JPH04131318A - Skid button for steel heating furnace - Google Patents

Skid button for steel heating furnace

Info

Publication number
JPH04131318A
JPH04131318A JP25309090A JP25309090A JPH04131318A JP H04131318 A JPH04131318 A JP H04131318A JP 25309090 A JP25309090 A JP 25309090A JP 25309090 A JP25309090 A JP 25309090A JP H04131318 A JPH04131318 A JP H04131318A
Authority
JP
Japan
Prior art keywords
block
upper block
top surface
skid
lower block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25309090A
Other languages
Japanese (ja)
Other versions
JP2715181B2 (en
Inventor
Yoshiaki Yamagami
山上 喜昭
Takeshi Shinozaki
斌 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2253090A priority Critical patent/JP2715181B2/en
Publication of JPH04131318A publication Critical patent/JPH04131318A/en
Application granted granted Critical
Publication of JP2715181B2 publication Critical patent/JP2715181B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a skid button having excellent high temp. strength, etc., and being possible to reduce skid mark on a steel to be heated by constituting the skid button of a heat resistant alloy-made lower block having annular projection and a high m.p. Cr-Fe alloy sintered body-made upper block having sloping surface as combined face. CONSTITUTION:The skid button 10 for heating the steel is constituted of the upper block 20 making loading surface of top surface and the lower block 30 fixing to support this. The lower block 30 is made of heat resistant alloy block having annular projection 31 of inclined top surface 32 at 10-40 deg. angle in the diameter direction and the upper block 20 is the Cr-Fe alloy sintered block having 70-90wt.% Cr content and >=1600 deg.C m.p. and this lower face peripheral edge 21 has sloping surface of inclined angle corresponding to the top surface 32 of annular projection 31 in the lower block 30. Further, the piling face of the sloping surface of the lower face peripheral edge 21 in the upper block 20 and the top surface 32 of annular projection 31 in the lower block 30 is made to the combined face and joined through a joining layer containing oxide of transition metal as a main material, and the piling area is made to be 40-60% of the top loading surface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鋼材加熱炉内の被鋼材担持部材であるスキッ
ドボタンに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a skid button that is a member for supporting a steel workpiece in a steel heating furnace.

〔従来の技術〕[Conventional technology]

加熱炉内の被加熱鋼材移送手段であるスキッドビームは
、スキッドパイプ(炭素鋼管等)の上面に、多数のスキ
ントポタンが、管軸方向に一定の間隔をおいて固定され
た構造を有している。第4図において、(P)はスキン
ドパイブ、(10’)はスキッドボタンであり、スキッ
ドボタン(10′)は溶接(W)によりパイプ(P)の
頂部に固定されている。スキッドボタン(10’)は、
ニッケル・クロム合金鋼(SC822等)、CO基合金
等からなる円柱状ないし円錐台状ブロックであり、その
頂面に被加熱鋼材(S)が担持される。(50)は不定
形耐火物層であり、炉内高温酸化性雰囲気の直接々触を
遮断するためにスキッドバイブ(P)の周面およびスキ
ッドボタン(10”)の側面に塗設されている。
A skid beam, which is a means of transferring heated steel materials in a heating furnace, has a structure in which a large number of skin topots are fixed to the top surface of a skid pipe (carbon steel pipe, etc.) at regular intervals in the pipe axis direction. . In FIG. 4, (P) is a skind pipe, (10') is a skid button, and the skid button (10') is fixed to the top of the pipe (P) by welding (W). The skid button (10') is
It is a cylindrical or truncated conical block made of nickel-chromium alloy steel (SC822, etc.), CO-based alloy, etc., and the heated steel material (S) is supported on its top surface. (50) is a monolithic refractory layer, which is coated on the circumference of the skid vibe (P) and the side of the skid button (10") to block direct contact with the high-temperature oxidizing atmosphere inside the furnace. .

スキッドパイプ(P)の中空孔は冷却水流送路であり、
炉内高温酸化性雰囲気によるスキッドパイプ(P)およ
びスキッドボタン(10’)の強度低下や酸化損傷を、
冷却水の強制冷却作用により抑制・緩和するようにして
いる。
The hollow hole of the skid pipe (P) is a cooling water flow path,
The strength reduction and oxidation damage of the skid pipe (P) and skid button (10') due to the high temperature oxidizing atmosphere inside the furnace are
This is suppressed and alleviated by the forced cooling action of cooling water.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記耐熱合金製スキッドボタンは、被加熱鋼材担持部材
としての強度保持のために、約1250℃をこえないよ
うに強制冷却することが必要であり。
In order to maintain the strength of the heat-resistant alloy skid button as a member for supporting heated steel materials, it is necessary to forcibly cool the skid button so that the temperature does not exceed about 1250°C.

そのため被加熱鋼材はスキントポタンとの接触面を介し
て熱を奪われ局所低温部、所謂スキッドマークを生じる
という問題がある。また、鋼材荷重の反復作用による圧
縮変形や、炉内酸化雰囲気に対する酸化抵抗性も十分な
ものとは言えず、かつ被加熱鋼材の表面スケールとの反
応、所謂ビルドアップが生じ易いという問題がある。近
時は高温操業が広く行われており、操炉の高温化ととも
にこれらの問題は−そう顕著となっている。
Therefore, there is a problem in that the steel material to be heated is deprived of heat through the contact surface with the skin potion, resulting in localized low-temperature areas, so-called skid marks. In addition, the compressive deformation due to repeated loading of the steel material and the oxidation resistance against the oxidizing atmosphere in the furnace are not sufficient, and there is a problem that reaction with the surface scale of the steel material to be heated, so-called build-up, is likely to occur. . Recently, high-temperature operation has become widespread, and these problems have become more prominent as the temperature of reactor operation increases.

この対策として、セララミック焼結体をスキッドボタン
として使用する試みもなされてはいるが、セラミックは
脆性材料であり、機械的・熱的衝撃による割れ・欠損等
を生し易いため、安定な使用を期し難く、未だ実用化の
例は見当たらない。
As a countermeasure to this problem, attempts have been made to use ceramic sintered bodies as skid buttons, but ceramic is a brittle material and is prone to cracking and chipping due to mechanical and thermal shock, so stable use is not recommended. It is difficult to predict, and there are no examples of practical application yet.

本発明はスキッドボタンに関する上記問題を解決するた
めになされたものである。
The present invention has been made to solve the above-mentioned problems regarding skid buttons.

〔課題を解決するための手段および作用〕本発明の鋼材
加熱炉用スキッドボタンは、頂面を載荷面とする上部ブ
ロック(20)と、これを担持固定する下部ブロック(
30)とからなり、下部ブロック(30)は、天面が径
方向に10〜40゜の傾斜角をなす斜面である環状突起
(31)を有する耐熱合金からなるブロックであり、上
部ブロック(20)は、Cr含有量70〜90重量%、
融点1600℃以上のCr−Fe合金からなる焼結体ブ
ロックであって、その下面周縁は、下部ブロック(30
)の環状突起(31)の天面に一致する傾斜角をなす斜
面であり、上部ブロック(20)の下面周縁の斜面と、
下部ブロック(30)の環状突起(31)の天面との重
ね合せ面を結合面とし、遷移金属の酸化物を主体とする
接合層を介して接合されており、その重ね合せ面積は、
頂部載荷面積の40〜60%である、ことを特徴として
いる。
[Means and effects for solving the problem] The skid button for a steel heating furnace of the present invention includes an upper block (20) whose top surface is a loading surface, and a lower block (20) that supports and fixes the upper block (20).
30), the lower block (30) is a block made of a heat-resistant alloy whose top surface has an annular protrusion (31) that is a slope with an inclination angle of 10 to 40 degrees in the radial direction, and the upper block (20) ) has a Cr content of 70 to 90% by weight,
A sintered body block made of a Cr-Fe alloy with a melting point of 1600°C or higher, and the lower peripheral edge of the lower block (30
) is a slope with an inclination angle that matches the top surface of the annular projection (31), and the slope of the lower surface periphery of the upper block (20),
The overlapping surface of the annular protrusion (31) of the lower block (30) with the top surface is the bonding surface, and they are joined via a bonding layer mainly composed of transition metal oxide, and the overlapping area is:
It is characterized by being 40 to 60% of the top loading area.

第1図は本発明スキッドボタンの下部ブロック(30)
と、これに載置接合される上部ブロック(20)との組
立構造を示している。上部ブロック(20)は、その下
面周縁の傾斜面(21)を、下部ブロック(30)の環
状突起(31)の天面(32)に対する当接面として担
持され、その当接面において両ブロック(20)と(3
0)の接合一体関係が形成されている。
Figure 1 shows the lower block (30) of the skid button of the present invention.
The assembly structure of the upper block (20) and the upper block (20) mounted and joined thereto is shown. The upper block (20) has an inclined surface (21) on its lower peripheral edge as an abutment surface for the top surface (32) of the annular protrusion (31) of the lower block (30), and both blocks (20) and (3
0) is formed.

上部ブロック(20)と下部ブロック(30)の組立体
である本発明スキッドボタンの外観形態・サイズは従来
の耐熱合金スキッドボタンのそれと特に異なるものでは
なく、上部ブロックの頂面から下部ブロックの下面まで
の高さ(H)は約100〜180■程度であってよく、
上部ブロック(20)の頂面径(Dl)は約50〜80
謹としてよい。上部ブロック(20)の肉厚(Hl)は
例えば約40〜80腫である。
The appearance and size of the skid button of the present invention, which is an assembly of an upper block (20) and a lower block (30), are not particularly different from those of conventional heat-resistant alloy skid buttons, and are from the top surface of the upper block to the bottom surface of the lower block. The height (H) may be about 100 to 180 cm,
The top diameter (Dl) of the upper block (20) is approximately 50 to 80
It's good to be respectful. The wall thickness (Hl) of the upper block (20) is, for example, about 40 to 80 mm.

なお、上部ブロック(20)の周縁斜面(21)の内側
類□域(下面中央部) (22)は、下部ブロック(3
0)の環状突起(31)内に向かって膨出しまたは膨出
しない形状のいずれであってもよいが、膨出形状とした
場合にも、図示のように、その膨出部分と下部ブロック
との間に隙間(G)を与えて非接触とするのが好ましい
。下部ブロック(30)との接触面が熱伝達面となる上
部ブロック(20)の強制冷却を抑制し、上部ブロック
(20)を高温保持し易くするためである。
In addition, the inner □ area (lower center part) (22) of the peripheral slope (21) of the upper block (20) is similar to that of the lower block (3).
The annular projection (31) of 0) may have a shape that bulges out or does not bulge out into the annular projection (31), but even if it is a bulge shape, as shown in the figure, the bulge part and the lower block It is preferable to provide a gap (G) between them to prevent contact. This is to suppress forced cooling of the upper block (20), whose contact surface with the lower block (30) serves as a heat transfer surface, and to make it easier to maintain the upper block (20) at a high temperature.

上記スキッドボタン(10)は、下部ブロック(30)
の下面をスキッドパイプ(P)に対する着座面として溶
接(W)により該バイブ(P)に固定されている。下部
ブロック(30)の側面およびスキッドパイプ(P)の
周面は、前記従来のスキッドビームと同様に、炉内雰囲
気の直接々触を遮断するための不定形耐火物層(50)
が塗設されている。
The skid button (10) above is the lower block (30)
The lower surface of the skid pipe (P) serves as a seating surface for the skid pipe (P) and is fixed to the vibe (P) by welding (W). Similar to the conventional skid beam, the side surface of the lower block (30) and the circumferential surface of the skid pipe (P) are covered with a monolithic refractory layer (50) for blocking direct contact with the atmosphere inside the furnace.
has been painted.

本発明のスキッドボタンにおいて、頂面が載荷面となる
上部ブロック(20)を、70〜90重量%のCrを含
有する融点1600℃以上のCr−Fe合金からなる焼
結体を以て形成しているのは、高温強度が著しく高く、
1300℃ないしそれをこえる高温度に加熱された状態
においても、鋼材荷重の反復作用に耐える高い圧縮変形
抵抗性(クリープ強度)を示し、また良好な耐酸化性を
有すると共に、鋼材の表面スケールとの反応性が小さく
ビルドアップに対する抵抗性にもすぐれているからであ
る。
In the skid button of the present invention, the upper block (20) whose top surface serves as a loading surface is formed of a sintered body made of a Cr-Fe alloy containing 70 to 90% by weight of Cr and having a melting point of 1600° C. or higher. has extremely high high temperature strength,
Even when heated to a high temperature of 1,300℃ or higher, the steel material exhibits high compressive deformation resistance (creep strength) that can withstand the repeated action of load, and has good oxidation resistance and is resistant to surface scale of the steel material. This is because it has low reactivity and excellent build-up resistance.

このCr−Fe合金焼結体ブロックの高温圧縮強度は、
結晶粒径が大きい程高く、この点から平均結晶粒径が5
0μm以上である粗粒結晶組織を有するものが好ましい
。焼結体の結晶粒度は焼結原料粉末の粒度調整により制
御することができ、平均粒径200 g tm以上のC
r−Fe合金粉末の使用により、平均結晶粒径50μ−
以上の組織をもたせることができる。その焼結体ブロッ
クの高温における載荷許容面圧は、1300℃で0.2
5kg/mm”と十分な強度レベルを有している。なお
、Cr−Fe合金は、1600℃以上の融点が確保され
る範囲内で少量の不純分(例えば0.8!量%以下のC
18重量%以下のSi等)が混在してもさしつかえない
The high temperature compressive strength of this Cr-Fe alloy sintered block is
The larger the grain size, the higher the value, and from this point the average grain size is 5.
Those having a coarse grain crystal structure of 0 μm or more are preferred. The crystal grain size of the sintered body can be controlled by adjusting the grain size of the sintering raw material powder, and C with an average grain size of 200 g tm or more
By using r-Fe alloy powder, the average grain size is 50 μ-
It is possible to have the above organization. The allowable loading surface pressure of the sintered block at high temperature is 0.2 at 1300℃.
5kg/mm'', which is a sufficient strength level.The Cr-Fe alloy has a small amount of impurity (for example, 0.8% or less C
18% by weight or less of Si, etc.) may be mixed.

上記Cr−Fe合金焼結体からなる上部ブロック(20
)が載置接合される下部ブロック(30)は、従来より
スキッドボタン材料として使用されているニッケル・ク
ロム合金鋼(例えば5CH22)等に代表される耐熱合
金からなるブロック(鋳造体であってよい)であり、上
部ブロックのような高温特性を必要としない。下部ブロ
ック(30)はスキッドパイプ(P)の表面に直接々触
しているので、強度の保持に必要な低温度(例えば: 
1000℃)に冷却保持するための冷却水の強制冷却作
用を十分に加えることができ、そのように強制冷却を強
めても、被加熱鋼材と直接々触する上部ブロック(20
)と異なって、スキッドマークの直接の原因とはならな
いからである。またこのような下部ブロック(30)に
対する強制冷却により、上部ブロック(20)との接合
界面の接合層の軟化・強度低下の回避と、接合状態の安
定化の効果も得られる。
The upper block (20
) is placed and joined to the lower block (30), which is made of a heat-resistant alloy such as nickel-chromium alloy steel (for example, 5CH22), which has been conventionally used as a skid button material (it may be a cast body). ) and does not require high-temperature properties like the upper block. Since the lower block (30) is in direct contact with the surface of the skid pipe (P), it can maintain the low temperature required to maintain its strength (for example:
Even if the forced cooling is strengthened, the upper block (20
), this is because it does not directly cause skid marks. Further, by such forced cooling of the lower block (30), it is possible to avoid softening and decrease in strength of the bonding layer at the bonding interface with the upper block (20), and to stabilize the bonded state.

本発明のスキッドボタンを、上部ブロック(20)と下
部ブロック(30)との2部材に分割しているのは、上
部ブロック(20)に対する冷却水の強制冷却作用を抑
制・緩和し、上部ブロック(20)を高温状態(例えば
1300℃)に保持し易くするためであり、また2部材
構成とすることにより耐熱合金の材料コストの経済性が
得られるからである。
The reason why the skid button of the present invention is divided into two parts, the upper block (20) and the lower block (30), is to suppress and alleviate the forced cooling effect of the cooling water on the upper block (20), and This is to make it easier to maintain (20) at a high temperature (for example, 1300° C.), and also because the two-member structure makes it possible to achieve economical material costs for the heat-resistant alloy.

また下部ブロック(30)に環状突起(31)を形成し
、これに上部ブロック(20)を担持させることとし、
その重ね合せ面(32) (21)を径方向に傾斜する
斜面としたのは、下部ブロック(30)に対する上部ブ
ロック(20)の載置接合姿態を安定化せしめると共に
、実使用時に水平方向の外力が加わった場合の接合面の
損傷・剥離に対する抵抗性を高めるためである。その重
ね合せ面の水平面に対する傾斜角度を10〜40’とし
たのは、10″未満では傾斜面としたことの効果が十分
でなく、他方40°をこえると、環状突起(31)に対
する横方向の分力が過大となり、環状突起(31)の変
形が生じ易くなるからである。第1図では、その重ね合
せ面を、内側に向かって斜降する摺鉢状斜面として示し
ているが、これとは逆に、外側に向かって斜降する傘状
斜面としても同効である。
Further, an annular projection (31) is formed on the lower block (30), and the upper block (20) is supported on this,
The reason why the overlapping surfaces (32) and (21) are sloped in the radial direction is to stabilize the mounting and joining state of the upper block (20) to the lower block (30), and also to stabilize the horizontal direction during actual use. This is to increase resistance to damage and peeling of the joint surface when external force is applied. The reason why the angle of inclination of the overlapping planes with respect to the horizontal plane is set to 10 to 40' is because if the angle is less than 10'', the effect of the inclined plane will not be sufficient; This is because the component force of the annular protrusion (31) becomes excessive and deformation of the annular protrusion (31) is likely to occur.In Fig. 1, the overlapping surface is shown as a mortar-shaped slope that slopes downward toward the inside. On the contrary, the same effect can be obtained by using an umbrella-shaped slope that slopes downward toward the outside.

上部ブロック(20)と下部ブロック(30)との重ね
合せ面積は、頂部載荷面積の40〜60%とする。
The overlapping area of the upper block (20) and lower block (30) is 40 to 60% of the top loading area.

なお、「重ね合せ面積」とは、下部ブロック(30)の
傾斜天面(32)と上部ブロック(20)の周縁斜面(
21)との重ね合せ面を水平面上に投影した投影面積で
ある。その下限を40%としたのは、下部ブロック(3
0)に対する上部ブロック(20)の載置姿勢を安定化
させると共に、所要の接合強度を得るためである。他方
、上限を60%としたのは、上部ブロック(20)を高
温保持し易いように、接触面を熱伝達面とする上部ブロ
ック(20)の強制冷却を抑制するためであるほか、重
ね合せ面積をそれより大きくしたのでは、上部ブロック
(20)と下部ブロック(30)の熱膨張係数の差によ
る接合面の剥離損傷が生じ易くなるからである。
Note that the "overlapping area" refers to the slope of the sloped top surface (32) of the lower block (30) and the peripheral slope of the upper block (20) (
21) is the projected area of the overlapping surface projected onto a horizontal plane. The lower limit was set to 40% because the lower block (3
This is to stabilize the mounting posture of the upper block (20) with respect to the upper block (20) and to obtain the required bonding strength. On the other hand, the reason why the upper limit is set to 60% is to suppress forced cooling of the upper block (20) whose contact surface is a heat transfer surface so that the upper block (20) can be easily maintained at a high temperature, and also to suppress forced cooling of the upper block (20) whose contact surface is a heat transfer surface. This is because if the area is made larger than this, peeling damage on the joint surface is likely to occur due to the difference in thermal expansion coefficients between the upper block (20) and the lower block (30).

上部ブロック(20)の周縁斜面(21)と、下部ブロ
ック(30)の環状突起の傾斜天面(32)との接合は
、遷移金属の粉末、例えばCr、Fe、Ni。
The peripheral slope (21) of the upper block (20) and the inclined top surface (32) of the annular projection of the lower block (30) are bonded using transition metal powder, such as Cr, Fe, or Ni.

Cr−Fe、 Cr−Ni、 Fe−Ni、 Cr−N
i−Fe等の粉末を接合剤とし、これを当接界面に塗布
して重ね合せ、酸化雰囲気(大気)炉中、接合剤金属の
融点より低い温度(好ましくは、融点−30〜400℃
)に適当時間(例えば1〜3Hr)加熱保持することに
より達成される。接合剤金属の具体例として、15〜2
5%Cr−15〜25%Fe−Ni合金が挙げられる。
Cr-Fe, Cr-Ni, Fe-Ni, Cr-N
A powder such as i-Fe is used as a bonding agent, and this is applied to the abutting interface and stacked, and then heated in an oxidizing atmosphere (atmosphere) furnace at a temperature lower than the melting point of the bonding metal (preferably melting point -30 to 400°C).
) for an appropriate period of time (for example, 1 to 3 hours). As a specific example of the bonding agent metal, 15 to 2
Examples include 5% Cr-15 to 25% Fe-Ni alloy.

この接合剤(但し、Cr:20%、Fe:20%、Ba
l:Ni)を用いた接合試験(接合温度:900〜15
00℃)による接合面の曲げ強さを第1表に示す(三点
曲げ法。試験片サイズ:10X5×50.閣。スパン距
離:40m)。同表から明らかなように、接合剤の融点
以下の適当な温度での加熱処理により強力な接合面を形
成できることがわかる。なお、実炉使用時のスキントポ
タンは、前記のように下部ブロック(30)に対する十
分な強制冷却が加えられるので、1300℃前後の高温
炉中においても、接合面の接合強度の低下の問題はなく
、両ブロック(20)と(30)の強固な接合関係は十
分に確保される。
This bonding agent (Cr: 20%, Fe: 20%, Ba
Bonding test using Ni) (bonding temperature: 900 to 15
Table 1 shows the bending strength of the bonded surface at 00°C (three-point bending method. Test piece size: 10 x 5 x 50.0° C. Span distance: 40 m). As is clear from the table, a strong bonding surface can be formed by heat treatment at an appropriate temperature below the melting point of the bonding agent. In addition, when using the skin topotan in an actual furnace, sufficient forced cooling is applied to the lower block (30) as described above, so there is no problem of a decrease in the joint strength of the joint surface even in a high-temperature furnace of around 1300°C. , a strong bonding relationship between both blocks (20) and (30) is sufficiently ensured.

第   1   表 曲げ強さ 接合温度   室温      1000℃900℃5
10kg/ ca    470kg/ Cl1111
00℃1560kg/cj    1330kg/cw
t1300℃1350kg/ at    1200k
g/crA1500℃420kg/ all    4
00kg/ Cl11上部ブロック(20)と下部ブロ
ック(30)の結合形式としては、接合剤を用いる上記
接合方法のほか、例えばネジ嵌合、ボルト締め、金具の
使用等も考えられるが、これらの機械的な連結構造では
、鋼材の荷重や衝撃の反復作用、あるいは両ブロックの
熱膨張係数の差異等に起因して、ゆるみ・ガタッキを生
じ易く、安定な使用を期し難い。
Table 1 Bending strength Joining temperature Room temperature 1000℃900℃5
10kg/ca 470kg/Cl1111
00℃1560kg/cj 1330kg/cw
t1300℃1350kg/at 1200k
g/crA1500℃420kg/all 4
00kg/ Cl11 The upper block (20) and the lower block (30) may be joined together by, in addition to the above-mentioned joining method using a bonding agent, screw fitting, bolt tightening, use of metal fittings, etc., but these machines In a conventional connection structure, it is difficult to expect stable use because it is prone to loosening and shaking due to repeated loads and impacts on the steel material, or differences in thermal expansion coefficients between the two blocks.

これに対し、上記接合剤による接合構造は、そのような
不具合がなく、両ブロックの強固で安定した結合状態を
保持することができる。
In contrast, the bonded structure using the bonding agent described above does not have such problems and can maintain a strong and stable bonding state between both blocks.

ところで、下部ブロック(30)の耐熱合金、例えば、
2ONi−25Cr−F e合金鋼(SCH22相当)
の線膨張係数は約18.3X10−”/’C(RT〜1
000℃)であるのに対し、上部ブロック(20)のC
r−Fe合金焼結体ブロックのそれは約10.7X 1
0−’/’C(RT〜1000“C)と、両者の線膨張
係数の差は比較的大きい。この線膨張係数の差による両
ブロックの接合界面に生じる熱応力を緩和することは、
接合面の安定性を高めるために好ましいことである。そ
の方法として、上部ブロック(20)の周縁斜面(21
)、または下部ブロック(30)の環状突起の傾斜天面
(32)のいずれか一方に浅い溝を形成して、両者の接
合面を不連続面とするのが効果的である。
By the way, the heat-resistant alloy of the lower block (30), for example,
2ONi-25Cr-Fe alloy steel (equivalent to SCH22)
The linear expansion coefficient of is approximately 18.3
000℃), whereas the C of the upper block (20)
That of the r-Fe alloy sintered block is approximately 10.7X 1
0-'/'C (RT ~ 1000"C), the difference in linear expansion coefficient between the two is relatively large. Relaxing the thermal stress that occurs at the bonding interface of both blocks due to this difference in linear expansion coefficient is as follows.
This is preferable in order to increase the stability of the joint surface. As a method, the peripheral slope (21) of the upper block (20) is
), or the inclined top surface (32) of the annular protrusion of the lower block (30), it is effective to form a shallow groove in either one of the two to make the joint surface between the two a discontinuous surface.

第2図は下部ブロック(30)の環状突起の傾斜天面(
32)に溝を形成した例を示している。散点模様部分が
溝であり、環状突起の傾斜天面(32)は溝(34)で
分断された不連続面をなしている。溝を除いた部分(白
地部分)が上部ブロック(20)の周縁斜面(21)と
の接合面となる。溝(34)の幅は1閣以下、例えば0
.4〜0.6閣程度、深さは例えば0.5〜2■程度と
してよい0周縁斜面(21)は溝のない滑らかな面であ
ってよい0両者は、溝(34)が非接合部となって断続
的に接合され、溝(34)の非接合部が分散存在してい
ることにより、接合界面の熱応力は効果的に吸収緩和さ
れる。
Figure 2 shows the inclined top surface (
32) shows an example in which a groove is formed. The dotted pattern portion is a groove, and the inclined top surface (32) of the annular projection forms a discontinuous surface divided by the groove (34). The part excluding the groove (white part) becomes the joint surface of the upper block (20) with the peripheral slope (21). The width of the groove (34) is less than one cabinet, for example 0
.. The groove (34) may be a non-joining part. Since the grooves (34) are intermittently joined and the non-bonded portions of the grooves (34) are dispersed, thermal stress at the bonding interface is effectively absorbed and alleviated.

〔実施例〕〔Example〕

(1)スキッドボタンの製作 (1)上部ブロック Cr−Fe合金粉末(Crニア3%、C:0.3%、S
i:3%、残部:Fe)の熱間静水圧加圧焼結(温度:
 1200℃1加圧カニ 1500kg/cm、保持時
間:2Hr)による焼結体ブロック(平均結晶粒径:5
5μm)。
(1) Manufacturing of skid button (1) Upper block Cr-Fe alloy powder (Cr near 3%, C: 0.3%, S
i: 3%, remainder: Fe) hot isostatic pressing sintering (temperature:
A sintered body block (average grain size: 5
5μm).

醤豆寸抜(第3図参照):頂面径(Dυ60鵬、肉厚(
Hυ70m、底面中央部の径(D −)39.8m、周
縁斜面の傾斜角度(α)30゜ 豊亙許翌皿圧: 0.25kg/■” (1300℃)
(2)下部ブロック 0.4%C−20%Cr−25%Ni−Fe合金鋼(S
CH22相当)の鋳造品ブロック、環状突起の天面ば、
機械加工により第2図に示す模様パターンの溝を形成。
Soy bean size reduction (see Figure 3): Top diameter (Dυ60peng, wall thickness (
Hυ70m, diameter of the center of the bottom (D -) 39.8m, angle of inclination of the peripheral slope (α) 30°, plate pressure: 0.25kg/■” (1300℃)
(2) Lower block 0.4%C-20%Cr-25%Ni-Fe alloy steel (S
CH22 equivalent) casting block, the top surface of the annular projection,
Grooves with the pattern shown in Figure 2 are formed by machining.

H豆寸法(第3図参照):肉厚(H3)50■、環状突
起高さ(T(、)101nn、環状突起内径(03)4
01111環状突起の天面傾斜角(α)30゜ 藍11jffJIJM  =0.5k”””(””℃)
(3)上部ブロックと下部ブロックの接合上部ブロック
の周縁斜面と下部ブロックの環状突起の傾斜天面との当
接界面に、20%Cr−20%Fe−Ni合金粉末を塗
布し、大気雰囲気炉中、1100℃で2時間加熱。
H dimensions (see Figure 3): wall thickness (H3) 50cm, annular protrusion height (T(,) 101nn, annular protrusion inner diameter (03) 4
01111 Top surface inclination angle of annular protrusion (α) 30° 11jffJIJM = 0.5k"""(""℃)
(3) Connection of upper block and lower block 20% Cr-20% Fe-Ni alloy powder was applied to the contact interface between the peripheral slope of the upper block and the inclined top surface of the annular projection of the lower block, and Heat at 1100°C for 2 hours.

重ね合せ面積二項部載荷面の50.6%接合面の接合強
度: 1000℃の炉中で加熱後、炉外に取り出して放
冷する加熱・冷却処理を1o回反復した後にも、接合面
の異常は認められない(接合部の切断面観察による)。
Overlapping area: 50.6% of the loading surface of the two nodes Bonding strength of the bonded surface: Even after repeating the heating and cooling process 10 times, in which the bonded surface was heated in a 1000°C furnace and then taken out of the furnace and allowed to cool, the bonded surface remained No abnormality was observed (by observation of the cut surface of the joint).

(U)実炉使用試験 上記スキッドボタンを第1図のように溶接(W)により
スキッドパイプに取付け、下部ブロック(30)の側面
はバイブの周回と同じ不定形耐火物層(50)を塗設し
て使用。
(U) Actual furnace usage test The above skid button is attached to the skid pipe by welding (W) as shown in Fig. 1, and the side surface of the lower block (30) is coated with the same monolithic refractory layer (50) as that around the vibrator. Set up and use.

炉内雰囲気温度: 1300℃ 被加熱鋼材:炭素鋼々片、合金鋼々片 上部ブロック載荷面温度:約1280’C下部ブロック
突起天面の温度:約1000℃載荷面を高温保持した上
記実炉使用試験において、供試スキントポタンは十分な
圧縮変形抵抗性を示し、また酸化損傷やビルドアップ等
の発生もごく少なく、同じ炉における従来のニッケル・
クロム合金@ (SCH22相当)のスキッドボタン(
載荷面温度: 1250℃に冷却保持)を凌ぐ耐用寿命
を示した。また、載荷面の高温保持効果として、被加熱
鋼材のスキッドマークの表面温度−下は約lO℃以内(
従来のスキッドボタンでは、約20〜30℃)と十分満
足し得る均熱効果が得られた。
Furnace atmosphere temperature: 1300°C Steel materials to be heated: Carbon steel pieces, alloy steel pieces Upper block loading surface temperature: Approximately 1280'C Lower block protrusion top surface temperature: Approximately 1000°C The above actual furnace in which the loading surface was maintained at a high temperature In the usage test, the test skin topotan showed sufficient compression deformation resistance, and there was very little occurrence of oxidation damage or build-up, compared to conventional nickel
Chrome alloy @ (equivalent to SCH22) skid button (
Loading surface temperature: Cooled and maintained at 1250°C). In addition, as a high temperature maintenance effect on the loading surface, the surface temperature of the skid mark on the heated steel material is within about 10℃ (
With the conventional skid button, a sufficiently satisfactory heat soaking effect of about 20 to 30°C was obtained.

〔発明の効果〕〔Effect of the invention〕

本発明の鋼材加熱炉用スキッドボタンは、高温強度等に
すぐれ、従来の耐熱合金製スキッドボタンを凌ぐ耐久性
を有し、スキッドビームのメンテナンスの軽減、操炉効
率の向上等を可能とするだけでなく、その載荷面を、従
来のスキッドボタンでは不可能な高温状態に保持して使
用できるので、被加熱鋼材のスキッドマークが軽減し、
均一加熱による鋼材品質の向上・安定化等にも大きな効
果が得られる。載荷面の高温保持が可能であることは、
載荷面に対し強い強制冷却を加えなくてよいということ
であり、冷却水による炉内の熱損失量の減少・省エネル
ギ化にも奏効する。
The skid button for steel reheating furnaces of the present invention has excellent high-temperature strength, etc., and has durability that exceeds conventional skid buttons made of heat-resistant alloys, making it possible to reduce skid beam maintenance and improve furnace operation efficiency. Instead, the loading surface can be maintained at a high temperature that is impossible with conventional skid buttons, reducing skid marks on the heated steel material.
Uniform heating also has a significant effect on improving and stabilizing the quality of steel materials. The ability to maintain high temperatures on the loading surface means that
This means that there is no need to apply strong forced cooling to the loading surface, which is effective in reducing the amount of heat loss inside the reactor due to cooling water and saving energy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明スキッドボタンの実施例を示す縦断面図
、第2図は下部ブロックの環状突起の天面の例を示す平
面図、第3図はスキッドボタンの諸元寸法説明図、第4
図は従来のスキッドボタンを示す縦断面図である。 10.10“ニスキッドボタン、2o:上部ブロック、
21:周縁斜面、30:下部ブロック、31:環状突起
、32:傾斜天面、34:溝、5o:不定形耐火物層、
Pニスキンドパイブ、S:被加熱綱材。
Fig. 1 is a longitudinal sectional view showing an embodiment of the skid button of the present invention, Fig. 2 is a plan view showing an example of the top surface of the annular projection of the lower block, Fig. 3 is an explanatory diagram of the dimensions of the skid button, 4
The figure is a longitudinal sectional view showing a conventional skid button. 10.10" Niskid Button, 2o: Upper Block,
21: peripheral slope, 30: lower block, 31: annular projection, 32: inclined top surface, 34: groove, 5o: monolithic refractory layer,
P Niskind pipe, S: heated rope material.

Claims (1)

【特許請求の範囲】 1、頂面を載荷面とする上部ブロック(20)と、これ
を担持固定する下部ブロック(30)とからなり、 下部ブロック(30)は、天面が径方向に10〜40゜
の傾斜角をなす斜面である環状突起(31)を有する耐
熱合金からなるブロックであり、上部ブロック(20)
は、Cr含有量70〜90重量%、融点1600℃以上
のCr−Fe合金からなる焼結体ブロックであって、そ
の下面周縁は、下部ブロック(30)の環状突起(31
)の天面に一致する傾斜角をなす斜面であり、上部ブロ
ック(20)の下面周縁の斜面と、下部ブロック(30
)の環状突起(31)の天面との重ね合せ面を接合面と
し、遷移金属の酸化物を主体とする接合層を介して接合
されており、その重ね合せ面積は、頂部載荷面積の40
〜60%である、 ことを特徴とする鋼材加熱炉用スキッドボタン。
[Claims] 1. Consisting of an upper block (20) whose top surface is a loading surface and a lower block (30) that supports and fixes the upper block, the lower block (30) has a top surface that extends 10 mm in the radial direction. It is a block made of a heat-resistant alloy having an annular protrusion (31) which is a slope with an inclination angle of ~40°, and an upper block (20).
is a sintered body block made of a Cr-Fe alloy with a Cr content of 70 to 90% by weight and a melting point of 1600° C. or higher, and the lower surface periphery thereof is formed by the annular protrusion (31) of the lower block (30).
), which has an inclination angle that coincides with the top surface of the upper block (20), and the slope around the lower surface of the upper block (20) and the lower block (30).
) and the top surface of the annular protrusion (31) is used as the bonding surface, and they are bonded via a bonding layer mainly composed of transition metal oxide, and the overlapping area is 40% of the top loading area.
A skid button for a steel heating furnace, characterized in that the heating rate is 60%.
JP2253090A 1990-09-21 1990-09-21 Skid button for steel heating furnace Expired - Lifetime JP2715181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2253090A JP2715181B2 (en) 1990-09-21 1990-09-21 Skid button for steel heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2253090A JP2715181B2 (en) 1990-09-21 1990-09-21 Skid button for steel heating furnace

Publications (2)

Publication Number Publication Date
JPH04131318A true JPH04131318A (en) 1992-05-06
JP2715181B2 JP2715181B2 (en) 1998-02-18

Family

ID=17246353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2253090A Expired - Lifetime JP2715181B2 (en) 1990-09-21 1990-09-21 Skid button for steel heating furnace

Country Status (1)

Country Link
JP (1) JP2715181B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06117775A (en) * 1992-09-30 1994-04-28 Kawasaki Steel Corp Hearth metal in vertical induction heating device
US6945776B2 (en) 2002-07-25 2005-09-20 Posco Method and a skid member for reducing temperature difference in a heating subject and a skid apparatus using them
KR100527063B1 (en) * 2001-07-16 2005-11-09 주식회사 포스코 Skid button for skid mark diminution
JP2012127619A (en) * 2010-12-17 2012-07-05 Nippon Steel Corp Heat insulation structure of water cooling pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06117775A (en) * 1992-09-30 1994-04-28 Kawasaki Steel Corp Hearth metal in vertical induction heating device
KR100527063B1 (en) * 2001-07-16 2005-11-09 주식회사 포스코 Skid button for skid mark diminution
US6945776B2 (en) 2002-07-25 2005-09-20 Posco Method and a skid member for reducing temperature difference in a heating subject and a skid apparatus using them
JP2012127619A (en) * 2010-12-17 2012-07-05 Nippon Steel Corp Heat insulation structure of water cooling pipe

Also Published As

Publication number Publication date
JP2715181B2 (en) 1998-02-18

Similar Documents

Publication Publication Date Title
US4869645A (en) Composite gas turbine blade and method of manufacturing same
JP2000226273A (en) Production of heat-resistant composite structure member
JPS6026260B2 (en) Structure for rotating anode X-ray tube
JP2607157B2 (en) Heat-resistant alloy for supporting steel material to be heated in heating furnace
JPH04131318A (en) Skid button for steel heating furnace
JPS60200948A (en) Composite material for supporting member of heating furnace
US4747775A (en) Skid beam for heating furnaces of walking beam type
JPH10193087A (en) Manufacture of titanium-aluminum-made turbine rotor
KR20010024234A (en) A roll assembly for use at high temperature and method of making same
JPS6026615A (en) Skid button
US5882440A (en) Heat-resistant alloy steel for hearth metal members of steel material heating furnaces
SU1449263A1 (en) Method of soldering heterogeneous materials
JPH07103419B2 (en) Low skid mark Skid button for walking beam furnace
JPH0347913A (en) Skid button for heating furnace
JPS61201719A (en) Construction of skid button for heating furnace
JP3049513B2 (en) Heat resistant alloy for radiant tube
JPH0514151U (en) Skid button for heating furnace
JPH0530143U (en) Skid button for heating furnace
JPH0514148U (en) Skid button for heating furnace
JP2903740B2 (en) Ring assembly made of functionally gradient material and method of manufacturing the same
JPH0530142U (en) Skid button for heating furnace
JPH02263773A (en) Method for joining ceramic to metal
JPH0565563B2 (en)
JPH0230366B2 (en) KANETSUROYOSUKITSUDOBOTANKOZO
JP2571641Y2 (en) Skid button for heating furnace