JPH0413046B2 - - Google Patents
Info
- Publication number
- JPH0413046B2 JPH0413046B2 JP59164150A JP16415084A JPH0413046B2 JP H0413046 B2 JPH0413046 B2 JP H0413046B2 JP 59164150 A JP59164150 A JP 59164150A JP 16415084 A JP16415084 A JP 16415084A JP H0413046 B2 JPH0413046 B2 JP H0413046B2
- Authority
- JP
- Japan
- Prior art keywords
- treatment
- wire
- lubrication
- solution
- zinc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000011282 treatment Methods 0.000 claims description 53
- 238000005461 lubrication Methods 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 24
- IQBJFLXHQFMQRP-UHFFFAOYSA-K calcium;zinc;phosphate Chemical compound [Ca+2].[Zn+2].[O-]P([O-])([O-])=O IQBJFLXHQFMQRP-UHFFFAOYSA-K 0.000 claims description 23
- 238000005491 wire drawing Methods 0.000 claims description 22
- 239000000314 lubricant Substances 0.000 claims description 16
- 239000011575 calcium Substances 0.000 claims description 15
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 claims description 13
- 235000013539 calcium stearate Nutrition 0.000 claims description 13
- 239000008116 calcium stearate Substances 0.000 claims description 13
- 239000011701 zinc Substances 0.000 claims description 12
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 claims description 11
- 238000001035 drying Methods 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 239000000344 soap Substances 0.000 claims description 5
- 229920005992 thermoplastic resin Polymers 0.000 claims description 5
- 238000005406 washing Methods 0.000 claims description 4
- 239000000243 solution Substances 0.000 description 24
- 238000012545 processing Methods 0.000 description 18
- 230000001050 lubricating effect Effects 0.000 description 16
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 13
- 229910000165 zinc phosphate Inorganic materials 0.000 description 13
- 230000000694 effects Effects 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000010273 cold forging Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000005422 blasting Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005554 pickling Methods 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 2
- 239000003082 abrasive agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000007603 infrared drying Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000013000 roll bending Methods 0.000 description 1
- 102200082816 rs34868397 Human genes 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 239000012756 surface treatment agent Substances 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C1/00—Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
- B21C1/006—Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing using vibratory energy
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metal Extraction Processes (AREA)
Description
発明の技術分野
この発明は線材(棒鋼を含む)を連続的に移動
させながら脱スケール、潤滑下地処理、潤滑処理
を施して伸線する冷間鍛造用線材の連続伸線方法
に関する。
従来技術とその問題点
冷間鍛造用の線材に対する2次加工は、線材の
脱スケール(酸洗)−潤滑下地処理−潤滑処理−
乾燥−伸線−巻取の順で行なわれる。そして、酸
洗、潤滑下地処理および潤滑処理はバツチ処理方
式で行なわれるのが一般的である。すなわち、従
来は線材を酸洗後、リン酸亜鉛等のリン酸塩溶液
に浸し、その後でステアリン酸ナトリウム等の水
溶液に浸して、線材の表面にステアリン酸亜鉛、
リン酸亜鉛のような潤滑皮膜を形成させる方法で
ある。従来このようなバツチ処理方式が採用され
ているのは、十分な潤滑性能を発揮するに足る厚
さの皮膜を得るためには長い反応時間を要するこ
と、そのためには処理槽を長くする必要があり、
オンライン化が困難である等の理由による。
そこで、例えば特開昭56−163047号公報には、
設備費や生産性の改善を目的として、潤滑下地処
理、潤滑処理をオンライン方式で実施可能な方法
が提案され、すでに実用化されている。この方法
は、脱スケール後、リン酸亜鉛皮膜処理(潤滑下
地処理)した線材の表面にステアリン酸カルシウ
ムを室温で付着させ(潤滑処理)した後、急速乾
燥することを特徴とするもので、ランニングコス
トの低下がはかられる上、短時間で所要量の潤滑
剤を付着させることができ、かつ乾燥も短時間で
済むのでラインを大きく延長することなくオンラ
イン化が可能である。
しかし従来の方法は、前記のバツチ処理方式、
オンライン方式のいずれの場合も潤滑下地剤とし
て使用されているのはリン酸亜鉛溶液であり、潤
滑皮膜の耐熱性が劣る欠点があつた。
発明の目的
この発明は、線材の脱スケール、潤滑下地処
理、潤滑処理、乾燥、伸線処理をオンライン化す
るとともに、耐熱性にすぐれた潤滑皮膜を得、伸
線をこれまで以上に能率よく短時間で実施可能な
連続伸線方法を提案することを目的とするもので
ある。
発明の構成
この発明に係る線材の連続伸線方法は、脱スケ
ール後予熱した線材を70〜90℃に保温されかつ超
音波(周波数:10〜60KHz、出力:25W/溶液1
当り)を付加したリン酸亜鉛カルシウム溶液
(Ca/Zn=0.3〜0.5)中を通して潤滑下地処理を
行ない、水洗後、前記下地処理した線材に室温で
ステアリン酸カルシウムを付着させるか、あるい
は該線材を70〜90℃に保温されたステアリン酸ナ
トリウム溶液中に通して潤滑処理を行ない、乾燥
後伸線する際、ダイス前潤滑剤として金属石けん
類を主体とした潤滑剤に1〜10重量%の熱可塑性
樹脂(例えばフツ素系樹脂、ポリエチレン、ナイ
ロン、アクリル、ポリカーボネート等)を添加す
ることを特徴とするものである。
以下、この発明について詳細に説明する。
まず、この発明における線材の脱スケール法は
特に限定するものではなく、酸洗法、シヨツトブ
ラスト法、ロールベンデイング法のいずれでもよ
い。このうち、シヨツトブラスト法はオンライン
化にはリン酸塩皮膜の確保のために好適である。
次に、潤滑下地処理剤としてこの発明では耐熱
性にすぐれたリン酸亜鉛カルシウム溶液(Ca/
Zn=0.3〜0.5)を用いることを特徴とする。すな
わち、リン酸亜鉛カルシウム皮膜の脱結晶水温度
は415℃であるのに対し、従来使用されているリ
ン酸亜鉛皮膜の脱結晶水温度は280〜290℃であ
る。従つて、リン酸亜鉛皮膜は伸線時の発熱
(200〜300℃)により脱結晶水となる。このため
伸線においては皮膜に亀裂が発生する傾向にあ
る。これに対し、この発明のリン酸亜鉛カルシウ
ム皮膜は前記したとおり脱結晶水温度が415℃で
あるため、伸線により皮膜に亀裂が入ることはな
い。
またこの発明では、上記リン酸亜鉛カルシウム
皮膜の付着量の確保および付着量コントロールの
ために超音波処理することを特徴とする。これ
は、リン酸亜鉛カルシウム溶液は化成処理性がリ
ン酸亜鉛溶液に比べてやや悪いため、付着量を確
保しにくい。しかし、第1図に超音波付加の効果
を示すごとく、リン酸亜鉛カルシウム溶液に超音
波を付加すると付着量が増加するため、潤滑下地
処理に超音波を付加する方法を採用したのであ
る。なお、第1図の結果は、処理条件として濃度
340g/、温度80℃、超音波周波数50KHz、
1KWの場合である。
また、上記超音波周波数は第2図に超音波周波
数とリン酸亜鉛カルシウム付着量の関係(この時
の超音波の出力は1KW)を示すごとく、10〜
60KHzが望ましい。10KHz以下では騒音の点で問
題があり、60KHz以上では付着量に対しあまり効
果がないからである。さらに、出力は溶液1当
り25Wが好ましい。その理由は、出力1KWの超
音波を用い、かつ溶液401の処理槽において実験
を行い、所定のリン酸亜鉛付着量を得ることがで
きたことに基づく。
また、上記リン酸亜鉛カルシウム皮膜のCa/
Zn比率を0.3〜0.5としたのは次に示す理由によ
る。第3図はリン酸亜鉛カルシウム皮膜(溶液濃
度340g/)のCa/Zn比率と付着量の関係を示
す図表である。すなわち、Ca/Zn比が0.3以下に
なるとCaの比率が少ないためにCa添加の効果が
少なく、耐熱性が十分でない。また、Ca/Zn>
0.5の場合は化成処理性が悪く所定のリン酸塩付
着量(≧6g/m2)、金属石けん付着量(≧1
g/m2)が得られにくい。従つて、リン酸亜鉛カ
ルシウム皮膜のCa/Zn比率は0.3〜0.5が好まし
い。
なお、リン酸亜鉛カルシウム溶液の濃度は340
g/以上でないと10〜20秒の短時間処理におい
て所定の付着量6g/m2以上が得られない。ま
た、425g/以上になると濃度を高めた割には
付着量が得られず経済的でない。ここで、リン酸
亜鉛カルシウム皮膜の所定の付着量を6g/m2以
上としているのは、従来のリン酸亜鉛皮膜の場合
は耐熱性に乏しいため所定の付着量を7〜8g/
m2とする必要があるが、この発明のリン酸亜鉛カ
ルシウム皮膜の場合は耐熱性にすぐれているため
6g/m2で十分であることによる。
上記潤滑下地処理後に行なう潤滑処理は、ス
テアリン酸カルシウムを室温で付着させる方法、
あるいは70〜90℃に保温されたステアリン酸ナ
トリウム溶液中を通して行なうことを特徴とす
る。のステアリン酸カルシウム処理の場合は、
第4図に示す濃度と付着量の関係から明らかなご
とく、付着量を所定の5g/m2以上とするために
濃度は300g/以上とする。なお、ステアリン
酸カルシウムを線材に付着させる方法としては、
湿式スプレイ方式(溶液を塗布)、あるいは乾式
塗布方式(粉末を塗布)を採用することができる
が、潤滑剤の付着量、皮膜の密着性等から湿式ス
プレイ方式による塗布が好ましい。なお、処理時
間は物理的付着のため通常2〜3秒程度である。
また、のステアリン酸ナトリウム処理の場合
は、バツチ方式を採用することができるが、この
場合は潤滑下地処理のリン酸亜鉛カルシウム皮膜
とこのステアリン酸ナトリウムの置換反応により
生成される反応層(ステアリン酸亜鉛)が付着す
ることになる。この反応層の付着量としては、通
常1g/m2以上確保する必要があり、そのための
処理時間は第5図に示すステアリン酸ナトリウム
処理時間と反応層付着量の関係より20秒以上要す
る。
なお、上記、の潤滑処理は、伸線時にダイ
ス前潤滑剤を添加した場合は省略可能である。
この発明において、伸線時にダイス前潤滑剤を
添加するのは、潤滑皮膜の耐熱性、潤滑性をより
向上させるためであり、そのダイス前潤滑剤とし
ては、金属石けん類を主体とした潤滑剤に1〜10
重量%の熱可塑性樹脂(例えばフツ素系樹脂、ポ
リエチレン、ナイロン、アクリル、ポリカーボネ
ート等)を添加したものを用いる。金属石けん類
の潤滑剤に熱可塑性樹脂を添加するのは熱可塑性
樹脂例えばフツ素系樹脂の持つ耐熱性、低摩擦特
性を利用するためである。また、その添加量を1
〜10重量%に限定したのは、1%以下では引抜力
等に添加の効果があまり認められない、一方添加
量はふえるほど効果は得られるが、分解ガス例え
ばフツ素系樹脂の場合はフツ素ガスであること、
またコストを考慮して上限を10%とした。
第6図はこの発明の処理工程を示すブロツク図
である。すなわち、線材はペイオフスタンド1か
ら繰出されて、脱スケール工程2で例えばシヨツ
トブラストにより脱スケールされる。続いて、予
熱装置3にて所定の温度(80℃以上)に予熱され
た後、潤滑下地処理工程4で超音波が付加された
リン酸亜鉛カルシウム溶液(Ca/Zn=0.3〜0.5)
中を通して潤滑下地処理が行なわれる。リン酸亜
鉛カルシウム溶液は70〜90℃の温度に予熱されて
いる。次に、水洗工程5を経て潤滑処理工程6で
前記潤滑下地処理された線材に対しステアリン酸
カルシウム、あるいはステアリン酸ナトリウムを
付着させて潤滑処理する。ステアリン酸カルシウ
ム処理は室温で行なわれ、ステアリン酸ナトリウ
ムの場合は該溶液70〜90℃の温度に予熱されてい
る。この潤滑処理後が線材は乾燥工程7において
潤滑皮膜を十分乾燥させた後、伸線工程8でダイ
ス前潤滑剤を添加して伸線し、巻取装置9に巻取
る。
ここで、超音波潤滑下地処理を行なうための装
置としては、第7図および第8図に示すごとく例
えば、円筒状の処理槽11の外周面に複数個の超
音波付加装置12を上下左右方向に2個所ずつ平
行に配置し(もちろん互に位置をずらして配置し
てもよい)、処理槽11の入側と出側に突設した
処理液受13の部分から返戻管14を介して処理
液タンク15に処理液19を回収するように設け
るとともに、該処理液タンク15内の処理液をポ
ンプ16にて処理槽11に循環供給するように配
管17した構造のものを用いることができる。こ
のような装置によれば、リン酸亜鉛カルシウム溶
液中に超音波が照射されて液が撹拌され、またキ
ヤビテーシヨン作用によつて迅速にリン酸亜鉛カ
ルシウム溶液が線材18表面に付着する。また、
超音波付加の有無、あるいは超音波付加装置の周
波数を変えることによりリン酸亜鉛カルシウム溶
液の付着量をコントロールすることができる。
実施例
第6図に示すライン構成で、線材の脱スケール
にシヨツトブラストを採用し、第7図および第8
図に示す超音波潤滑下地処理装置を備えた設備に
より、5.5mmφの材料(材質S45C)を下記に示す
操業条件で伸線し、最終的に4.95mmφ、4.6mmφ
の伸線材を得た。
操業条件
脱スケール条件
研掃材:直径0.3mmの鋼球、投射密度:約300
Kg/m2
予熱条件
蒸気吹付け:予熱温度80℃
潤滑下地処理条件
潤滑下地剤:リン酸亜鉛カルシウム溶液
(Ca/Zn=0.5)
付着条件:340g/(濃度)×80℃(温度)
×15sec(反応時間)、超音波:50KHz.1KW
(溶液量160)
潤滑処理条件
() ステアリン酸カルシウムの場合
濃度:300g/、温度:室温、時間:3
秒
() ステアリン酸ナトリウムの場合
濃度:90g/、温度:80℃、時間:25秒
乾燥処理条件
赤外線乾燥炉:炉温80℃
伸線条件
ダイス前潤滑剤:ステアリン酸カルシウムを
主成分とする潤滑剤にフツ素系樹脂を3%添加
したもの
減面率:約19%(5.5mmφ→4.95mmφ)
約30%(5.5mmφ→4.6mmφ)
伸線速度:80m/min
第1表は、伸線時の引抜き力を、従来方式(潤
滑下地処理:リン酸亜鉛、ダイス前潤滑:ステア
リン酸カルシウムを主成分とする市販潤滑剤の
み)と比較して示したものである。
また、巻取後の線材のバウデン試験(潤滑能、
油膜皮膜の密着性調査)結果を第9図に、μ=
0.2に達するバウデン摺動回数を第2表にそれぞ
れ従来と比較して示す。
また、本発明例1の条件(ただし伸線減面率:
5.5φ→4.95φ)で伸線し、さらに冷間鍛造により
小ねじを製造したときの伸線ダイス、冷間鍛造金
型の寿命を従来と比較して第3表に示す。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a continuous wire drawing method for cold forging wire rods, in which the wire rods (including steel bars) are continuously moved and subjected to descaling, lubrication base treatment, and lubrication treatment before being drawn. Conventional technology and its problems The secondary processing of wire rods for cold forging consists of wire rod descaling (pickling) - lubrication surface treatment - lubrication treatment -
Drying, wire drawing, and winding are performed in this order. Pickling, lubrication base treatment, and lubrication treatment are generally performed in a batch process. That is, conventionally, after pickling a wire, it is immersed in a phosphate solution such as zinc phosphate, and then immersed in an aqueous solution such as sodium stearate to coat the surface of the wire with zinc stearate,
This method forms a lubricating film such as zinc phosphate. Conventionally, this batch treatment method has been adopted because it takes a long reaction time to obtain a film thick enough to exhibit sufficient lubrication performance, and to do so, the treatment tank must be made longer. can be,
This is due to reasons such as difficulty in going online. Therefore, for example, in Japanese Patent Application Laid-Open No. 56-163047,
With the aim of improving equipment costs and productivity, a method has been proposed that allows lubrication base treatment and lubrication treatment to be performed online, and has already been put into practical use. This method is characterized by attaching calcium stearate at room temperature (lubrication treatment) to the surface of the wire rod, which has been descaled and treated with zinc phosphate coating (lubrication base treatment), followed by rapid drying, resulting in running costs. In addition, the required amount of lubricant can be deposited in a short time, and drying can be completed in a short time, making it possible to go online without significantly extending the line. However, the conventional method uses the batch processing method described above,
In both online methods, a zinc phosphate solution is used as a lubricating base agent, which has the drawback of poor heat resistance of the lubricating film. Purpose of the Invention This invention brings wire rod descaling, lubrication base treatment, lubrication treatment, drying, and wire drawing processing online, obtains a lubricating film with excellent heat resistance, and makes wire drawing more efficient and shorter than ever before. The purpose of this paper is to propose a continuous wire drawing method that can be carried out in a short period of time. Structure of the Invention In the continuous wire drawing method according to the present invention, a preheated wire after descaling is heated at 70 to 90°C and subjected to ultrasonic waves (frequency: 10 to 60 KHz, output: 25 W/solution 1).
Lubricating base treatment is performed by passing the wire through a zinc calcium phosphate solution (Ca/Zn = 0.3 to 0.5) to which a base-treated wire has been added (Ca/Zn = 0.3 to 0.5), and after washing with water, calcium stearate is attached to the base-treated wire at room temperature, or the wire is Lubricating treatment is carried out through a sodium stearate solution kept at ~90℃, and after drying, when drawing the wire, 1 to 10% by weight of thermoplastic is added to a lubricant mainly consisting of metal soap as a lubricant before the die. It is characterized by adding a resin (for example, fluororesin, polyethylene, nylon, acrylic, polycarbonate, etc.). This invention will be explained in detail below. First, the method for descaling the wire in the present invention is not particularly limited, and may be any of pickling, shot blasting, and roll bending. Among these, the shot blasting method is suitable for online production in order to secure a phosphate film. Next, as a lubricating surface treatment agent, this invention uses a zinc calcium phosphate solution (Ca/
It is characterized by using Zn=0.3 to 0.5). That is, the decrystallization water temperature for the zinc phosphate calcium film is 415°C, whereas the decrystallization water temperature for the conventionally used zinc phosphate film is 280 to 290°C. Therefore, the zinc phosphate film turns into decrystallized water due to heat generation (200 to 300°C) during wire drawing. For this reason, cracks tend to occur in the coating during wire drawing. On the other hand, in the zinc calcium phosphate coating of the present invention, since the decrystallization water temperature is 415° C. as described above, the coating does not crack due to wire drawing. Further, the present invention is characterized in that ultrasonic treatment is carried out in order to ensure the amount of adhesion of the zinc calcium phosphate film and to control the amount of adhesion. This is because zinc calcium phosphate solution has a slightly poorer chemical conversion treatment property than zinc phosphate solution, so it is difficult to secure a sufficient amount of adhesion. However, as shown in Figure 1, which shows the effect of ultrasonic waves, adding ultrasonic waves to the zinc calcium phosphate solution increases the amount of adhesion, so a method of adding ultrasonic waves to the lubricating base treatment was adopted. The results shown in Figure 1 are based on the concentration as the processing condition.
340g/, temperature 80℃, ultrasonic frequency 50KHz,
This is the case of 1KW. In addition, the above ultrasonic frequency is 10 to
60KHz is preferable. This is because below 10KHz there is a problem in terms of noise, and above 60KHz there is not much effect on the amount of adhesion. Further, the output power is preferably 25 W per solution. The reason for this is that an experiment was conducted using ultrasonic waves with an output of 1 KW and in a treatment tank for the solution 401, and a predetermined amount of zinc phosphate coating could be obtained. In addition, the Ca/calcium zinc phosphate film mentioned above
The reason why the Zn ratio was set to 0.3 to 0.5 is as follows. FIG. 3 is a chart showing the relationship between the Ca/Zn ratio and the amount of adhesion in a zinc calcium phosphate film (solution concentration 340 g/). That is, when the Ca/Zn ratio is less than 0.3, the effect of adding Ca is small because the ratio of Ca is small, and the heat resistance is not sufficient. Also, Ca/Zn>
In the case of 0.5, chemical conversion treatment is poor and the specified phosphate adhesion amount (≧6g/m 2 ) and metal soap adhesion amount (≧1
g/m 2 ) is difficult to obtain. Therefore, the Ca/Zn ratio of the zinc calcium phosphate film is preferably 0.3 to 0.5. In addition, the concentration of zinc calcium phosphate solution is 340
If it is not more than 6 g/m 2 , it will not be possible to obtain a predetermined adhesion amount of 6 g/m 2 or more in a short time treatment of 10 to 20 seconds. Moreover, if it exceeds 425 g/g, it is not economical because the amount of adhesion cannot be obtained even though the concentration is increased. Here, the predetermined adhesion amount of the zinc phosphate calcium film is set to 6 g/m2 or more because conventional zinc phosphate films have poor heat resistance, so the predetermined adhesion amount is set at 7 to 8 g/m2.
m 2 , but in the case of the zinc calcium phosphate film of the present invention, 6 g/m 2 is sufficient because it has excellent heat resistance. The lubrication treatment performed after the above-mentioned lubrication base treatment is a method of depositing calcium stearate at room temperature,
Alternatively, it is characterized by passing it through a sodium stearate solution kept at a temperature of 70 to 90°C. In the case of calcium stearate treatment,
As is clear from the relationship between the concentration and the amount of adhesion shown in FIG. 4, the concentration is set to 300 g/m or more in order to keep the amount of adhesion at the predetermined value of 5 g/m 2 or more. In addition, the method for attaching calcium stearate to the wire is as follows:
A wet spray method (coating a solution) or a dry coating method (coating a powder) can be employed, but application by a wet spray method is preferable in view of the amount of lubricant deposited, the adhesion of the film, etc. Note that the processing time is usually about 2 to 3 seconds due to physical adhesion. In addition, in the case of sodium stearate treatment, a batch method can be adopted, but in this case, a reaction layer (stearate Zinc) will adhere to the surface. The amount of the reaction layer deposited must normally be 1 g/m 2 or more, and the treatment time required for this purpose is 20 seconds or more based on the relationship between the sodium stearate treatment time and the amount of reaction layer deposited as shown in FIG. Note that the above lubrication treatment can be omitted if a pre-die lubricant is added during wire drawing. In this invention, the pre-die lubricant is added during wire drawing in order to further improve the heat resistance and lubricity of the lubricant film. 1 to 10
A material containing a thermoplastic resin (for example, fluororesin, polyethylene, nylon, acrylic, polycarbonate, etc.) in an amount of % by weight is used. The reason why thermoplastic resins are added to lubricants for metal soaps is to take advantage of the heat resistance and low friction properties of thermoplastic resins, such as fluorocarbon resins. Also, the amount added is 1
The reason for limiting the amount to ~10% by weight is that if it is less than 1%, the addition will not have much of an effect on the pulling force, etc. On the other hand, as the amount added increases, the effect will be obtained, but it will be Being an elementary gas,
Also, taking into account costs, the upper limit was set at 10%. FIG. 6 is a block diagram showing the processing steps of the present invention. That is, the wire is unwound from a payoff stand 1 and descaled in a descaling step 2 by, for example, shot blasting. Subsequently, a zinc calcium phosphate solution (Ca/Zn=0.3 to 0.5) is preheated to a predetermined temperature (80°C or higher) in a preheating device 3 and then subjected to ultrasonic waves in a lubrication base treatment step 4.
Lubricating base treatment is carried out through the inside. The zinc calcium phosphate solution is preheated to a temperature of 70-90 °C. Next, after passing through a water washing step 5, in a lubrication treatment step 6, calcium stearate or sodium stearate is applied to the wire rod which has been subjected to the lubrication base treatment, and is then subjected to a lubrication treatment. Calcium stearate treatment is carried out at room temperature, in the case of sodium stearate the solution is preheated to a temperature of 70-90°C. After this lubrication treatment, the wire rod is dried in a drying step 7 to sufficiently dry the lubricating film, and then in a wire drawing step 8 a pre-dice lubricant is added, the wire is drawn, and the wire is wound up in a winding device 9 . Here, as a device for performing ultrasonic lubrication base treatment, as shown in FIGS. 7 and 8, for example, a plurality of ultrasonic application devices 12 are installed on the outer peripheral surface of a cylindrical treatment tank 11 in the vertical and horizontal directions. Two locations are placed parallel to each other (of course, the positions may be shifted from each other), and the processing liquid is passed through the return pipe 14 from the processing liquid receiver 13 protruding from the inlet and outlet sides of the processing tank 11. It is possible to use a structure in which a liquid tank 15 is provided to collect the processing liquid 19, and a pipe 17 is provided so that the processing liquid in the processing liquid tank 15 is circulated and supplied to the processing tank 11 by a pump 16. According to such a device, ultrasonic waves are irradiated into the zinc calcium phosphate solution to stir the solution, and the zinc calcium phosphate solution quickly adheres to the surface of the wire 18 due to the cavitation action. Also,
The amount of deposited zinc calcium phosphate solution can be controlled by changing the presence or absence of ultrasonic wave application or the frequency of the ultrasonic wave application device. Example With the line configuration shown in Figure 6, shot blasting was used to descale the wire rod, and the line configuration shown in Figures 7 and 8 was used.
Using equipment equipped with the ultrasonic lubrication surface treatment equipment shown in the figure, 5.5 mmφ material (material S45C) is drawn under the operating conditions shown below, resulting in wire drawings of 4.95 mmφ and 4.6 mmφ.
A drawn wire material was obtained. Operating conditions Descaling conditions Abrasive material: Steel balls with a diameter of 0.3 mm, projection density: Approx. 300
Kg/m 2 Preheating conditions Steam spraying: Preheating temperature 80℃ Lubrication base treatment conditions Lubrication base agent: Zinc calcium phosphate solution (Ca/Zn=0.5) Adhesion conditions: 340g/(concentration) x 80℃ (temperature)
×15sec (reaction time), ultrasonic wave: 50KHz. 1KW
(Solution volume 160) Lubrication treatment conditions () For calcium stearate Concentration: 300g/, Temperature: Room temperature, Time: 3
Seconds () For sodium stearate Concentration: 90g/, Temperature: 80℃, Time: 25 seconds Drying treatment conditions Infrared drying oven: Furnace temperature 80℃ Wire drawing conditions Pre-die lubricant: Lubricant mainly composed of calcium stearate with 3% fluorine resin added Area reduction rate: approx. 19% (5.5mmφ→4.95mmφ) Approx. 30% (5.5mmφ→4.6mmφ) Wire drawing speed: 80m/min Table 1 shows the results during wire drawing This figure shows a comparison of the pullout force of 200 mm with that of the conventional method (lubricating base treatment: zinc phosphate, pre-die lubrication: only a commercially available lubricant whose main component is calcium stearate). In addition, the Bauden test (lubrication ability,
The results of the oil film adhesion investigation are shown in Figure 9, μ=
Table 2 shows the number of Bauden sliding operations that reach 0.2 in comparison with the conventional method. In addition, the conditions of Invention Example 1 (however, the wire drawing area reduction rate:
Table 3 shows a comparison of the lifespan of the wire drawing die and cold forging die when wire is drawn at 5.5φ→4.95φ) and machine screws are manufactured by cold forging compared to conventional ones.
【表】【table】
【表】【table】
【表】
ただし、ダイス、金型寿命は摩耗、
欠損等でダイス、金型交換までの製造
ton数
第1表、第2表および第9図より、この発明に
よる潤滑皮膜は従来のリン酸亜鉛皮膜に比べ耐熱
性、密着性が共にすぐれていることがわかる。従
つて、伸線ダイス、冷間鍛造金型の寿命も第3表
より明らかなごとく大巾に延びることがわかる。
発明の効果
以上説明したごとく、この発明方法は潤滑下地
処理剤としてリン酸亜鉛カルシウムを用いたこと
により、従来のリン酸亜鉛皮膜より脱結晶水温度
が高く耐熱性にすぐれた皮膜が得られるととも
に、超音波付加手段の採用によりそのリン酸亜鉛
カルシウム皮膜の付着量の確保およびコントロー
ルが自在に行なえる効果を有する。さらに、上記
潤滑下地処理剤の上にステアリン酸カルシウム、
またはステアリン酸ナトリウムによる潤滑処理を
施すことにより、耐熱性のみならず潤滑性の向上
がはかられる効果がある。また、伸線時のダイス
前潤滑剤として、従来の金属石けん類を主体とし
た潤滑剤にフツ素系樹脂等の熱可塑性樹脂を添加
したものを用いたことにより、潤滑皮膜の耐熱
性、潤滑性がより一層高められ、冷間加工工具の
寿命が大巾に延長される効果がある。[Table] However, the lifespan of dies and molds is due to wear and tear.
Manufacturing up to the replacement of dies and molds due to defects etc.
From Tables 1 and 2 and FIG. 9, it can be seen that the lubricating film according to the present invention has better heat resistance and adhesion than the conventional zinc phosphate film. Therefore, as is clear from Table 3, the life of wire drawing dies and cold forging dies is also significantly extended. Effects of the Invention As explained above, by using zinc calcium phosphate as a lubricating base treatment agent, the method of this invention can provide a film with a higher decrystallization water temperature and superior heat resistance than the conventional zinc phosphate film. By employing ultrasonic wave applying means, it is possible to freely secure and control the adhesion amount of the zinc calcium phosphate film. Furthermore, calcium stearate is added on top of the above lubricating base treatment agent.
Alternatively, lubrication treatment with sodium stearate has the effect of improving not only heat resistance but also lubricity. In addition, by using a lubricant in front of the die during wire drawing, which is a mixture of conventional lubricants mainly based on metal soaps and thermoplastic resins such as fluorine-based resins, the heat resistance of the lubricating film and the lubrication This has the effect of further increasing the properties and significantly extending the life of cold working tools.
第1図はこの発明の潤滑下地処理における超音
波付加の効果を示す図表、第2図は同上における
超音波周波数とリン酸亜鉛カルシウム付着量との
関係を示す図表、第3図は同上におけるリン酸亜
鉛カルシウム皮膜のCa/Zn比率と付着量の関係
を示す図表、第4図は同上におけるステアリン酸
カルシウムの濃度と付着量の関係を示す図表、第
5図は同上におけるステアリン酸ナトリウムの処
理時間と反応層付着量の関係を示す図表、第6図
はこの発明の処理工程を示すブロツク図、第7図
は同上における超音波潤滑下地処理を行なうため
の装置の一例を示す概略側面図、第8図は同上装
置の処理槽を示す概略正面図、第9図はこの発明
の実施例におけるバウデン試験結果を示す図表で
ある。
1……ペイオフリール、2……脱スケール工
程、3……予熱工程、4……潤滑下地処理工程、
5……水洗工程、6……潤滑処理工程、7……乾
燥工程、8……伸線工程、9……巻取装置、11
……処理槽、12……超音波付加装置、13……
処理液受、14……返戻管、15……処理液タン
ク、18……線材、19……処理液。
Figure 1 is a diagram showing the effect of ultrasonic application in the lubricating base treatment of the present invention, Figure 2 is a diagram showing the relationship between the ultrasonic frequency and the amount of zinc calcium phosphate deposited in the same as above, and Figure 3 is a diagram showing the relationship between the ultrasonic frequency and the amount of zinc calcium phosphate deposited in the same as above. A chart showing the relationship between the Ca/Zn ratio and the amount of adhesion in the calcium oxide film, Figure 4 is a chart showing the relationship between the concentration of calcium stearate and the amount of adhesion in the above, and Figure 5 shows the relationship between the treatment time and the amount of sodium stearate in the same as above. FIG. 6 is a block diagram showing the processing steps of the present invention; FIG. 7 is a schematic side view showing an example of the apparatus for performing the ultrasonic lubrication base treatment in the same manner; FIG. The figure is a schematic front view showing the processing tank of the same apparatus as above, and FIG. 9 is a chart showing the Bowden test results in an example of the present invention. 1... Payoff reel, 2... Descaling process, 3... Preheating process, 4... Lubrication base treatment process,
5... Water washing process, 6... Lubrication treatment process, 7... Drying process, 8... Wire drawing process, 9... Winding device, 11
...Processing tank, 12...Ultrasonic addition device, 13...
Processing liquid receiver, 14... Return pipe, 15... Processing liquid tank, 18... Wire rod, 19... Processing liquid.
Claims (1)
潤滑下地処理、潤滑処理を施して伸線する方法に
おいて、脱スケール後予熱した線材を70〜90℃に
保温されかつ超音波(周波数:10〜60KHz、出
力:25W/溶液1当たり)を付加したリン酸亜
鉛カルシウム溶液(Ca/Zn=0.3〜0.5)中を通し
て潤滑下地処理を行い、水洗後前記下地処理した
線材を、室温に保持されたステアリン酸カルシウ
ム溶液中、あるいは70〜90℃に保温されたステア
リン酸ナトリウム溶液中に通して潤滑処理を行
い、乾燥後伸線する際、ダイス前潤滑剤として金
属石けん類を主体とした潤滑剤に1〜10重量%の
熱可塑性樹脂を添加することを特徴とする線材の
連続伸線方法。1 Descaling while continuously moving the wire,
In the method of drawing wire after applying lubrication treatment and lubrication treatment, the wire rod that has been preheated after descaling is kept at a temperature of 70 to 90 degrees Celsius, and ultrasonic waves (frequency: 10 to 60 KHz, output: 25 W/per solution) are applied. A lubrication base treatment was performed by passing the wire rod through a zinc calcium phosphate solution (Ca/Zn = 0.3 to 0.5), and after washing with water, the wire rod subjected to the base treatment was placed in a calcium stearate solution kept at room temperature or kept at a temperature of 70 to 90 °C. It is characterized by adding 1 to 10% by weight of a thermoplastic resin to a lubricant mainly made of metal soap as a lubricant before the die when it is passed through a sodium stearate solution for lubrication treatment and then drawn after drying. Continuous wire drawing method for wire rods.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/505,843 US4553416A (en) | 1983-06-20 | 1983-06-20 | Dry type continuous wire drawing process |
JP16415084A JPS6142415A (en) | 1984-08-03 | 1984-08-03 | Continuous drawing method of wire rod |
DE8585303540T DE3571562D1 (en) | 1984-05-21 | 1985-05-20 | Method for continuous drawing of wire rod |
EP85303540A EP0163471B1 (en) | 1983-06-20 | 1985-05-20 | Method for continuous drawing of wire rod |
KR1019850003483A KR920007834B1 (en) | 1984-05-21 | 1985-05-21 | Method for continuous drawing of wire rod |
US06/942,847 US4688411A (en) | 1984-05-21 | 1986-12-17 | Method for continuous drawing of wire rod |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16415084A JPS6142415A (en) | 1984-08-03 | 1984-08-03 | Continuous drawing method of wire rod |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6142415A JPS6142415A (en) | 1986-02-28 |
JPH0413046B2 true JPH0413046B2 (en) | 1992-03-06 |
Family
ID=15787688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16415084A Granted JPS6142415A (en) | 1983-06-20 | 1984-08-03 | Continuous drawing method of wire rod |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6142415A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6466757B2 (en) * | 2015-03-26 | 2019-02-06 | 株式会社神戸製鋼所 | Steel wire surface treatment method and surface treatment line |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60174880A (en) * | 1984-02-16 | 1985-09-09 | Sumitomo Metal Ind Ltd | Method for continuously drawing wire rod |
-
1984
- 1984-08-03 JP JP16415084A patent/JPS6142415A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60174880A (en) * | 1984-02-16 | 1985-09-09 | Sumitomo Metal Ind Ltd | Method for continuously drawing wire rod |
Also Published As
Publication number | Publication date |
---|---|
JPS6142415A (en) | 1986-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4688411A (en) | Method for continuous drawing of wire rod | |
EP0163471B1 (en) | Method for continuous drawing of wire rod | |
JP4271573B2 (en) | Manufacturing method of metal wire for header processing | |
JPH0413046B2 (en) | ||
JPS6099200A (en) | Lubrication treatment of metal | |
JPS6254194B2 (en) | ||
JPH0459052B2 (en) | ||
US2859145A (en) | Cold rolling of steel | |
GB894048A (en) | Manufacture and treatment of wires | |
JPS60174880A (en) | Method for continuously drawing wire rod | |
JPH0115327B2 (en) | ||
US2043300A (en) | Cleaning process | |
JPS56122611A (en) | Method and apparatus for manufacture cold rolled sheet product | |
US5209092A (en) | Continuous wire drawing process with chemical descaling and post-die treatment and apparatus | |
JP7499686B2 (en) | Phosphating treatment method and phosphating treatment device for metal wire | |
JPH0436762B2 (en) | ||
JPS63130212A (en) | Continuous wiring method for wire rod for cold forging | |
JP7453039B2 (en) | Method for phosphate chemical conversion treatment of metal wire and phosphate chemical conversion treatment equipment | |
JPS62207512A (en) | Continuous drawing method for wire | |
JPH0229403B2 (en) | SENZAINOKANSHIKIRENZOKUSHINSENHOHO | |
JP2902668B2 (en) | Embossed metal plate and method of manufacturing the same | |
JPS6233005A (en) | Cold rolling method for titanium plate | |
JPS587711B2 (en) | Hitupariseikeikanmataha HokanofukashiboribuhinOseizousuruhakubanatsu | |
JPS6341646B2 (en) | ||
JPS5920716B2 (en) | Steel plate cold rolling lubrication method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |