JPH04131133A - Preparation of silica glass capsule having minute particles enclosed therein - Google Patents

Preparation of silica glass capsule having minute particles enclosed therein

Info

Publication number
JPH04131133A
JPH04131133A JP25092190A JP25092190A JPH04131133A JP H04131133 A JPH04131133 A JP H04131133A JP 25092190 A JP25092190 A JP 25092190A JP 25092190 A JP25092190 A JP 25092190A JP H04131133 A JPH04131133 A JP H04131133A
Authority
JP
Japan
Prior art keywords
fine particles
water
silicon alkoxide
silica glass
minute particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25092190A
Other languages
Japanese (ja)
Inventor
Tadashi Koyama
小山 正
Hisao Nagata
久雄 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP25092190A priority Critical patent/JPH04131133A/en
Publication of JPH04131133A publication Critical patent/JPH04131133A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Micro-Capsules (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To facilitate the handling of minute particles by covering minute particles with silica glass in such a state that the aggregation thereof is prevented to encapsulate the same. CONSTITUTION:Minute particles 5 dispersed in water 2 or a silicon alkoxide 1 to form the micelle of minute liquid droplets of either one of water 2 and the silicon alkoxide 1 due to the surfactant 3 in one liquid and, further, the minute particles 5 are incorporated in the minute liquid droplets to prevent the mutual aggregation of the minute particles. In this state, the silicon alkoxide 1 and water 2 are reacted and the minute particles 5 are covered with silica glass to be encapsulated to form capsules 6. As usable silicon alkoxide 1, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane and tetrabutoxysilane are disignated. By this method, the minute particles 5 can easily be handled.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、微粒子を閉じ込めたシリカガラスカプセルの
製造方法に関するもので、特に微粒子の凝集を防止した
措置を施し、微粒子の取扱を容易にし、なおかつ微粒子
としての特性を保つ微粒子を閉じ込めたシリカガラスカ
プセルの製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method for manufacturing a silica glass capsule in which fine particles are confined, and in particular, measures are taken to prevent agglomeration of the fine particles to facilitate handling of the fine particles. Furthermore, the present invention relates to a method for producing a silica glass capsule in which fine particles are confined while maintaining their characteristics as fine particles.

[従来の技術] 微粒子はバルクの持つ性質とは違った性質を持つことが
知られており、機能性材料としての応用が期待されてい
る。例えばCdSなどの化合物半導体微粒子は、粒径が
小さくなるとバンド構造の離散化、吸収端の短波長側へ
のシフトなどのいわゆる量子サイズ効果が生じる(参考
文献:A、J。
[Prior Art] Fine particles are known to have properties different from those of bulk particles, and are expected to be used as functional materials. For example, when the particle size of compound semiconductor particles such as CdS becomes smaller, so-called quantum size effects such as discretization of the band structure and shift of the absorption edge toward shorter wavelengths occur (References: A, J.

Nozik  et  al、J、Phy、Chem。Nozik et al, J, Phy, Chem.

89 (1985)397)。またこのような粒子にお
いては大きな非線形光学効果が生しることが知られてい
る。
89 (1985) 397). It is also known that such particles produce large nonlinear optical effects.

このような微粒子を扱う上では微粒子同士の凝集を防止
することがその効果を高める上で重要になってくる。
When handling such fine particles, it is important to prevent the fine particles from coagulating with each other in order to enhance the effectiveness.

微粒子の凝集防止措置としては界面活性剤を用いること
が従来より行われており、液中てのこの方法の応用は多
方面にわたっている(参考文献:たとえば 界面活性剤
ハンドブック 工学図書株式会社)。
The use of surfactants has traditionally been used to prevent agglomeration of fine particles, and this method has been applied in a wide range of areas in liquids (references: for example, Surfactant Handbook, Kogaku Tosho Co., Ltd.).

一方Steigerwaldら(参考文献:Steig
erwald  et  al、、J、Am。
On the other hand, Steigerwald et al. (Reference: Steig
erwald et al., J. Am.

Chem、Soc、110 (1988)3046)は
、溶液中で合成したCdS eの微粒子にフェニル基を
粒子の周りに付加させて、その立体障害により溶液中は
もとより、沈澱乾燥を行っても微粒子の独立性は失われ
ないことを報告している(フェニル基によるキャッピン
グ)。
Chem, Soc, 110 (1988) 3046) added phenyl groups around the particles of CdSe synthesized in a solution, and due to the steric hindrance, the particles remained stable not only in solution but also during precipitation drying. It has been reported that independence is not lost (capping with phenyl group).

[発明が解決しようとする課題] しかしながら界面活性剤を用いる技術は溶液中のことで
あり、微粒子を固体として取り出す場合は困難が伴う。
[Problems to be Solved by the Invention] However, the technique using a surfactant is in a solution, and it is difficult to extract the fine particles as a solid.

また液体状態で、微粒子としての機能を充分引き出して
応用することはむずかしい。
Furthermore, in a liquid state, it is difficult to fully exploit the functions of fine particles and apply them.

またフェニルキャッピングの方法で得られた乾燥粉末は
、水分に対して耐久性が弱く通常の状態では非常に不安
定なものである。またこの方法が応用できるのは今のと
ころセレン化物か硫化物に限られてしまう。
Furthermore, the dry powder obtained by the phenyl capping method has poor durability against moisture and is extremely unstable under normal conditions. Furthermore, this method is currently only applicable to selenides and sulfides.

本発明は上記従来のような問題点を解決し、微粒子を閉
じ込めたシリカガラスカプセルを製造する際、微粒子の
取扱を容易にし、なおかつ微粒子としての特性を保つ微
粒子を閉じ込めたシリカカラスカプセルの製造方法を提
供することを目的とする。
The present invention solves the above-mentioned conventional problems, and provides a method for manufacturing silica glass capsules that confine fine particles, which facilitates handling of the fine particles, and maintains the characteristics as fine particles. The purpose is to provide

[課題を解決するための手段] 本発明の微粒子を閉じ込めたシリカガラスカプセルの製
造方法は、水とシリコンアルコキシド(S i  (O
R) 4+  ただしRはアルキル基)との反応により
シリカガラスを製造する方法(一般にゾルゲル法と呼ん
でいる)において、水或はシリコンアルコキシドに分散
させた微粒子を界面活性剤を用いて、界面活性剤による
水或はシリコンアルフキシト液体のどちらか一方の微小
液滴のミセルをもう一方の液体中に形成し、さらに微粒
子をその微小液滴中に入れて微粒子同士の凝集を防止し
、その状態でソリコンアルコキシドと水とを反応させ微
粒子をシリカガラスで被ってしまい、その後の取扱にお
いて微粒子同士の凝集を防ぐことを特徴とする。
[Means for Solving the Problems] The method for producing a silica glass capsule in which fine particles are confined according to the present invention includes water and silicon alkoxide (S i (O
R) 4+ (where R is an alkyl group) In the method of manufacturing silica glass (generally called the sol-gel method), fine particles dispersed in water or silicon alkoxide are made to have surface activity using a surfactant. Form micelles of minute droplets of either water or silicon alphoxide liquid in the other liquid by using an agent, and then place fine particles into the minute droplets to prevent agglomeration of the fine particles. It is characterized by reacting soricon alkoxide with water and covering the fine particles with silica glass, which prevents the fine particles from aggregating during subsequent handling.

本発明においては、微粒子周辺を被う材料として界面活
性剤やフェニル基のかわりにシリコンアルコキシドと水
との反応によって生成されるシリカガラスを用いること
とした。本発明に使用することができるシリコンアルコ
キシドとして、テトラメトキシシラン、テトラエトキシ
シラン、テトラプロポキシシラン、テトラブトキシシラ
ンなどが挙げられる。
In the present invention, silica glass produced by a reaction between silicon alkoxide and water is used instead of a surfactant or a phenyl group as a material covering the periphery of the fine particles. Examples of silicon alkoxides that can be used in the present invention include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane.

本発明の方法によれば微粒子の材料に関係なく応用する
ことが出来、水分等に対する耐久性も充分確保出来る。
The method of the present invention can be applied regardless of the material of the fine particles, and can also ensure sufficient durability against moisture and the like.

またこのような措置を施しであるため取扱が容易で応用
面においても自由度を増すことが出来る。
Moreover, since such measures are taken, handling is easy and flexibility can be increased in terms of application.

[作用コ 以下に本発明を図面を参照して詳細に説明する。[Action Co. The present invention will be explained in detail below with reference to the drawings.

第1図aは本発明の溶媒中でのミセルの状態を模式的に
表し、第1図すは微粒子をミセル内に閉じ込めた状態の
模式図である。また第1図Cは本とシリコンアルフキシ
トとの反応が終り、微粒子がガラスカプセルに閉じ込め
られた状態での模式溶媒であるシリコンアルコキシド1
は非水和性であり反応物である水2とは混合しない。大
量のシリコンアルフキシト液体に、水に対して逆ミセル
を形成する親水基と疎水基とを持つ界面活性剤3を混合
し、水を加えると界面活性剤に囲まれた水が、シリコン
アルコキシド液体中に分散する。
FIG. 1A schematically represents the state of micelles in the solvent of the present invention, and FIG. 1A is a schematic diagram of the state in which fine particles are confined within the micelles. In addition, Figure 1C shows the schematic solvent silicon alkoxide 1 after the reaction between the book and silicon alkoxide is completed and the fine particles are confined in the glass capsule.
is non-hydratable and does not mix with water 2, which is a reactant. A large amount of silicon alkoxide liquid is mixed with surfactant 3, which has a hydrophilic group and a hydrophobic group that form reverse micelles with water, and when water is added, the water surrounded by the surfactant turns into silicon alkoxide liquid. dispersed inside.

この様子を模式的に第1図aに示した。ここであらかじ
め水の中に微粒子5を分散しておけばミセル内部は模式
的に第1図すの様な状態になる。
This situation is schematically shown in FIG. 1a. If the fine particles 5 are dispersed in water in advance, the inside of the micelle will be in a state as schematically shown in Figure 1.

例えばTMS (テトラメトキシシラン)と水は次の反
応式に基づいてガラスの主成分であるシリカを形成する
For example, TMS (tetramethoxysilane) and water form silica, which is the main component of glass, based on the following reaction formula.

S i (OCH3) 4+ 4 H20=S i (
OH)、+4CH,OH 8i  (OH)4: S i o2+2 H20水中
に酸或はアルカリ触媒を加えるか、加熱することにより
反応は進み、ミセル中の水は溶媒であるシリコンアルコ
キシドと反応してシリカガラスを形成する。水中にあっ
た微粒子はそのままガラス内に閉じ込められることにな
り、第1図Cに示したように生成したガラスをカプセル
6として作用させることが出来る。このようにして形成
された、微粒子を閉じ込めたシリカガラスカプセルを沈
澱させ、ろ過、洗浄、乾燥することにより微粒子をカプ
セル化したシリカ粉末を得ることが出来る。
S i (OCH3) 4+ 4 H20=S i (
OH), +4CH,OH 8i (OH)4: Sio2+2 H20 The reaction progresses by adding an acid or alkali catalyst to the water or heating it, and the water in the micelles reacts with the silicon alkoxide solvent to form silica. form glass. The fine particles that were in the water are trapped in the glass as they are, and the glass thus produced can function as a capsule 6 as shown in FIG. 1C. The thus formed silica glass capsules containing fine particles are precipitated, filtered, washed, and dried to obtain silica powder containing fine particles.

また前記の方法とは逆に水を溶媒として、微粒子を分散
させたシリコンアルコキシドをミセルの中に閉じ込めて
上記反応を行うことによっても同様に微粒子のカプセル
化は可能である。
In addition, contrary to the above method, fine particles can be similarly encapsulated by using water as a solvent to confine silicon alkoxide in which fine particles are dispersed in micelles and carrying out the above reaction.

[実施例コ 以下に、実施例を挙げて本発明をより具体的に説明する
[Example] The present invention will be explained in more detail by giving examples below.

TMS 70 c cをビーカーにとり、そこに界面活
性剤のAOT (スルホコハク酸エステル系の界面活性
剤の一種、商品名)を3cc混合する。これとは別に0
.067mol/IのCd(CIO2)2水溶液を1c
C1o、095mol/1のNa2S水溶液をlcc用
意する。この2つの水溶液は混合することにより5〜1
0nm程度の粒径を持つCdS超微粒子のコロイドを形
成することが出来る。2つの水溶液をTMS液にそれぞ
れ混合するとAOTのミセルに水溶液は閉じ込められ、
TMS中に乳化分散される。さらに水溶液中ではCdS
が生成され同時にミセル中の水溶液中に閉じ込められる
。Cd(CIO4)、とNa、S水溶液はアルカリ性で
あるためTMSと水との反応の触媒としての働きもし、
1分程度でガラス微粒子に変化、沈澱する。何回かアル
コールなどの有機溶剤で置換沈澱をくりかえしてAOT
を取り除き、乾燥させガラス粒子を得た。
Place TMS 70 cc in a beaker and mix therein with 3 cc of AOT (a type of sulfosuccinic acid ester surfactant, trade name). Apart from this, 0
.. 1 c of Cd(CIO2)2 aqueous solution of 067 mol/I
C1o, 095 mol/1 Na2S aqueous solution is prepared in lcc. By mixing these two aqueous solutions, the
It is possible to form a colloid of CdS ultrafine particles having a particle size of about 0 nm. When two aqueous solutions are mixed with the TMS liquid, the aqueous solutions are trapped in the AOT micelles,
Emulsified and dispersed in TMS. Furthermore, in aqueous solution, CdS
is generated and simultaneously trapped in the aqueous solution in the micelles. Since the Cd(CIO4), Na, and S aqueous solution is alkaline, it also acts as a catalyst for the reaction between TMS and water.
It changes into fine glass particles and precipitates in about 1 minute. AOT by repeating displacement precipitation several times with organic solvents such as alcohol.
was removed and dried to obtain glass particles.

得られたガラス粒子は薄黄色をしていた。CdSの粒径
が大きい(数μm程度)市販試薬粉末は茶色をしている
。この違いはCdS粒子がIonm程度の大きさでガラ
ス中に閉じ込ぬられているために、量子サイズ効果によ
る光の吸収端が短波長側にシフトしたためと考えられる
。このことは良好に粒子かガラス中に閉じ込められ、微
粒子の凝集は起こっていないことを示している。また微
粒子の分光特性を測定すると吸収端は490nm程度で
あり、バルクの吸収端の520nmより短波長にシフト
していた。この粉末を透過型電子顕微鏡で観察するとC
dS微粒子がガラスの中に閉じ込められており、そのと
きのCdS微粒子の粒径は10nm程度であった。
The obtained glass particles had a pale yellow color. Commercially available reagent powder with large CdS particles (about several micrometers) is brown in color. This difference is thought to be due to the fact that the CdS particles are confined in the glass with a size of approximately ionm, so that the light absorption edge due to the quantum size effect is shifted to the shorter wavelength side. This indicates that the particles were well confined within the glass and no aggregation of the fine particles occurred. Further, when the spectral characteristics of the fine particles were measured, the absorption edge was found to be approximately 490 nm, which was shifted to a shorter wavelength than the bulk absorption edge of 520 nm. When this powder was observed with a transmission electron microscope, C
The dS fine particles were confined within the glass, and the particle size of the CdS fine particles at that time was about 10 nm.

このように得られたCdSを含んだガラスカプセルは、
メタノール、アセトンなどの有機溶剤をはじめ水の中に
入れてもその特性の変化は見られなかった。
The glass capsule containing CdS obtained in this way is
No change in its properties was observed even when it was placed in organic solvents such as methanol and acetone, as well as in water.

[発明の効果] 本発明によれば従来困難であった微粒子の取扱いが、微
粒子を凝集を防いだ状態でシリカガラスで被ってしまい
微粒子をカプセル化することにより容易となった。また
水分などの環境条件にも充分耐えられる形で微粒子を取
り出すことが可能となり、微粒子としての機能を充分に
引き出して応用することが容易となり、応用面における
自由度を増すことが出来た。
[Effects of the Invention] According to the present invention, handling of fine particles, which was difficult in the past, has become easier by covering the fine particles with silica glass to prevent agglomeration and encapsulating the fine particles. Furthermore, it has become possible to extract fine particles in a form that can sufficiently withstand environmental conditions such as moisture, making it easier to fully utilize the functions of fine particles and increasing the degree of freedom in terms of application.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは本発明の溶媒中でのミセルの状態を模式的に
表し、第1図すは微粒子をミセル内に閉じ込めた状態の
模式図である。また第1図Cは水とシリコンアルコキシ
ドとの反応が終り、微粒子がガラスカプセルに閉じ込め
られた状態での模式1・・・溶媒(シリコンアルコキシ
ド)、  2・・・水、3・・・界面活性剤、  5・
・・微粒子、  6・・・微粒子が閉じ込められたガラ
スカプセル。 ニアi+i^÷。 第 図す 第 図C 号の説明 水 界面活性剤 反応容器
FIG. 1A schematically represents the state of micelles in the solvent of the present invention, and FIG. 1A is a schematic diagram of the state in which fine particles are confined within the micelles. In addition, Figure 1C shows the state in which the reaction between water and silicon alkoxide has finished and the fine particles are confined in the glass capsule.Scheme 1...solvent (silicon alkoxide), 2...water, 3...surface activity agent, 5.
...Fine particles, 6...Glass capsule in which fine particles are trapped. Near i+i^÷. Figure C Description of water surfactant reaction vessel

Claims (1)

【特許請求の範囲】[Claims] 水とシリコンアルコキシド(Si(OR)_4、ただし
Rはアルキル基)との反応によりシリカガラスを製造す
る方法(一般にゾルゲル法と呼んでいる)において、水
或はシリコンアルコキシドに分散させた微粒子を界面活
性剤を用いて、界面活性剤による水或はシリコンアルコ
キシド液体のどちらか一方の微小液滴のミセルをもう一
方の液体中に形成し、さらに微粒子をその微小液滴中に
入れて微粒子同士の凝集を防止し、その状態でシリコン
アルコキシドと水とを反応させ微粒子をシリカガラスで
被ってしまい、その後の取扱において微粒子同士の凝集
を防ぐことを特徴とする微粒子を閉じ込めたシリカガラ
スカプセルの製造方法。
In a method (generally called sol-gel method) for producing silica glass by the reaction of water and silicon alkoxide (Si(OR)_4, where R is an alkyl group), fine particles dispersed in water or silicon alkoxide are mixed at the interface. Using an activator, micelles of microdroplets of either water or silicon alkoxide liquid are formed in the other liquid, and microparticles are placed in the microdroplets to form particles that interact with each other. A method for producing a silica glass capsule containing fine particles, which is characterized by preventing agglomeration, reacting silicon alkoxide with water in that state, covering the fine particles with silica glass, and preventing the fine particles from agglomerating with each other during subsequent handling. .
JP25092190A 1990-09-20 1990-09-20 Preparation of silica glass capsule having minute particles enclosed therein Pending JPH04131133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25092190A JPH04131133A (en) 1990-09-20 1990-09-20 Preparation of silica glass capsule having minute particles enclosed therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25092190A JPH04131133A (en) 1990-09-20 1990-09-20 Preparation of silica glass capsule having minute particles enclosed therein

Publications (1)

Publication Number Publication Date
JPH04131133A true JPH04131133A (en) 1992-05-01

Family

ID=17215005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25092190A Pending JPH04131133A (en) 1990-09-20 1990-09-20 Preparation of silica glass capsule having minute particles enclosed therein

Country Status (1)

Country Link
JP (1) JPH04131133A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190268A (en) * 1992-05-29 1994-07-12 Hughes Aircraft Co Spherical particle coated with sol-gel
JP2008546614A (en) * 2005-06-17 2008-12-25 オーストラリアン ニュークリア サイエンス アンド テクノロジー オーガニゼーション Particles containing a hydrophobic substance therein

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190268A (en) * 1992-05-29 1994-07-12 Hughes Aircraft Co Spherical particle coated with sol-gel
JP2008546614A (en) * 2005-06-17 2008-12-25 オーストラリアン ニュークリア サイエンス アンド テクノロジー オーガニゼーション Particles containing a hydrophobic substance therein

Similar Documents

Publication Publication Date Title
CN104624125B (en) A kind of Photochromic double-shell microcapsule and its preparation method and application
CN101952198B (en) A process of making metal chalcogenide particles
EP0207134B1 (en) Small particle formation and encapsulation
KR100773221B1 (en) Composite Particles
CA1179902A (en) Incorporation of finely divided additives at the surface of microcapsule walls
WO1985000105A1 (en) Small particle formation and encapsulation
EP0130162A2 (en) Small particle formation and encapsulation
US2935481A (en) Water-soluble fluorescent dye-coated hydrophobic silica and process of making the same
JPH04131133A (en) Preparation of silica glass capsule having minute particles enclosed therein
US3791987A (en) Minute capsules having walls of siliceous material-hydroxy-containing material complex and process for their manufacture
EP0704502B1 (en) Zink-oxide containing spherical silica and process for its production
EP1483203B1 (en) Modified oxidic nano-particle with hydrophobic inclusions, method for the production and use of said particle
CN107683257A (en) The composite of nanocrystal is absorbed containing UV
CN109942849A (en) A kind of preparation method and applications with stimulating responsive polyvinyl alcohol oxidation-resistant film
KR100435561B1 (en) Organic doped silica microsphere and process for preparing the same
CN109777400B (en) Non-toxic Cu2S/ZnS core/shell quantum dot and preparation method thereof
CN105419779A (en) Quantum dot composite material having dual-component substrate and preparation method thereof
CN105542773A (en) Quantum dot composite microsphere with bi-component shell layer and preparation method of quantum dot composite microsphere
JPH057766A (en) Preparation of microcapsule
CN101850246A (en) Novel composite membrane photocatalyst and preparation method thereof
US20240100212A1 (en) Reversibly protected colorants and methods of use
JPS6136782B2 (en)
CN1305992C (en) Display material of green electronic ink in color lake class
CN105482821A (en) Quantum dot composite microsphere with bi-component shell layer and preparation method of quantum dot composite microsphere
JP5874436B2 (en) Zinc oxide particles and method for producing the same