JPH04130045A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH04130045A
JPH04130045A JP2247359A JP24735990A JPH04130045A JP H04130045 A JPH04130045 A JP H04130045A JP 2247359 A JP2247359 A JP 2247359A JP 24735990 A JP24735990 A JP 24735990A JP H04130045 A JPH04130045 A JP H04130045A
Authority
JP
Japan
Prior art keywords
oxide superconductor
powder
critical current
current density
soln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2247359A
Other languages
Japanese (ja)
Other versions
JPH0768062B2 (en
Inventor
Hiroshi Maeda
弘 前田
Tadashi Inoue
井上 廉
Hisashi Sekine
関根 久
Koichi Numata
幸一 沼田
Hiroichi Yamamoto
博一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
National Research Institute for Metals
Original Assignee
Mitsubishi Heavy Industries Ltd
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, National Research Institute for Metals filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2247359A priority Critical patent/JPH0768062B2/en
Publication of JPH04130045A publication Critical patent/JPH04130045A/en
Publication of JPH0768062B2 publication Critical patent/JPH0768062B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To increase critical current density by impregnating a soln. contg. one or more kinds of metallic elements such as a noble metal, Al and Mg into powder of an oxide superconductor and carrying out calcination. CONSTITUTION:A soln. contg. one or more kinds of metallic elements such as a noble metal, Al and Mg, e.g. an aq. AgNO3 soln. having a prescribed concn. is impregnated into powder of an oxide superconductor selected among Ln-Ba-Cu-O (Ln is a rare earth element), Bi-(Pb)-Sr-Ca-Cu-O and Tl-Ba-Ca-Cu-0 and fine metal particles are supported on the powder by 0.01-5vol.%. The powder is then dried, heat-treated, pelletized and calcined a prescribed temp. to obtain an oxide superconductor having increased critical current density.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は蓄電・送電システム、磁気浮上列車、磁気共鳴
画像処理システム等に適用される酸化物超伝導体の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing an oxide superconductor that is applied to power storage and power transmission systems, magnetic levitation trains, magnetic resonance image processing systems, and the like.

〔従来の技術〕[Conventional technology]

高い臨界温度(以下Tcという)を有する酸化物超伝導
体としてはLn−Ba−Cu−0系(Ln:希土類元素
、 Tc= 90 K) 、B1−3r−[:a−Cu
−0系、(Tc= 110 K ) 、Tl−Ba−C
a−Cu−D系(Tc= 125K)等が知られている
。これらの酸化物はTcが高いのみならず、上部臨界磁
場Hc、も従来の金属系材料に比べて高く、高磁場発生
用マグネットへの適用が期待されている。
Examples of oxide superconductors having a high critical temperature (hereinafter referred to as Tc) include Ln-Ba-Cu-0 system (Ln: rare earth element, Tc = 90 K), B1-3r-[:a-Cu
-0 series, (Tc=110K), Tl-Ba-C
The a-Cu-D system (Tc=125K) and the like are known. These oxides not only have a high Tc but also a higher upper critical magnetic field Hc than conventional metal-based materials, and are expected to be applied to magnets for generating high magnetic fields.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の金属系材料では、4.2に近傍で使用する際に粒
界等がピン止め点(ローレンツ力による磁束線の勧きを
制御する)として作用するので、高磁場中でも高い臨界
電流密度を有しNb3Sn等では&、’720T(テス
ラ)の高磁場も発生可能である。
In conventional metallic materials, when used in the vicinity of 4.2, grain boundaries act as pinning points (controlling the direction of magnetic flux lines due to Lorentz force), making it possible to maintain high critical current densities even in high magnetic fields. With Nb3Sn, etc., it is possible to generate a magnetic field as high as '720T (Tesla).

これに対して酸化物超伝導体は、例えば金属シースに充
填し、延伸加工後熱処理を施せば超伝導性を示す線材に
できるが、ウィークリンクフラッグスクリープ等の理由
により、液体窒素温度では臨界電流密度が低く、実用化
への壁となっている。そこで酸化物超伝導体にも新たに
強いピン止め点を導入する必要がある。
On the other hand, oxide superconductors can be made into wires that exhibit superconductivity by, for example, filling a metal sheath and subjecting them to heat treatment after drawing, but due to reasons such as weak link flag creep, the critical current at liquid nitrogen temperature Its low density is a barrier to practical application. Therefore, it is necessary to introduce a new strong pinning point to oxide superconductors.

本発明は上記技術水準に鑑み、人工のピン止め中心を有
する酸化物超伝導体の製造方法を提供しようとするもの
である。
In view of the above-mentioned state of the art, the present invention provides a method for producing an oxide superconductor having an artificial pinning center.

〔課題を解決するための手段〕[Means to solve the problem]

以上の問題点を解決するために、本発明者らは鋭意研究
の結果、酸化物超伝導体に微細な不純物粒子を分散させ
ることによりピン止め効果が向上し、磁場中での臨界電
流密度の改善されることを確S忍した。本発明はこの知
見に基いて完成されたものであって、貴金属、アルミニ
ウム、マグネシウムよりなる群のうちの少なくとも1種
以上の金属元素を含む溶液を酸化物超伝導体粉末に含浸
担持させた後、焼結を行うことを特徴とする酸化物超伝
導体の製造方法である。
In order to solve the above problems, the present inventors conducted intensive research and found that the pinning effect was improved by dispersing fine impurity particles in the oxide superconductor, and the critical current density in the magnetic field was improved. I was confident that things would improve. The present invention has been completed based on this knowledge, and includes the following: After impregnating and supporting an oxide superconductor powder with a solution containing at least one metal element from the group consisting of noble metals, aluminum, and magnesium, , a method for producing an oxide superconductor, characterized by performing sintering.

本発明の上記製造方法において、製造された酸化物超伝
導体中に分散した貴金属、アルミナ、マグネシアよりな
る群のうちの少なくとも1種以上の微粒子の量が全量の
0.01〜5 vo1%になるように、貴金属(Au、
 Ag、 Ptなど)、アルミニウム、マグネシウムに
よりなる群のうちの少なくとも1種以上の金属元素を含
む溶液を酸化物超伝導体粉末に含浸担持させることが好
ましい。また、これらの貴金属、アルミニウム、マグネ
シウムなとの金属元素は、それらの塩(硝酸塩、塩化物
、酢酸塩など)、錯体及びアルコキシドの形状にして溶
液状で酸化物超伝導体粉末に含浸させるのが好ましい。
In the above manufacturing method of the present invention, the amount of fine particles of at least one of the group consisting of noble metals, alumina, and magnesia dispersed in the manufactured oxide superconductor is 0.01 to 5 vol% of the total amount. Precious metals (Au,
It is preferable that the oxide superconductor powder is impregnated and supported with a solution containing at least one metal element from the group consisting of Ag, Pt, etc.), aluminum, and magnesium. In addition, metal elements such as these noble metals, aluminum, and magnesium can be impregnated into oxide superconductor powder in the form of their salts (nitrates, chlorides, acetates, etc.), complexes, and alkoxides in the form of solutions. is preferred.

本発明で対象とする酸化物超伝導体としては、Ln−B
a−Cu−[]系 (Ln : Y、 La、 Ce、
 Nd、 Sm、 Bu、 Gd、 TbDy、 Ho
、 Br、 Tmなどの希土類元素) 、Bi−(Pb
)−3r口a−Cu−D系、T l−Ba−Ca−Cu
−0系などがあげられる。
The oxide superconductor targeted by the present invention includes Ln-B
a-Cu-[] system (Ln: Y, La, Ce,
Nd, Sm, Bu, Gd, TbDy, Ho
, Br, rare earth elements such as Tm), Bi-(Pb
)-3r-a-Cu-D system, Tl-Ba-Ca-Cu
Examples include -0 series.

〔作 用〕[For production]

微細な貴金属、アルミナ、マグネシアなどの不純物粒子
がピン止を点として作用し、高磁場中においても高い臨
界電流密度を有するようになる。微細な不純物の添加量
を0.01〜5v01%としたのは、0.01 vat
%未満でピン止め効果が現われず、5 vo1%を越え
ると超伝導粒子同志の接触を妨げ、臨界電流密度の低下
を引き起こすた狛である。
Fine impurity particles such as noble metals, alumina, and magnesia act as pinning points, resulting in a high critical current density even in a high magnetic field. The amount of fine impurities added is 0.01~5v01%, which is 0.01 vat.
If it is less than 5 vol %, no pinning effect will appear, and if it exceeds 5 vol %, it will prevent contact between superconducting particles and cause a decrease in critical current density.

以下、磁化特性(ピン止め効果が大きくなると磁化曲線
のヒステリシスが大きくなる)及び磁場中での臨界電流
密度の測定を行い、実施例比較例により本発明の効果を
立証する。
Hereinafter, the effects of the present invention will be demonstrated using Examples and Comparative Examples by measuring the magnetization characteristics (the hysteresis of the magnetization curve increases as the pinning effect increases) and the critical current density in a magnetic field.

〔実施例1〕 Bi2Sr、[l:a2Cu30x粉末に、0.01 
M AgNO3水溶液を八gとして屹1 vo1%なる
ように含浸担持した後、乾燥(150℃、30分)、熱
処理(600t、5時間)した。得られた粉末を直径2
0mmのペレットに加圧成形し、845℃で20時間焼
結した。
[Example 1] Bi2Sr, [l:a2Cu30x powder, 0.01
After impregnating and supporting 8 g of M AgNO3 aqueous solution at a concentration of 1 vol., it was dried (150° C., 30 minutes) and heat treated (600 t, 5 hours). The obtained powder is made into a diameter of 2
It was press-molded into a 0 mm pellet and sintered at 845° C. for 20 hours.

得られた焼結体について、振動試料式磁力計を用いて7
7にで磁化測定を行った。結果を第1図に示す。
The obtained sintered body was measured using a vibrating sample magnetometer.
Magnetization measurements were carried out in step 7. The results are shown in Figure 1.

〔比較例1〕 実施例1の比較として銀を添加せずに、実施例1と同様
に焼結体を作製し、磁化測定を行った。結果を第1図に
併記する。
[Comparative Example 1] As a comparison with Example 1, a sintered body was produced in the same manner as in Example 1 without adding silver, and the magnetization was measured. The results are also shown in Figure 1.

第1図から銀を添加したものでは磁化のヒステリシスが
大きく、びん止め力が向上したことは明らかである。
From FIG. 1, it is clear that the hysteresis of magnetization was large in the case of silver-added material, and the bottle-holding force was improved.

〔実施例2〕 添加する物質を塩化金、クロロ白金酸、硝酸アルミニウ
ム、硝酸マグネシウムとした以外は実施例1と同じ条件
で行った。
[Example 2] The same conditions as in Example 1 were conducted except that the substances added were gold chloride, chloroplatinic acid, aluminum nitrate, and magnesium nitrate.

その結果、実施例1と同様に第2図に示すようなヒステ
リシスの増加が確認された。
As a result, as in Example 1, an increase in hysteresis as shown in FIG. 2 was confirmed.

〔実施例3〕 酸化物超伝導体をLnBazCuJx (Ln : Y
、 La、 Ce。
[Example 3] The oxide superconductor was LnBazCuJx (Ln: Y
, La, Ce.

Nd、Sm、Bu、Gd、Tb、Dy、Ha、Er、T
m) 、TIzBa*Ca2CL130Xとし、実施例
1と同様に銀を添加して、それぞれ、920℃、900
℃で20時間焼結した。得られた焼結体について磁化測
定(77K)を行った結果、いずれについても無添加と
比べて磁化のヒステリシスの増加が確認された。
Nd, Sm, Bu, Gd, Tb, Dy, Ha, Er, T
m), TIzBa*Ca2CL130X, silver was added in the same manner as in Example 1, and the mixture was heated at 920°C and 900°C, respectively.
It was sintered at ℃ for 20 hours. As a result of magnetization measurement (77K) of the obtained sintered bodies, an increase in magnetization hysteresis was confirmed in all cases compared to the case without additives.

〔実施例4〕 実施例1において銀の添加量を0.005.0.011
.5,10vo1%として焼結体を作製し、77にで磁
化測定及び直流4端子法による臨界電流密度測定を行っ
た。銀添加量に対する磁化のヒステリシス、臨界電流密
度の変化(いずれも0、5 Tにおける)を第3図に示
す。
[Example 4] In Example 1, the amount of silver added was 0.005.0.011
.. A sintered body was prepared with a concentration of 5.10 vol. 1%, and magnetization measurements and critical current density measurements were performed using the DC 4-probe method. FIG. 3 shows the changes in magnetization hysteresis and critical current density (both at 0 and 5 T) with respect to the amount of silver added.

第3図より、磁化のヒステリシスは添加量の増加に伴い
増加するが、1Qvo1%では粒同志の接触を妨げるた
めか臨界電流密度が低下しており、銀添加量としては0
.01〜5 vo1%が適当であると言える。
From Figure 3, the magnetization hysteresis increases as the amount of silver added increases, but at 1Qvo1%, the critical current density decreases, probably because it prevents contact between grains, and the amount of silver added is 0.
.. It can be said that 01-5 vo1% is appropriate.

銀量外の添加においても同様の傾向が認められる。A similar tendency is observed for additions other than the amount of silver.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば酸化物超伝導体に含浸法
で特定の添加物を分散させることによりピン止め効果が
向上し、高磁場中でも高い臨界電流密度を有する超伝導
体の作製が可能となる。
As described above, according to the present invention, the pinning effect is improved by dispersing specific additives into an oxide superconductor using an impregnation method, and it is possible to create a superconductor that has a high critical current density even in a high magnetic field. It becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の一実施例としての特定の添
加物の有無による磁化特性の変化を示した図表、第3図
は本発明の一実施例としての銀添加量に対するピン止め
効果(磁化ヒステリシス、臨界電流密度)の変化を示し
た図表である。
Figures 1 and 2 are charts showing changes in magnetization characteristics depending on the presence or absence of specific additives as an example of the present invention, and Figure 3 is a diagram showing the pinning of the amount of silver added as an example of the present invention. It is a chart showing changes in effects (magnetization hysteresis, critical current density).

Claims (3)

【特許請求の範囲】[Claims] (1)貴金属、アルミニウム、マグネシウムよりなる群
のうちの少なくとも1種以上の金属元素を含む溶液を酸
化物超伝導体粉末に含浸担持させた後、焼結を行うこと
を特徴とする酸化物超伝導体の製造方法。
(1) Oxide superconductor powder is impregnated with a solution containing at least one metal element from the group consisting of noble metals, aluminum, and magnesium, and then sintered. Method of manufacturing conductors.
(2)含浸担持させて酸化物超伝導体中に分散した貴金
属、アルミナ、マグネシアよりなる群のうちの少なくと
も1種以上の微粒子の量が、全量の0.01〜5vol
%であることを特徴とする請求項(1)記載の酸化物超
伝導体の製造方法。
(2) The amount of fine particles of at least one of the group consisting of noble metals, alumina, and magnesia impregnated and supported and dispersed in the oxide superconductor is 0.01 to 5 vol of the total amount.
% of the oxide superconductor according to claim 1.
(3)酸化物超伝導体がLn−Ba−Cu−O系(Ln
:希土類元素)、Bi−(Pb)−Sr−Ca−Cu−
O系、Tl−Ba−Ca−Cu−O系よりなる群のうち
の1種であることを特徴とする請求項(1)記載の酸化
物超伝導体の製造方法。
(3) The oxide superconductor is Ln-Ba-Cu-O system (Ln
: rare earth elements), Bi-(Pb)-Sr-Ca-Cu-
2. The method for producing an oxide superconductor according to claim 1, wherein the oxide superconductor is one of the group consisting of O type and Tl-Ba-Ca-Cu-O type.
JP2247359A 1990-09-19 1990-09-19 Manufacturing method of oxide superconductor Expired - Lifetime JPH0768062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2247359A JPH0768062B2 (en) 1990-09-19 1990-09-19 Manufacturing method of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2247359A JPH0768062B2 (en) 1990-09-19 1990-09-19 Manufacturing method of oxide superconductor

Publications (2)

Publication Number Publication Date
JPH04130045A true JPH04130045A (en) 1992-05-01
JPH0768062B2 JPH0768062B2 (en) 1995-07-26

Family

ID=17162250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2247359A Expired - Lifetime JPH0768062B2 (en) 1990-09-19 1990-09-19 Manufacturing method of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH0768062B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012038526A (en) * 2010-08-05 2012-02-23 Kyushu Univ RE1Ba2Cu3O7-z SUPERCONDUCTOR

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291857A (en) * 1987-05-05 1988-11-29 アメリカン テレフォン アンド テレグラフ カムパニー Superconductor
JPS6421034A (en) * 1987-03-31 1989-01-24 Sumitomo Electric Industries Superconductive composite body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6421034A (en) * 1987-03-31 1989-01-24 Sumitomo Electric Industries Superconductive composite body
JPS63291857A (en) * 1987-05-05 1988-11-29 アメリカン テレフォン アンド テレグラフ カムパニー Superconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012038526A (en) * 2010-08-05 2012-02-23 Kyushu Univ RE1Ba2Cu3O7-z SUPERCONDUCTOR

Also Published As

Publication number Publication date
JPH0768062B2 (en) 1995-07-26

Similar Documents

Publication Publication Date Title
Jin et al. Superconductivity in the Bi‐Sr‐Ca‐Cu‐O compounds with noble metal additions
JP2610939B2 (en) Superconductor manufacturing method
Schneemeyer et al. Magnetic studies of strontium lanthanum copper oxides
Markert et al. Superconductivity in La2− xNaxCuO4− y
JPH03141512A (en) Oxide superconductor
US5206211A (en) Process for the production of an elongate body consisting of longitudinally aligned acicular crystals of a superconducting material
JPH04130045A (en) Production of oxide superconductor
Pramanik et al. Coprecipitation method for preparation of superconducting YBa2Cu3Ox compounds
McGinn et al. Microstructure and magnetic properties of zone melt textured YBa2Cu3O6+ x with BaSnO3 additions
Baliga et al. Enhanced grain growth in YBa 2 Cu 3 O 7− δ doped with Ag, Cu, and CuO
Agarwala et al. Synthesis of High‐Tc Dual‐Phase Ag–YBa2Cu3O7–x Superconductor Composite Powders by Sol–Gel Process
Moon et al. High‐density Bi‐Pb‐Sr‐Ca‐Cu‐O superconductor prepared by rapid thermal melt processing
JPS63285155A (en) Oxide type superconductive material and production thereof
Pramanik et al. Rare-earth based superconductors by organic carbonate coprecipitation
JP3102010B2 (en) Thallium oxide superconducting wire
JP2966134B2 (en) Method for producing Bi-based oxide superconductor
JP2749194B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconductor
JP2727565B2 (en) Superconductor manufacturing method
JP2549669B2 (en) Oxide superconducting wire
JP2854338B2 (en) Copper oxide superconductor
JPH01131049A (en) Ceramic superconductor
JP3450488B2 (en) Boron-containing metal oxide superconducting wire
JPH0426014A (en) Oxide superconducting wire and its manufacture
JPH0940421A (en) Production of oxide superconducting material
JPH07277730A (en) High damping oxide superconducting material and its production

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term