JPH04129136A - Cathode-ray tube, television equipment therewith, monitor apparatus therewith and method of compressing electron beam - Google Patents

Cathode-ray tube, television equipment therewith, monitor apparatus therewith and method of compressing electron beam

Info

Publication number
JPH04129136A
JPH04129136A JP24873490A JP24873490A JPH04129136A JP H04129136 A JPH04129136 A JP H04129136A JP 24873490 A JP24873490 A JP 24873490A JP 24873490 A JP24873490 A JP 24873490A JP H04129136 A JPH04129136 A JP H04129136A
Authority
JP
Japan
Prior art keywords
magnetic field
electron beam
quadrupole magnetic
ray tube
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24873490A
Other languages
Japanese (ja)
Inventor
Yoshiya Higuchi
佳也 樋口
Yoichi Ose
洋一 小瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24873490A priority Critical patent/JPH04129136A/en
Publication of JPH04129136A publication Critical patent/JPH04129136A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a cathode-ray tube and the like which are applicable to a large screen and have good focusing of electron beams by disposing in series a first quadru- pole magnetic field generating unit for compressing electron beams in one direction and a second quadru-pole magnetic field generating unit for compressing the same in the other direction. CONSTITUTION:Beams are compressed in one direction and expanded in a right-angled direction thereto by a first magnetic field generating unit 1 and then inputted to a second magnetic field generating unit 2. Thereupon, the generated quadru-pole magnetic field expands an adjacent portion to the center of the beams compressed by the first magnetic field unit 1 but the compressed portion of the beams is not expanded very much. On the other hand, since the portion expanded by the first magnetic field generating unit 1 is apart from the center of the beams, the portion is greatly compressed in the center direction by receiving a large force. Thus, the cross-section of the beams is compressed and focused by two series-disposed magnetic field generating units 1, 2 in two directions which are right-angled to each other. Accordingly, the strength of the generated quadru-pole magnetic field is easy to be adjusted and the beam focusing is easy to be performed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、カラーテレビやカラーモニタ等に用いる陰極
線管やこれを備えるテレビ装置等に係り、特に大型スク
リーンに適した陰極線管等に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to cathode ray tubes used in color televisions, color monitors, etc., and television devices equipped with the same, and particularly to cathode ray tubes and the like suitable for large screens.

[従来の技術] カラー陰極線管(カラーCRT)はカラーテレビやカラ
ーモニタに広く用いられており、スクリーンの大型化が
進んでいる。スクリーンが大型化すると、電子銃から発
射されたビームがスクリーン上に到達するまでの距離が
長くなって到達点のビーム輝点の直径が大きくなり易い
。このためビーム制御を行いビーム輝点が小さくなるよ
うにする必要がある。ビーム制御の従来例として、特開
昭57−40837号公報に記載のものがある。
[Prior Art] Color cathode ray tubes (color CRTs) are widely used in color televisions and color monitors, and the screens are becoming larger. As the screen becomes larger, the distance for the beam emitted from the electron gun to reach the screen becomes longer, and the diameter of the beam bright spot at the arrival point tends to become larger. Therefore, it is necessary to perform beam control so that the beam bright spot becomes small. A conventional example of beam control is described in Japanese Patent Laid-Open No. 57-40837.

この従来技術では、N極磁極片とS極磁極片とをX字状
に交差して配置した四重極磁場発生装置を電子銃と偏向
コイルの間に設置し、四重極磁場によってビームをその
進行方向に直角の1方向に圧縮するもので、このように
してスクリーン周辺部でのビーム断面が楕円状に歪むの
を補正している。
In this conventional technology, a quadrupole magnetic field generator in which a north pole piece and a south pole piece are arranged in an X-shape is installed between an electron gun and a deflection coil, and a beam is generated by the quadrupole magnetic field. The beam is compressed in one direction perpendicular to the direction of movement of the beam, and in this way the distortion of the beam cross section in the periphery of the screen into an elliptical shape is corrected.

[発明が解決しようとする課題] 上記した従来技術では、電子ビームの周辺歪みをなくす
ことを目的としているため、四重極磁場を1軸方向のみ
に発生させている。しかし、3゜インチ以上の大型スク
リーンに利用する陰極線管では、スクリーン周辺部のよ
うな電子ビーム断面一方向の歪みとは異なり、ビーム断
面が全方向に広がるから、従来技術ではこのようなビー
ムの広がりを補正することはできない。
[Problems to be Solved by the Invention] In the above-mentioned conventional technology, a quadrupole magnetic field is generated only in one axis direction because the purpose is to eliminate peripheral distortion of the electron beam. However, in cathode ray tubes used for large screens of 3 inches or more, the beam cross section spreads in all directions, unlike the unidirectional distortion of the electron beam at the periphery of the screen. It is not possible to correct the spread.

本発明の目的は、大型スクリーンに利用可能でかつ電子
ビームの収束性のよい陰極線管等を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a cathode ray tube that can be used for large screens and has good electron beam convergence.

[課題を解決するための手段] 上記目的を達成するために、本発明においては、R,G
、B用の各ビームの通路に、ビーム断面をある方向に圧
縮する四重極磁場を発生する第1の磁場発生装置と、ビ
ーム断面を上記とは直角な方向に圧縮する四重極磁場を
発生する第2の磁場発生装置とを直列に設置するように
した。また磁場発生装置は、各ビーム毎にその進行方向
に並行に配置された4個の導線束から成りかつ各導線束
はビーム進行方向と直角な断面内でビームを中心とする
矩形の各頂点に位置し、この矩形の辺で隣合わせの導線
束には逆方向で同一の大きさの電流を流すように構成し
、あるいは各ビーム毎にその進行方向に並行に配置され
た4本の棒状の永久磁石または電磁石から成りかっ各棒
磁石はビーム進行方向と直角な断面でビームを中心とす
る矩形の各頂点に位置し、この矩形の辺で隣合う磁石の
磁極が互いに逆向きになるように構成した。
[Means for solving the problem] In order to achieve the above object, in the present invention, R, G
, B, a first magnetic field generator for generating a quadrupole magnetic field that compresses the beam cross section in a certain direction, and a quadrupole magnetic field that compresses the beam cross section in a direction perpendicular to the above direction. A second magnetic field generating device is installed in series. In addition, the magnetic field generator consists of four conductive wire bundles arranged parallel to the traveling direction of each beam, and each conductive wire bundle is located at each vertex of a rectangle centered on the beam within a cross section perpendicular to the beam traveling direction. The conductor bundles adjacent to each other on the sides of this rectangle are configured to conduct currents of the same magnitude in opposite directions, or each beam has four permanent rods placed parallel to its traveling direction. Each bar magnet, made of a magnet or an electromagnet, is located at each vertex of a rectangle centered on the beam in a cross section perpendicular to the direction of beam travel, and the magnetic poles of adjacent magnets on the sides of this rectangle are arranged in opposite directions. did.

[作用コ 四重極磁場はビームに対してローレンツ力を発生し、ビ
ーム進行方向に垂直な断面内で5磁場発生装置の導線束
または棒磁石の形成する矩形の2つの対角方向の内の1
つの方向にビームを圧縮し他の方向にビームを拡張する
とともに、そのローレンツ力はビーム中心からはなれて
導線束または棒磁石に近づくほど大となる。従って第1
の磁場発生装置で1つの方向にビームを圧縮しそれと直
角方向にビームを拡張した後筒2の磁場発生装置へビー
ムを入力すると、この装置の発生する四重極磁場は第1
の磁場発生装置で圧縮されたビーム中心へ寄った部分を
拡張するが、このローレンツ力は中心に近いので小さく
、従ってビームの圧縮された部分はあまり拡張されない
。一方、第1の磁場発生装置で拡張された部分はビーム
中心からはなれているから大きな力を受けて中心方向に
大きく圧縮される。このようにして2つの直列設置され
た磁場発生装置によりビーム断面は直角な2方向から圧
縮され収束される。またこれらの装置を、導線束あるい
は棒状の電磁石で構成すれば。
[The acting quadrupole magnetic field generates a Lorentz force on the beam, and within the cross section perpendicular to the beam traveling direction, the conductor flux of the magnetic field generator or the two diagonal directions of the rectangle formed by the bar magnet is 1
It compresses the beam in one direction and expands it in the other, and the Lorentz force increases as it moves away from the beam center and approaches the wire bundle or bar magnet. Therefore, the first
When the beam is compressed in one direction by the magnetic field generator and expanded in a direction perpendicular to that, the beam is input to the magnetic field generator in cylinder 2, and the quadrupole magnetic field generated by this device is the first
The compressed part of the beam is expanded by the magnetic field generator, but this Lorentz force is small because it is close to the center, so the compressed part of the beam is not expanded much. On the other hand, since the portion expanded by the first magnetic field generator is away from the beam center, it receives a large force and is greatly compressed toward the center. In this way, the beam cross section is compressed and focused from two orthogonal directions by the two magnetic field generators installed in series. Also, if these devices are constructed from a bundle of conducting wires or a rod-shaped electromagnet.

それらに流す電流により発生する四重極磁場の強度を調
整するのが容易となり、ビーム収束の調整が簡単に行え
る。
It becomes easy to adjust the strength of the quadrupole magnetic field generated by the current flowing through them, and beam convergence can be easily adjusted.

[実施例] 以下、本発明を実施例により説明する。[Example] The present invention will be explained below using examples.

第1図は本発明の特徴とする磁場発生装置の一実施例の
構造図で、コイル3,4のそれぞれが磁場発生装置1.
2を形成し、この磁場発生装置1.2がビーム方向に直
列配置されてそれぞれ四重極磁場を発生する0本装置は
磁力線をシールドするためのシールドカップ5でカバー
され、陰極線管の電子銃と偏向コイルとの間に設置され
る。シールドカップ5は従来から電子銃のビーム出射口
近傍に設けられて、偏向コイルからの漏洩磁場をシール
ドする機能を持つが、本実施例では、このシールドカッ
プのみに使われてきた電子銃出口近傍のスペースを有効
に利用するようにしている。
FIG. 1 is a structural diagram of an embodiment of a magnetic field generator which is a feature of the present invention, in which each of the coils 3 and 4 is connected to the magnetic field generator 1.
The magnetic field generators 1 and 2 are arranged in series in the beam direction and each generates a quadrupole magnetic field. and the deflection coil. The shield cup 5 has conventionally been provided near the beam exit of the electron gun and has the function of shielding the leakage magnetic field from the deflection coil. I try to use the space effectively.

第2図(a)(b)は磁場発生装置1.2の外観を示し
ており、これらのコイル3.4を除いた部分は、第3図
のように電子ビームの通過穴7を設けた絶縁性の筐体8
a、8bを組み合わせたものである。筐体8a、8bは
非磁性材料をプレス成形して形成され、絶縁被膜が施さ
れている。この被膜上にコイル3.4が何重もの導線を
巻いて形成されるが、コイル3.4のそれぞれ一巻分の
導線だけを取り出して示したものが第4図で、以下この
図により動作を説明する。
Figures 2(a) and 2(b) show the external appearance of the magnetic field generator 1.2, and the parts other than the coils 3.4 are provided with electron beam passage holes 7 as shown in Figure 3. Insulating housing 8
It is a combination of a and 8b. The casings 8a and 8b are formed by press-molding a non-magnetic material, and are coated with an insulating coating. The coil 3.4 is formed by winding many layers of conductive wire on this coating, and Figure 4 shows only one turn of the conductive wire of each coil 3.4. Explain.

第4図において、各コイルは上記のように一本の線で示
したが、実際にはこれは導線束である。
In FIG. 4, each coil is shown as a single wire as described above, but in reality this is a bundle of conductors.

しかしこの導線束はまとまっているので原理的には一本
としても変わらない。このコイル3.4に図示の矢印方
向に電流が流れたとき発生する磁力線H1〜H8等がそ
の向きとともに矢印付きの円形で示されている。但しH
1〜H8はビームRを取り囲む分のみに付けた符号で他
の磁力線は符号を省略している。またここで示した磁力
線はすべてコイルのビームと平行な部分から生成される
ものであるが、ビームと直角な電流はビームの収束およ
び拡張に対して何らの力も生じないので、図示の磁力線
のみを考えれば十分である。
However, since this conductor bundle is bundled together, there is no difference in principle even if it is just a single wire. Magnetic lines of force H1 to H8, etc., generated when a current flows through the coil 3.4 in the direction of the arrow shown, are shown in circles with arrows along with their directions. However, H
1 to H8 are the symbols given only to the parts surrounding the beam R, and the symbols for other lines of magnetic force are omitted. Also, all of the magnetic lines of force shown here are generated from the part of the coil parallel to the beam, but since a current perpendicular to the beam does not produce any force on the convergence or expansion of the beam, only the lines of magnetic force shown are generated. It's enough to think about it.

さて、第4図のコイル電流と磁力線をビームと直角な断
面でみるとコイル3に対して第5図(a)、コイル4に
対して第5図(b)となる、この図で各ビームR,G、
Bは図面の裏から表方向へ垂直に向かうとすると、ビー
ムRは磁場発生装置1のコイル3によって第4図(a)
の矢印方向のローレンツ力を受け、また磁場発生装置2
のコイル4によって第4図(b)の矢印方向のローレン
ツ力を受ける。ビームBもビームRと全く同じ方向のロ
ーレンツ力を受けるが、ビームGに対しては。
Now, if we look at the coil current and magnetic field lines in Figure 4 in a cross section perpendicular to the beam, we get Figure 5 (a) for coil 3 and Figure 5 (b) for coil 4. In this figure, each beam R,G,
Assuming that B goes perpendicularly from the back to the front of the drawing, the beam R is generated by the coil 3 of the magnetic field generator 1 as shown in Fig. 4(a).
receives the Lorentz force in the direction of the arrow, and also receives the magnetic field generator 2
The coil 4 receives a Lorentz force in the direction of the arrow in FIG. 4(b). Beam B also experiences a Lorentz force in exactly the same direction as beam R, but with respect to beam G.

それを囲むコイルが両側のビームR,Hのものと共用さ
れていて電流の方向がちょうど逆になっているため、ロ
ーレンツ力もビームR,Hの場合と逆になる。従って各
ビームは2つのコイル3.4の中を通ると交互に異なる
方向から圧縮力と拡張力を受けるが、四重極磁場の中心
軸部分(ビーム中心部分)は磁場強度が弱く、離心する
程磁場強度が強い。このためコイル3で圧縮力を受けて
中心方向に寄ったビームの外縁部は、コイル4では大き
な拡張力を受けない。またコイル3で引き延ばし力を受
けて離心したビームの外縁部はコイル4で大きい圧縮力
を受ける。従って全体として各ビームは全方向について
収束する。また磁力線H1〜H4等を生成する電流の大
きさはすべて同じでコイル3の電流を巻数倍したもので
あるから(コイル4も同様)、コイル電流を変化させる
ことで収束力の調整が簡単に行える。
The coils surrounding it are shared by beams R and H on both sides, and the direction of the current is exactly opposite, so the Lorentz force is also opposite to that for beams R and H. Therefore, as each beam passes through the two coils 3.4, it is alternately subjected to compression and expansion forces from different directions, but the central axis of the quadrupole magnetic field (beam center) has a weak magnetic field strength and is eccentric. The magnetic field strength is stronger. Therefore, the outer edge of the beam, which is biased towards the center after being subjected to a compressive force by the coil 3, is not subjected to a large expansion force by the coil 4. Further, the outer edge of the beam which is eccentric due to the stretching force applied by the coil 3 is subjected to a large compressive force by the coil 4. Therefore, each beam as a whole converges in all directions. In addition, the magnitude of the current that generates the magnetic lines of force H1 to H4, etc. is all the same and is the current of coil 3 multiplied by the number of turns (same for coil 4), so it is easy to adjust the convergence force by changing the coil current. can be done.

第6図及び第7図は、本発明の特徴とする磁場発生装置
の別の実施例を示す構造図で、8本の棒磁石11が、第
7図に示すような非磁性材料で作られた筐体10の凹み
に設置され、隣接する磁場同志が互いに逆となるように
されている。そして全体は第1図と同じシールドカップ
5内に設置されていて、やはり電子銃呂口近傍のスペー
スの有効利用をはかっている。
FIGS. 6 and 7 are structural diagrams showing another embodiment of the magnetic field generating device which is a feature of the present invention, in which eight bar magnets 11 are made of a non-magnetic material as shown in FIG. It is installed in a recess of the housing 10, so that adjacent magnetic fields are opposite to each other. The entire structure is installed in the same shield cup 5 as shown in FIG. 1, and the space near the electron gun entrance is effectively utilized.

本実施例の場合は、ビーム入口側の8個の磁極が第8図
(a)に示すようなビーム周囲の四重極磁場を生成して
第1の磁場発生装置を形成し、同じくビーム出口側の8
個の磁極が第8図(b)のように第2の磁場発生装置を
形成する。ここで磁力線は細線矢印で示されていて、各
ビームが図面の裏から表方向へ垂直に通ると太線矢印の
ローレンツ力が各ビームに作用する。これは第5図の場
合の力の方向を45度左へ回転しただけであり、全く同
じ原理でビーム収束が行える。
In the case of this embodiment, eight magnetic poles on the beam entrance side generate a quadrupole magnetic field around the beam as shown in FIG. side 8
The magnetic poles form a second magnetic field generator as shown in FIG. 8(b). Here, the lines of magnetic force are indicated by thin arrows, and when each beam passes perpendicularly from the back to the front of the drawing, the Lorentz force indicated by the thick arrows acts on each beam. This is simply the direction of the force in FIG. 5 rotated 45 degrees to the left, and beam convergence can be achieved using exactly the same principle.

なお本実施例では棒磁石は永久磁石を用いるものとして
示しているが、この場合には磁石への供給電力とそのた
めの装置が不要となる。また、棒磁石を電磁石とすれば
、第1図の実施例と同様に磁場強度の調節が容易となる
In this embodiment, a permanent magnet is used as the bar magnet, but in this case, power supply to the magnet and a device for it are unnecessary. Further, if the bar magnet is an electromagnet, the magnetic field strength can be easily adjusted as in the embodiment shown in FIG.

[発明の効果] 本発明によれば、ビームの進行方向に極性の反転した2
つの四重極磁場が形成されるので、ビームは2方向から
中心軸方向に向かう圧縮力を受けて十分に収束されると
いう効果があり、また棒状の永久磁石を用いて四重極磁
場を発生すれば供給電力が不要になり、棒状の電磁石ま
たはコイルを用いて四重極磁場を発生すれば供給電流を
調節することにより収束力を自由に制御できるという効
果がある。
[Effects of the Invention] According to the present invention, two
Since two quadrupole magnetic fields are formed, the beam receives compressive force from two directions toward the central axis and is sufficiently focused.Furthermore, a bar-shaped permanent magnet is used to generate a quadrupole magnetic field. This eliminates the need for power supply, and if a quadrupole magnetic field is generated using a rod-shaped electromagnet or coil, the convergence force can be freely controlled by adjusting the supplied current.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は本発明の特徴とする磁場発生
装置の実施例の構造図、第4図及び第5図は第1図の実
施例の動作説明図、第6図及び第7図は本発明の特徴と
する磁場発生装置の別の実施例の構造図、第8図は第6
図の実施例の動作説明図である。 1.2・・・磁場発生装置、3,4・・コイル、5・・
・シールドカップ、11・・・棒磁石。 代理人 弁理士 秋 本 正 実 第 図 第 図 第 罠 第 図 第 図(α) 第 図(b) 第 図 ビーAR 第 図 第 図(G) 第 図(b)
1, 2, and 3 are structural diagrams of an embodiment of a magnetic field generating device that is a feature of the present invention, FIGS. 4 and 5 are operation explanatory diagrams of the embodiment of FIG. 1, and FIG. 6 and FIG. 7 are structural diagrams of another embodiment of the magnetic field generating device which is a feature of the present invention, and FIG.
FIG. 3 is an explanatory diagram of the operation of the embodiment shown in the figure. 1.2... Magnetic field generator, 3, 4... Coil, 5...
・Shield cup, 11... Bar magnet. Agent Patent Attorney Tadashi Akimoto Actual figure figure figure figure figure figure figure figure (α) figure figure (b) figure B AR figure figure figure (G) figure (b)

Claims (1)

【特許請求の範囲】 1、電子ビームのビーム径を圧縮する電子ビーム圧縮方
法において、極性の異なる複数の四重極磁場を直列に配
置し、各四重極磁場の中心に電子ビームを通し、或る四
重極磁場で電子ビームを或る方向に圧縮し別の四重極磁
場で別の方向に電子ビームを圧縮することを特徴とする
電子ビーム圧縮方法。 2、電子ビームのビーム径を圧縮する電子ビーム圧縮装
置において、電子ビームを或る方向に圧縮する第1の四
重極磁場発生装置と、該電子ビームを別方向に圧縮する
第2の四重極磁場発生装置とを備えることを特徴とする
電子ビーム圧縮装置。 3、RGBに対応する3つの電子ビームのビーム径を夫
々圧縮する電子ビーム圧縮方法において、極性の異なる
複数の四重極磁場を直列に各電子ビーム毎に配置し、各
四重極磁場の中心に夫々の電子ビームを通し、或る四重
極磁場で当該電子ビームを或る方向に圧縮し次の四重極
磁場で別の方向に電子ビームを圧縮することを特徴とす
る電子ビーム圧縮方法。 4、RGBに対応する3つの電子ビームのビーム径を夫
々圧縮する電子ビーム圧縮装置において、各電子ビーム
毎に、電子ビームを或る方向に圧縮する第1の四重極磁
場発生装置と、該電子ビームを別方向に圧縮する第2の
四重極磁場発生装置とを備えることを特徴とする電子ビ
ーム圧縮装置。 5、電子銃と偏向コイルとを備える陰極線管において、
四重極磁場を発生して電子ビームを或る方向に圧縮する
第1の磁場発生装置と、該第1の磁場発生装置にて圧縮
された電子ビームを該圧縮方向とは異なる方向に圧縮す
る四重極磁場を発生する第2の磁場発生装置とを、前記
電子銃と前記偏向コイルとの間に設けたことを特徴とす
る陰極線管。 6、電子銃と偏向コイルとを備える陰極線管において、
四重極磁場を発生して各色対応の電子ビームを夫々或る
方向に圧縮する第1の磁場発生装置と、該第1の磁場発
生装置にて圧縮された各色対応の電子ビームを該圧縮方
向とは異なる方向に圧縮する四重極磁場を発生する第2
の磁場発生装置とを、前記電子銃と前記偏向コイルとの
間に設けたことを特徴とする陰極線管。 7、陰極線管を備えるモニタ装置において、陰極線管と
して請求項5または請求項6記載の陰極線管を備えるこ
とを特徴とするモニタ装置。 8、陰極線管を備えるテレビ装置において、陰極線管と
して請求項5または請求項6記載の陰極線管を備えるこ
とを特徴とするテレビ装置。
[Claims] 1. In an electron beam compression method for compressing the beam diameter of an electron beam, a plurality of quadrupole magnetic fields with different polarities are arranged in series, an electron beam is passed through the center of each quadrupole magnetic field, An electron beam compression method characterized by compressing an electron beam in one direction with one quadrupole magnetic field and compressing the electron beam in another direction with another quadrupole magnetic field. 2. An electron beam compression device that compresses the beam diameter of an electron beam, which includes a first quadrupole magnetic field generator that compresses the electron beam in one direction, and a second quadrupole magnetic field generator that compresses the electron beam in another direction. An electron beam compression device comprising: a polar magnetic field generator. 3. In an electron beam compression method that compresses the beam diameters of three electron beams corresponding to RGB, multiple quadrupole magnetic fields with different polarities are arranged in series for each electron beam, and the center of each quadrupole magnetic field is An electron beam compression method characterized by passing each electron beam through a quadrupole magnetic field, compressing the electron beam in one direction with a quadrupole magnetic field, and compressing the electron beam in another direction with the next quadrupole magnetic field. . 4. In an electron beam compression device that compresses the beam diameters of three electron beams corresponding to RGB, a first quadrupole magnetic field generator that compresses the electron beam in a certain direction for each electron beam; An electron beam compression device comprising: a second quadrupole magnetic field generator that compresses an electron beam in a different direction. 5. In a cathode ray tube equipped with an electron gun and a deflection coil,
A first magnetic field generator that generates a quadrupole magnetic field to compress an electron beam in a certain direction, and compresses the electron beam compressed by the first magnetic field generator in a direction different from the compression direction. A cathode ray tube characterized in that a second magnetic field generator for generating a quadrupole magnetic field is provided between the electron gun and the deflection coil. 6. In a cathode ray tube equipped with an electron gun and a deflection coil,
a first magnetic field generator that generates a quadrupole magnetic field to compress electron beams corresponding to each color in a certain direction; and a first magnetic field generator that generates a quadrupole magnetic field to compress electron beams corresponding to each color in a certain direction; A second quadrupole magnetic field that generates a compressive quadrupole magnetic field in a direction different from that of
A cathode ray tube, characterized in that a magnetic field generator is provided between the electron gun and the deflection coil. 7. A monitor device comprising a cathode ray tube, comprising the cathode ray tube according to claim 5 or 6 as the cathode ray tube. 8. A television device comprising a cathode ray tube, the television device comprising the cathode ray tube according to claim 5 or 6 as the cathode ray tube.
JP24873490A 1990-09-20 1990-09-20 Cathode-ray tube, television equipment therewith, monitor apparatus therewith and method of compressing electron beam Pending JPH04129136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24873490A JPH04129136A (en) 1990-09-20 1990-09-20 Cathode-ray tube, television equipment therewith, monitor apparatus therewith and method of compressing electron beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24873490A JPH04129136A (en) 1990-09-20 1990-09-20 Cathode-ray tube, television equipment therewith, monitor apparatus therewith and method of compressing electron beam

Publications (1)

Publication Number Publication Date
JPH04129136A true JPH04129136A (en) 1992-04-30

Family

ID=17182567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24873490A Pending JPH04129136A (en) 1990-09-20 1990-09-20 Cathode-ray tube, television equipment therewith, monitor apparatus therewith and method of compressing electron beam

Country Status (1)

Country Link
JP (1) JPH04129136A (en)

Similar Documents

Publication Publication Date Title
FI66098C (en) FOERFARANDE FOER TILLVERKNING AV ETT FAERGBILDROER
KR102088144B1 (en) Compact deflecting magnet
US4396897A (en) Cathode ray tube having permanent magnets for modulating the deflection field
US5565732A (en) Color display tube system with reduced spot growth
PL109121B1 (en) Apparatus for reproducing pictures
CA1173486A (en) Combination of a monochrome cathode-ray tube and a deflection unit having a high resolution
US5418422A (en) Combination of display tube and deflection unit comprising line deflection coils of the semi-saddle type with a gun-sided extension
JPH01217839A (en) Picture display with magnetzable core having compensating coil
KR910001513B1 (en) Device for displaying television pictures and deflection unit therefore
GB1567669A (en) Correcting television displays
JPH04129136A (en) Cathode-ray tube, television equipment therewith, monitor apparatus therewith and method of compressing electron beam
FI112292B (en) Deflection system with controlled radius point
EP0507383B1 (en) Colour display tube system
US4538127A (en) Magnetic quadripole
EP0569079B1 (en) Combination of display tube and deflection unit comprising line deflection coils of the semi-saddle type with a gun-sided extension
US5157302A (en) Color picture tube device with static convergence adjuster
JP2584699B2 (en) Degaussing coil
JPH08212939A (en) Crt and its resolution improving device
JPS6057652B2 (en) Magnetization device for in-line color picture tube convergence device
JP3320543B2 (en) Picture tube device and raster distortion correction method thereof
Shelaev Actively Screened SC Magnets
JPS6231926A (en) Correction device for misconvergence
JP2001256905A (en) Deflecting yoke
JPH01253142A (en) Deflection yoke device
JPS62108439A (en) Field emission electron gun