinforcing material is adjusted in the raw material stage before sintering, and a sintered material is obtained in which the reinforcing material is uniformly dispersed in the aluminum. Then, this sintered material is fused to the surface of the reinforced portion of the aluminum component without segregation to form a first layer. Furthermore, even if a second layer is formed on the surface of the first layer, the amount of intermetallic compounds generated will decrease due to an increase in the volume ratio of the reinforcing material, and the buffering effect of the first layer will be effectively used to reduce the heat generated during fusion welding. It is possible to prevent thermal cracks from occurring due to shrinkage.

し実施例] 以下、本発明の一実施例を添付図面に基づいて詳述する
Embodiment] Hereinafter, an embodiment of the present invention will be described in detail based on the accompanying drawings.

第1図において、1はシリンダ、ピストンなどのアルミ
ニウム部品で、その高負荷部分、機械的負荷を受ける部
分を局部的に強化するなめに、先ず第1工程としてアル
ミニウム部品lの指定された強化部位、実施例ではアル
ミニウム部品1の強化部位2に形成した凹部3上に焼結
材4を配!し、これをレーザ、電子ビーム、TIGなど
の高密度エネルギによって再溶融し、アルミニウム部品
の凹部3に第1層5を形成する。焼結材4は、カプセル
粉体を通電焼結法または通常の雰囲気焼結により焼結し
て形成する0通電焼結法は、シリンダ状の筒体に上型、
下型の少なくともいずれか一方を加圧方向に移動自在に
設け、これら型に極性の異なるxiを取付けて通電によ
り焼結する焼結法である。カプセル粉体は、第3図又は
第4図に示す如くアルミニウムと反応することのない強
化材7として例えばAJ 20x 、Six Ni 、
SiCなどの酸化物、窒化物、炭化物の硬質粉体7a又
はこれの硬質材料から成る長繊維(または短繊維)8を
、アルミニウム粉体9でカプセル状に被覆して形成され
るもので、硬質粉体7aは、AJ 20j、Sis N
i 、SiC等を、アルミニウム粉体9は、アルミニウ
ム(AC2B。
In Fig. 1, 1 is an aluminum part such as a cylinder or a piston, and in order to locally strengthen the high-load parts or parts that receive mechanical load, the first step is to strengthen the specified reinforcement parts of the aluminum part 1. In the example, the sintered material 4 is placed on the recess 3 formed in the reinforced region 2 of the aluminum component 1! This is then remelted using high-density energy such as a laser, an electron beam, or TIG to form the first layer 5 in the recess 3 of the aluminum component. The sintered material 4 is formed by sintering capsule powder by current sintering or normal atmosphere sintering.
This is a sintering method in which at least one of the lower molds is provided movably in the pressing direction, xi having different polarities are attached to these molds, and sintering is performed by applying electricity. As shown in FIG. 3 or 4, the capsule powder is made of reinforcing material 7 that does not react with aluminum, such as AJ 20x, Six Ni,
It is formed by coating hard powder 7a of oxide, nitride, or carbide such as SiC, or long fibers (or short fibers) 8 made of this hard material with aluminum powder 9 in a capsule shape. Powder 7a is AJ 20j, Sis N
i, SiC, etc., and the aluminum powder 9 is aluminum (AC2B).

AC8等・・・JIS)を、それぞれ粉砕原料とし、微
粉体粉砕機によりそれぞれ粉砕して形成される。
They are formed by using AC8, etc. (JIS) as the pulverizing raw materials and pulverizing them with a fine powder pulverizer.

以下1強化材7をAj 2osに特定して説明する。Hereinafter, the first reinforcing material 7 will be specifically explained as Aj2os.

Aj 20.は、その粒径が50〜100μmの粒径ま
で、アルミニウムは、A1□03粉体7aのおよそ1/
10程度の1〜10μmの粒径まで粉砕する。
Aj 20. Up to a particle size of 50 to 100 μm, aluminum is approximately 1/1/2 of the A1□03 powder 7a.
Grind to a particle size of about 1 to 10 μm.

この後、AJ x O3粉体7aのVf値に応じて、A
 i 205粉体7aとアルミニウム粉体9とを配合し
これを攪拌して静電付着によりAfJ20y粉体7aの
表面にアルミニウム粉体9を付着させてカプセル粉体1
0を形成する。そして、この後、撹拌機を用いAJ20
.粉体7aの表面にアルミニウム粉体9を固定する。攪
拌機としては、ハウジング内に回転翼を有し、ハウジン
グ内面に沿ってカプセル粉体10を遠心転勤させるよう
に構成したものを用いる(例えばハイブリダイゼーショ
ン装置・・・奈良機械)。すなわち撹拌機によってカプ
セル粉体10を1000〜7000r p mの範囲で
遠心転勤させることによりA j 203粉体7aとア
ルミニウム粉体9の接合面に適度な摩擦熱を発生させる
と同時に、衝撃力によって、アルミニウム粉体9をAJ
203粉体7aの表面に対して面方向に沿うように引伸
ばす、この摩擦熱及び衝撃打撃力によってA1□0.粉
体7aの表面にアルミニウム粉体9か引伸ばされて固定
され焼結材料として完全な形態のカプセル粉体10が得
られる。
After this, according to the Vf value of AJ x O3 powder 7a,
i 205 powder 7a and aluminum powder 9 are mixed and stirred to adhere aluminum powder 9 to the surface of AfJ20y powder 7a by electrostatic adhesion to form capsule powder 1.
form 0. After this, using a stirrer, AJ20
.. Aluminum powder 9 is fixed on the surface of powder 7a. As the stirrer, a stirrer is used that has rotary blades inside the housing and is configured to centrifugally transfer the capsule powder 10 along the inner surface of the housing (for example, a hybridization device, manufactured by Nara Kikai). That is, by centrifugally transferring the capsule powder 10 in the range of 1000 to 7000 rpm using a stirrer, moderate frictional heat is generated at the joint surface of the A j 203 powder 7a and the aluminum powder 9, and at the same time, the impact force , aluminum powder 9 is AJ
A1□0. The aluminum powder 9 is stretched and fixed on the surface of the powder 7a to obtain a capsule powder 10 in a perfect form as a sintered material.

AJ 20s長繊維(または短縁1ii)8のカプセル
化も、A J 203粉体7aのカプセル化と同様に攪
拌機を用いて形成する。この焼結材4を予めアルミニウ
ム部品1に形成した凹部3に充填してこれに高密度エネ
ルギを照射して融接しアルミニウム部品1上に第1層5
を形成する。第2工程として第2図に示すように、上記
第1層5上にCo、Ni、Ti、Mo、Zrなどの耐熱
金属11を単独もしくは複合で再溶融肉盛りして第2層
を形成する。なお、耐熱金属11は粉体又は清秋にされ
ている。このit熱金属11を上記第1層5上に形成さ
れた凹部に充填し、PTA (プラズマ・タングステン
・アーク)、レーザ、電子ビーム、TIGなとの高密度
エネルギを利用して再溶融肉盛り(盛り金)し、第2層
12を形成する。
The encapsulation of the AJ 20s long fibers (or short edges 1ii) 8 is also formed using a stirrer, similar to the encapsulation of the AJ 203 powder 7a. This sintered material 4 is filled into the recess 3 formed in the aluminum part 1 in advance, and fused by irradiating it with high-density energy to form a first layer 5 on the aluminum part 1.
form. As a second step, as shown in FIG. 2, heat-resistant metals 11 such as Co, Ni, Ti, Mo, and Zr are re-melted and built up on the first layer 5, either alone or in combination, to form a second layer. . Incidentally, the heat-resistant metal 11 is made of powder or solid material. This hot metal 11 is filled into the recess formed on the first layer 5, and re-melted overlay using high-density energy such as PTA (plasma tungsten arc), laser, electron beam, or TIG. (filling) to form the second layer 12.

このようにアルミニウムと反応することのない強化材7
、例えばAJ 20s 、 Sii N4 。
Reinforcement material 7 that does not react with aluminum in this way
, eg AJ 20s, Sii N4.

SiCなどの酸化物、窒化物、炭化物を、アルミニウム
粉体9で被覆し、この被覆粉体を焼結原料とすると、従
来に対して強化材7のVf値の増減調節が自在となり、
第1層5のvf値を30%以上として第1層5と第2層
12との界面の金属化合物の生成量の減少が可能となり
、そしてこの焼結材4を高密度エネルギビームで再溶融
して第1層5を形成すれば、アルミニウムに対して強化
材7が偏析なく分散した安定な第1層5が形成されるよ
うになる。従って第2層12に対する第1層5の緩衝作
用を有効に生がして強化部位2の熱亀裂を阻止し、アル
ミニウム部品1の熱亀裂を防止することが可能となる。
By coating an oxide, nitride, or carbide such as SiC with aluminum powder 9 and using this coated powder as a sintering raw material, the Vf value of the reinforcing material 7 can be increased or decreased more freely than before.
By setting the vf value of the first layer 5 to 30% or more, it is possible to reduce the amount of metal compounds generated at the interface between the first layer 5 and the second layer 12, and this sintered material 4 is remelted with a high-density energy beam. By forming the first layer 5 in this manner, a stable first layer 5 in which the reinforcing material 7 is dispersed without segregation in aluminum can be formed. Therefore, it is possible to effectively utilize the buffering effect of the first layer 5 against the second layer 12 to prevent thermal cracking of the reinforced portion 2, thereby preventing thermal cracking of the aluminum component 1.

本実施例によれば次のような効果がある。According to this embodiment, the following effects are achieved.

■アルミニウムと非反応の強化材7(粉体もしくは短繊
維又は長繊維)を、アルミニウム粉体9で被覆して焼結
材4として提供できる。
(2) A reinforcing material 7 (powder, short fibers, or long fibers) that does not react with aluminum can be coated with aluminum powder 9 to provide the sintered material 4.

■焼結材4の原料段階においてアルミニウム粉体9と強
化材7との体積比の調節を完了できる。
(2) Adjustment of the volume ratio of the aluminum powder 9 and the reinforcing material 7 can be completed at the raw material stage of the sintered material 4.

■第1層5に強化材7を均一に分散させてその偏析を防
止できる。
(2) The reinforcing material 7 can be uniformly dispersed in the first layer 5 to prevent its segregation.

■第1層5のvf値を3o%以上として第1層5と第2
層12との界面の金属化合物の生成量を減少できる。
■When the vf value of the first layer 5 is 3o% or more, the first layer 5 and the second layer
The amount of metal compounds produced at the interface with layer 12 can be reduced.

■第2層12のもつば衝作用を有効に生がして第1層5
の熱亀裂の発生を防止できる。
■The second layer 12 effectively utilizes the brim impact effect and the first layer 5
can prevent the occurrence of thermal cracks.

[発明の効果] 以上要するに本発明によれば、アルミニウムに対する強
化材のVf値を大きくでき、アルミニウムに対する強化
材の偏析を阻止できるので、金属間化合物生成量を減少
させて脆い、硬いなどの機械的性質を改善し、熱亀裂の
発生を防止したアルミニウム部品を提供することができ
るという優れた効果を発揮する。
[Effects of the Invention] In summary, according to the present invention, it is possible to increase the Vf value of the reinforcing material with respect to aluminum, and to prevent segregation of the reinforcing material with respect to aluminum, thereby reducing the amount of intermetallic compounds produced and improving the strength of brittle and hard machines. This has the excellent effect of providing aluminum parts with improved thermal properties and prevention of thermal cracking.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明のアルミニウム部品の強化工
程を示す断面図、第3図及び第4図はカプセル粉体を示
す図である。 図中、1はアルミニウム部品、4は焼結材、5は第1層
、7は強化材、9はアルミニウム粉体、11は耐熱金属
、12は第2層である。 特許出願人  いすゾ自動車株式会社 代理人弁理士  絹  谷  信  雄第2図
FIGS. 1 and 2 are cross-sectional views showing the reinforcing process of aluminum parts of the present invention, and FIGS. 3 and 4 are views showing capsule powder. In the figure, 1 is an aluminum part, 4 is a sintered material, 5 is a first layer, 7 is a reinforcing material, 9 is an aluminum powder, 11 is a heat-resistant metal, and 12 is a second layer. Patent Applicant: Isuzo Jidosha Co., Ltd. Representative Patent Attorney: Nobuo Kinutani Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1.アルミニウムと非反応な強化材の表面をアルミニウ
ム粉体で被覆して焼結材を成形し、該焼結材をアルミニ
ウム部品の表面に融接して第1層を形成した後、該第1
層の表面に耐熱金属を融接して第2層を形成したことを
特徴とするアルミニウム部品の強化方法。
1. A sintered material is formed by coating the surface of a reinforcing material that does not react with aluminum with aluminum powder, and the sintered material is fused to the surface of an aluminum component to form a first layer.
A method for strengthening aluminum parts, characterized in that a second layer is formed by fusion welding a heat-resistant metal to the surface of the layer.
JP2251739A 1990-09-25 1990-09-25 Method for reinforcing aluminum parts Pending JPH04131385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2251739A JPH04131385A (en) 1990-09-25 1990-09-25 Method for reinforcing aluminum parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2251739A JPH04131385A (en) 1990-09-25 1990-09-25 Method for reinforcing aluminum parts

Publications (1)

Publication Number Publication Date
JPH04131385A true JPH04131385A (en) 1992-05-06

Family

ID=17227217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2251739A Pending JPH04131385A (en) 1990-09-25 1990-09-25 Method for reinforcing aluminum parts

Country Status (1)

Country Link
JP (1) JPH04131385A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105886844A (en) * 2016-04-15 2016-08-24 内蒙古五二特种材料工程技术研究中心 Method for preparing high-volume-fraction SiCp/Al composite through remelting and air pressure filtration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105886844A (en) * 2016-04-15 2016-08-24 内蒙古五二特种材料工程技术研究中心 Method for preparing high-volume-fraction SiCp/Al composite through remelting and air pressure filtration

Similar Documents

Publication Publication Date Title
CN101160417B (en) Method of preparing metal matrix composite and coating layer and bulk prepared thereby
JP3350058B2 (en) Movable wall member in the form of an exhaust valve spindle or piston of an internal combustion engine
JPS58215291A (en) Aluminum base material with cured padding layer
JP2006516313A (en) Valve seat and method for manufacturing the valve seat
CN113084457B (en) Metallographic strengthening manufacturing method of piston
US20150226150A1 (en) Engine piston and a process for making an engine piston
JPH0835027A (en) Copper alloy excellent in high temperature wear resistance
JPH04131385A (en) Method for reinforcing aluminum parts
US6397464B1 (en) Method for producing a valve seat
JP2920004B2 (en) Cast-in composite of ceramics and metal
US6507999B1 (en) Method of manufacturing internal combustion engine pistons
JPH1082345A (en) Piston for internal combustion engine and its manufacture
JP2613599B2 (en) Piston and method of manufacturing the same
WO2001023629A1 (en) Preliminarily formed article and formed article and parts for internal-combustion engine
EP1163438A1 (en) Method for manufacturing internal combustion engine pistons
JPH09317413A (en) Joining type valve seat
JPH06299276A (en) Ti-al alloy parts
JPH0386387A (en) Method for strengthening internal combustion engine parts
JP2796583B2 (en) Overlay welding method of overlay material to engine valve
JP2555750B2 (en) High toughness FeAl intermetallic compound material
JP2940067B2 (en) Aluminum sintered body
JPS59100263A (en) Plasma-sprayed piston ring
JPH0227149A (en) Piston made of al alloy
JP2001041100A (en) Piston for internal combustion engine and manufacture thereof
US11427889B2 (en) Copper alloy for engine valve seats manufactured by laser cladding