JPH0412883B2 - - Google Patents

Info

Publication number
JPH0412883B2
JPH0412883B2 JP2972187A JP2972187A JPH0412883B2 JP H0412883 B2 JPH0412883 B2 JP H0412883B2 JP 2972187 A JP2972187 A JP 2972187A JP 2972187 A JP2972187 A JP 2972187A JP H0412883 B2 JPH0412883 B2 JP H0412883B2
Authority
JP
Japan
Prior art keywords
inorganic powder
particle size
refractive index
vinyl monomer
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2972187A
Other languages
Japanese (ja)
Other versions
JPS63199204A (en
Inventor
Shigeki Yuasa
Kazuyoshi Ishida
Koji Kusumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2972187A priority Critical patent/JPS63199204A/en
Publication of JPS63199204A publication Critical patent/JPS63199204A/en
Publication of JPH0412883B2 publication Critical patent/JPH0412883B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、重合の前後において透明性を有し、
特に重合後の透明性が著しく優れ、且つ重合後に
優れた機械的性質を発揮することが可能な重合性
組成物に関する。 (従来の技術及び発明が解決しようとする問題
点) 重合後に透明性を有する硬化体を与える重合性
組成物は、内部を透視可能な被覆材料として使用
されている。一方、近年、歯科の分野において、
情報を刻印した金属薄板より成る認識票を歯の側
面に透明な被覆材料によつて被覆して保持せし
め、身元確認に利用しようとする試みがある。か
かる用途において、被覆材料は口腔内の過酷な環
境に耐えるだけの圧縮強度、耐摩耗性等の機械的
性質を有すると共に、認識票に印されている情報
を読みとるための高い透明性を有する硬化体を与
えることが要求される。また、該被覆材料は認識
票を取り付ける際、認識票の位置や、被覆層の気
泡の有無を確認するために硬化前においてもある
程度の透明性を有していることが要求される。 従来、透明性を有する硬化体を与える重合性組
成物として、粒径が可視領域の光の波長よりはる
かに小さい超微粉状シリカを2,2−ビス〔4−
(3−メタクリロキシ)−2−ヒドロキシプロポキ
シフエニル〕プロパンのようなアクリル系ビニル
モノマーに配合した組成物が用いられている。 しかしながら、上記の組成物においては、要求
される機械的性質を得るために超微粉状シリカの
配合量を高めると、重合体との屈折率の差により
得られる硬化体の透明性が著しく低下する。しか
も、上記の超微粉状シリカを添加することにより
重合性組成物の粘度が上昇して気泡が混入し易く
なり、該気泡により認識票がゆがんで見えるとい
う問題をも有する。そのため、上記ビニルモノマ
ーに添加する超微粉状シリカに代えて、該ビニル
モノマーの重合体と屈折率が等しい無機フイラー
を使用することも考えられる。しかし、かかる無
機フイラーを用いた重合性組成物は硬化前の透明
性が充分ではなく、そのため、前記用途において
認識票の位置や被覆層の気泡の有無を確認するこ
とができないという問題を生ずる。 (問題点を解決するための手段) 本発明者等は、上記問題を解消した重合性組成
物を開発すべく鋭意研究を重ねた。その結果、無
機フイラーを高配合割合で含む重合性組成物にあ
つては、該無機フイラーの粒子径および屈折率が
有機的に関係し合つて硬化前後の透明性に影響を
及ぼすという知見を得た。そして、かかる知見に
基づき更に研究を重ねた結果、特定の粒径及び屈
折率を有する無機粉体をビニルモノマーに対して
特定の割合で配合することにより、重合の前に透
明性を有すると共に、重合によつて優れた透明性
及び機械的性質を有する硬化体が得られることを
見い出し、本発明を完成するに至つた。 本発明は (a) 重合可能なビニルモノマー100重量部、及び (b) 平均粒径が0.07μm以上、0.1μm未満であり、
且つ屈折率(X)が式 Y−10-7.3・d-5.0≦X≦Y+10-7.3・d-5.0 (ただし、Yは(a)のビニルモノマーを重合して
得られる重合体の屈折率、dは平均粒径(単位
はμm)を示す) の範囲にある無機粉体(以下、微細無機粉体とい
う)100〜240重量部 よりなる重合性組成物 である。 尚、本発明において、屈折率は、ビニルモノマ
ーと重合体については、直接アツベの屈折計を用
いて、無機粉体については液浸法により測定し
た。なお、測定温度は23℃とした。 本発明において、重合可能なビニルモノマー
は、重合の前後において透明性を有するものであ
れば公知のものが特に制限なく使用される。その
うち、重合の前後における屈折率の差がが0.05以
下、好ましくは0.04以下のビニルモノマーが好適
である。特に、重合後における透明性の優れたア
クリル基及び/又はメタクリル基を有するビニル
モノマーが好適に使用される。かかるビニルモノ
マーを具体的に例示すれば次の通りである。 イ 単官能性ビニルモノマー メチルメタクリレート;エチルメタクリレー
ト;イソプロピルメタクリレート;ヒドロキシエ
チルメタクリレート;テトラヒドロフルフリルメ
タクリレート;グリシジルメタクリレート;およ
びこれらのアクリレートあるいはアクリル酸、メ
タクリル酸、p−メタクリロキシ安息香酸、N−
2−ヒドロキシ−3−メタクリロキシプロピル−
N−フエニルグリシン、4−メタクリロキシエチ
ルトリメリツト酸及びその無水物、6−メタクリ
ロキシヘキサメチレンマロン酸、10−メタクリロ
キシデカメチレンマロン酸、2−メタクリロキシ
エチルジハイドロゲンフオスフエート、10−メタ
クリロキシデカメチレンジハイドロゲンフオスフ
エート、2−ヒドロキシエチルハイドロゲンフエ
ニルフオスフオネート。 ロ 二官能性ビニルモノマー (i) 芳香族化合物系のもの 2,2−ビス(メタクリロキシフエニル)プロ
パン;2,2−ビス〔4−(3−メタクリロキシ)
−2−ヒドロキシプロポキシフエニル〕プロパ
ン;2,2−ビス(4−メタクリロキシエトキシ
フエニル)プロパン;2,2−ビス(4−メタク
リロキシジエトキシフエニル)プロパン;2,2
−ビス(4−メタクリロキシテトラエトキシフエ
ニル)プロパン;2,2−ビス(4−メタクリロ
キシペンタエトキシフエニル)プパン;2,2−
ビス(4−メタクリロキシポリエトキシフエニ
ル)プロパン;2,2−ビス(4−メタクリロキ
シジプロポキシフエニル)プロパン;2(4−メ
タクリロキシエトキシフエニル)−2(4−メタク
リロキシジエトキシフエニル)プロパン;2(4
−メタクリロキシジエトキシフエニル)−2(4−
メタクリロキシトリエトキシフエニル)プロパ
ン;2(4−メタクリロキシジプロポキシフエニ
ル)−2(4−メタクリロキシトリエトキシフエニ
ル)プロパン;2,2−ビス(4−メタクリロキ
シプロポキシフエニル)プロパン;2,2−ビス
(4−メタクリロキシイソプロポキシフエニル)
プロパンおよびこれらのアクリレート;2−ハイ
ドロキシエチルメタクリレート、2−ハイドロキ
シプロピルメタクリレート、3−クロロ−2−ハ
イドロキシプロピルメタクリレートあるいはこれ
らのアクリレートのような−OH基を有するビニ
ルモノマーと、ジイソシアネートメチルベンゼ
ン、4,4′−ジフエニルメタンジイソシアネート
のような芳香族基を有するジイソシアネート化合
物との付加から得られるジアダクト (ii) 脂肪族化合物系のもの エチレングリコールジメタクリレート;ジエチ
レングリコールジメタクリレート;トリエチレン
グリコールジメタクリレート;ブチレングリコー
ルジメタクリレート;ネオペンチルグリコールジ
メタクリレート;プロピレングリコールジメタク
リレート;1,3−ブタンジオールジメタクリレ
ート;1,4−ブタンジオールジメタクリレー
ト;1,6−ヘキサンジオールジメタクリレート
およびこれらのアクリレート;2−ハイドロキシ
エチルメタクリレート、2−ハイドロキシプロピ
ルメタクリレート、3−クロロ−2−ハイドロキ
シプロピルメタクリレートあるいはこれらのアク
リレートのように−OH基を有するビニルモノマ
ーとヘキサメチレンジイソシアネート、トリメメ
チルヘキサメチレンジイソシアネート、ジイソシ
アネートメチルシクロヘキサン、イソフオロンジ
イソシアネート、メチレンビス(4−シクロヘキ
シルイソシアネート)のようにジイソシネート化
合物との付加から得られるジアダクト;無水アク
リル酸、無水メタクリル酸;1,2−ビス(3−
メタクリロキシ−2−ヒドロキシプロポキシ)エ
チル、ジ(2−メタクリロキシエチル)フオスフ
エート、ジ(3−メタクリロキシプロピル)フオ
スフエート ハ 三官能性ビニルモノマー トリメチロールプロパントリメタクリレート、
トリメチロールエタントリメタクリレート、ペン
タエリスリトールトリメタクリレート、トリメチ
ロールメタントリメタクリレートおよびこれらの
アクリレート ニ 四官能性ビニルモノマー ペンタエリスリトールテトラメタクリレート、
ペンタエリスリトールテトラアクリレートおよび
ジイソシアネートメチルベンゼン、ジイソシアネ
ートメチルシクロヘキサン、イソフオロンジイソ
シアネート、ヘキサメチレンジイソシアネート、
トリメチルヘキサメチレンジイソシアネート、メ
チレンビス(4−シクロヘキシルイソシアネー
ト)、4,4′−ジフエニルメタンジイソシアネー
ト、トリレン−2,4−ジイソシアネートのよう
なジイソシアネート化合物とグリシドールジメタ
クリレートとの付加反応によつて得られるジアダ
クト 以上のビニルモノマー以外に、一般に工業用と
して公知のビニルモノマーも使用できる。例えば
酢酸ビニル、プロピオン酸ビニル等のビニルエス
テル類;メチルビニルエーテル、エチルビニルエ
ーテル、イソブチルビニルエーテル等のビニルエ
ーテル類;スチレン、ビニルトルエン、α−メチ
ルスチレン、クロルメチルスチレン、スチルベン
等のアルケニルベンゼン類 等が挙げられる。 重合可能なビニルモノマーを複数種類を用いる
場合、このビニルモノマーが室温で粘度が極めて
高いもの、あるいは固体である場合には、低粘度
の重合可能なビニルモノマーと組み合せて使用す
ることが好ましい。この組み合せは2種類に限ら
ず、3種類以上であつてもよい。又、単官能性ビ
ニルモノマーだけの重合体は架橋構造を有しない
ので、一般に重合体の機械的強度が劣る傾向にあ
る。そのために、単官能性ビニルモノマーを使用
する場合は多官能性モノマーと共に使用するのが
好ましい。重合可能なビニルモノマーの最も好ま
しい組合せは、二官能性ビニルモノマーの芳香族
化合物を主成分として二官能性ビニルモノマーの
脂肪族化合物を組み合せる方法である。これ以外
に、たとえば、三官能性ビニルモノマーと四官能
性ビニルモノマーの組み合せ、二官能性ビニルモ
ノマーの芳香族化合物と同脂肪族化合物に三官能
性ビニルモノマー及び/又は四官能性ビニルモノ
マーの組み合せ、およびこれらの組み合せにさら
に単官能性ビニルモノマーを加えた組み合せが好
適に採用出来る。 次に、上記ビニルモノマーの組み合せにおける
組成比は必要に応じて決定すればよいが一般に好
適に採用される単官能性ビニルモノマーに対する
多官能ビニルモノマーの組成比を示す。 (1) 二官能性ビニルモノマーの芳香族化合物は30
〜80重量%で同脂肪族化合物70〜20重量% (2) 三官能性ビニルモノマーは30〜100重量%で
四官能性ビニルモノマーは0〜70重量% (3) 二官能性ビニルモノマーの芳香族化合物は30
〜60重量%、同脂肪族化合物は5〜30重量%、
三官能性ビニルモノマーは10〜80重量%、四官
能性ビニルモノマーは0〜50重量%等の組成比
が好ましい。 本発明の重合性組成物において、上記した重合
可能なビニルモノマーに配合する微細無機粉体
は、平均粒径が0.07μm以上、0.1μm未満、好まし
くは0.08μm以上、0.1μm未満であり、且つ屈折率
(X)が式 Y−10-7.3・d-5.0≦X≦Y+10-7.3・d-5.0 (ただし、Yは前記(a)のビニルモノマーを重合し
て得られる重合体の屈折率、dは平均粒子径(単
位はμm)を示す)の範囲であることが必要であ
る。即ち、微細無機粉体の平均粒径が0.07μmよ
り小さい場合には、重合性組成物中の微細無機粉
体の配合量を増加すると該組成物の粘度が上昇す
るため、ビニルモノマー中に高配合することがで
きず、充分な機械的強度を有する硬化体を得るこ
とが困難となる。また、微細無機粉体の平均粒径
が0.1μm以上の場合には、その屈折率が前記範囲
を満足していても重合前の重合性組成物の透明性
が低下し、本発明の目的を達成することができな
い。一方、微細無機粉体の屈折率(X)が前記範
囲を外れた場合には、平均粒径が前記範囲を満足
しても充分な透明性を有する硬化体を得ることが
できない。かかる屈折率を有する微細無機粉体の
種類は特に限定されるものではない。本発明にお
いて特に好適に使用される微細無機粉体を例示す
ればシリカと結合可能な周期律表第族、第
族、第族及び第族からなる群より選ばれた少
くとも1種の金属酸化物及びシリカを主な構成成
分とする無機酸化物が挙げられる。上記の各金属
酸化物とシリカとを主な構成成分とすることによ
り、前記した特定の屈折率を有する微細無機粉体
を容易に得ることができる。 このような無機酸化物はシリカのシリコン原子
と第族、第族、第族又は第族の金属酸化
物、例えば酸化リチウム、酸化ナトリウム、酸化
カリウム、酸化マグネシウム、酸化カルシウム、
酸化ストロンチウム、酸化バリウム、酸化アルミ
ニウム、酸化チタニウム、酸化ジルコニウム、酸
化ハフニウム、酸化錫、酸化鉛等が酸素を仲介に
結合してたものである。そして上記第族、第
族、第族および第族の金属酸化物(以下単に
一般式M1/2O,M2O,M3/2O3,M4O2(但しM1
は第族の金属、M2は第族の金属、M3は第
族の金属、M4は第族の金属)で表示する場合
もある)の構成比率は得られる無機酸化物の屈折
率及び形状に大きな影響を与える。勿論M1/2O,
M2O,M3/2O3、およびM4DO2の種類、製造方
法、製造条件等によつてその構成比率が屈折率及
び形状に与える影響は変つて来るが、一般に上記
した屈折率の範囲で且つ球形状の無機酸化物を得
ようとする場合はM1/2O,M2O,M3/2O3、及
びM4O2の合計の構成比率を1〜20モル%の範囲
とすることが好ましく、特に5〜15モル%の範囲
のM1/2O,M2O,M3/2O3およびM4O2の合計の
構成比率を選択するときは適当な屈折率を有し、
且つ、粒径が揃つた真球に近いものとなる。 上記した微細無機粉体の屈折率を特定の範囲に
調整するためには、一般に周期律表第族、第
族、第族、第族の金属酸化物の中でも、特に
酸化ストロンチウム、酸化バリウム、酸化亜鉛、
酸化アルムミニウム、酸化インジウム、酸化チタ
ン、酸化ジルコニウム、酸化スズ等のシリカより
も屈折率の高い酸化物を用いることが好ましい。 本発明で用いる微細無機粉体の形状は、得られ
る重合性組成物の硬化体の耐摩耗性、表面の滑沢
性、表面硬度等の点から球形状であるものが特に
好ましい。また該微細機粉体の粒子径の分布は、
特に限定されないが、本発明の目的をもつとも良
好に発揮するのは該分布の標準偏差値が1.30以下
であるようなシヤープなものである。 本発明で用いる微細無機粉体は表面安定性を保
持するため表面のシラノール基を減ずるのが好ま
しい。そのために微細無機粉体を乾燥後更に500
〜1000℃の温度で焼成する手段がしばしば好適に
採用される。また一般に前記焼成した微細無機粉
体は安定性を保持するため有機珪素化合物を用い
て表面処理を行つた後、使用するのが最も好適で
ある。上記表面処理の方法は特に限定されず公知
の方法、例えば、微細無機粉体とγ−メタクリロ
キシプロピルトリメトキシシラン、ビニルトリエ
トキシシラン等の公知の有機珪素化合物とを、ア
ルコール/水の混合溶媒中で一定時間接触させた
後、該溶媒を除去する方法が採用される。 本発明において、前記した重合可能なビニルモ
ノマーに対する微細無機粉体の添加は、該ビニル
モノマー100重量部に対して微細無機粉体が100〜
240重量部、好ましくは120〜200重量部となる範
囲で行うことが必要である。即ち、重合性組成物
中の微細無機粉体の添加割合が100重量部より少
ない場合には充分な機械的性質を有する硬化体を
得ることができない。また、該添加割合が240重
量部より多い場合には、粘度が著しく高くなな
り、重合性組成物の取り扱いが困難となる。しか
も、重合性組成物或いは該重合性組成物を重合し
て得られる硬化体の透明性が低下する。 本発明の重合性組成物は必要に応じて重合開始
触媒を含有する。上記の重合開始触媒は特に限定
されず、公知のものが制限なく使用される。例え
ば、光重合開始触媒、有機過酸化物と第3級アミ
ンからなるレドツクス系触媒、加熱重合開触媒等
が用いられる。特に光重合触媒は、空気の混入が
少ない状態で重合性組成物を重合させることがで
きる点で前記歯科用の被覆材料として該組成物を
使用する場合に最も好適に使用される。 上記の光重合触媒は公知のものが特に制限なく
使用できるが、特に、本発明の重合性組成物を口
腔内で使用する場合には390〜700nm、好ましく
は400〜600nmの可視光線照射によつて励起され
重合を開始し得るものが好適に使用される。一般
に光重合開始触媒としては光増感剤を光重合促進
剤と組み合わせて使用するのが好ましい。光増感
剤として好適に用いられるものを例示すれば、ベ
ンジル、カンフアーキノン、α−ナフチル、アセ
トナフセン、p,p′−ジメトキシベンジル、p,
p′−ジクロロベンジルアセチル、ペンタンジオ
ン、1,2−フエナントレキノン、1,4−フエ
ナントレンキノン、3,4−フエナントレキノ
ン、9,10−フエナントレンキノン、ナフトキノ
ン等のα−ジケトン類である。本発明における上
記α−ジケトンは公知のα−ジケトンのうち少な
くとも一種を選んで用いることができ、さらに二
種類以上混合して用いることもできる。また、カ
ンフアーキノンは最も好ましく用いることができ
る。 また光重合促進剤としては、N,N−ジメチル
アニリン、N,N−ジエチルアニリン、N,N−
ジ−n−ブチルアニリン、N,N−ジベンジルア
ニリン、N,N−ジメチル−p−トルイジン、
N,N−ジエチル−p−トルイジン、N,N−ジ
メチル−m−トルイジン、p−ブロモ−N,N−
ジメチルアニリン、m−クロロ−N,N−ジメチ
ルアニリン、p−ジメチルアミノベンズアルデヒ
ド、p−ジメチルアミノアセトフエノン、p−ジ
メチルアミノベンゾイツクアシツド、p−ジメチ
ルアミノベンゾイツクアシツドエチルエステル、
p−ジメチルアミノベンゾイツクアシツドアミノ
エステル、N,N−ジメチルアンスラニリツクア
シツドメチルエステル、N,N−ジヒドロキシエ
チルアニリン、N,N−ジヒドロキシエチル、−
p−トルイジン、p−ジメチルアミノフエネチル
アルコール、p−ジメチルアミノスチルベン、
N,N−ジメチル−3,5−キシリジン、4−ジ
メチルアミノピリジン、N,N−ジメチル−α−
ナフチルアミン、N,N−ジメチル−β−ナフチ
ルアミン、トリブチルアミン、トリプロピルアミ
ン、トリエチルアミン、N−メチルジエタノール
アミン、N−エチルジエタノールアミン、N,N
−ジメチルヘキシルアミン、N,N−ジメチルド
デシルアミン、N,N−ジメチルステアリルアミ
ン、N,N−ジメチルアミノエチルメタクリレー
ト、N,N−ジエチルアミノエチルメタクリレー
ト、2,2′−(n−ブチルイミノ)ジエタノール
等の第3級アミン類;5−ブチルバルビツール
酸、1−ベンジル−5−フエニルバルビツール酸
等のバルビツール酸類;ベンゾイルパーオキサイ
ド、ジ−t−ブチルパーオキサイド、t−ブチル
パーベンゾエート等の有機過酸化物等が好適に使
用出来る。これらの光重合促進剤のうち少なくと
も一種を選んで用いることができ、さらに二種類
以上を混合して用いることもできる。 また第3級アミン類を促進剤として用いる場合
には、特に芳香族基に直接窒素原子が置換した第
3級アミン類がより好適に用いられる。更に光重
合促進能の向上のために、第3級アミンに加えて
クエン酸、リンゴ酸、酒石酸、グリコール酸、グ
ルコン酸、α−オキシイソ酪酸、2−ヒドロキシ
プロパン酸、3−ヒドロキシプロパン酸、3−ヒ
ドロキシブタン酸、4−ヒドロキシブタン酸、ジ
メチロールプロピオ酸等のオキシカルボン酸類の
添加が効果的である。 また、前記したレドツクス系触媒としては、上
記に示した有機過酸化物と第3級アミンの系が好
適に使用することができる。 代表的なレドツクス系触媒を例示すれば、既に
光重開始触媒で示した有機過酸化物と第3級アミ
ンが好適に使用できる。最も好ましい組み合せ
は、ベンゾイルパーオキサイドとN,N−ジヒド
ロキシエチル−p−トルイジンあるいはベンゾイ
ルパーオキサイドとN,N−ジメチル−p−トル
イジンである。 上記に示した有機過酸化物以外にも、アゾ化合
物等の公知の加熱重合開始触媒が特に制限されず
使用することができる。特に好適に使用される代
表的なものを例示すれば、2,2′−アゾビスイソ
ブチロニトリル、4,4′−アゾビス(4−シアノ
吉草酸)、2,2′−アゾビス(2,4−ジメチル
バレロニトリル)、2,2′−アゾビス(4−メト
キシ−2,4−ジメチルバレロニトリル)、1,
1′アゾビス−(シクロヘキサン−1−カルボニト
リル)、2,2′−アゾビスイソ酪酸ジメチル、2,
2′−アゾビス(2−メチルプロピオン酸)、2,
2′−アゾビス(2−シクロブチルプロピオン酸)、
2,2′−アゾビス〔2−(3−ヒドロキシフエニ
ル)酪酸〕、2,2′−アゾビス(4−ニトロ吉草
酸)、2,2′−アゾビス(4−クロロ吉草酸)等
である。 重合開始触媒の使用量は、重合可能なビニルモ
ノマーに対して、0.001〜5重量%、より好まし
くは0.01〜3重量%の範囲でよい。 本発明において、前記した重合性組成物に平均
粒径0.1〜3μm、好ましくは0.15〜1μmであり、且
つ屈折率(X′)が式 Y−0.005≦X′≦Y+0.005 (ただし、Yは前記の(a)のビニルモノマーを重
合して得られる重合体の屈折率を示す。) の範囲にある無機粉体(以下、粗大無機粉体とい
う)を添加することにより、前記した本願発明の
目的を達成でき、且つ、重合性組成物より得られ
る硬化体の透明性を低下させることなく、該組成
物の硬化前の粘度を低下でき、使用時の作業性を
より向上させることができ好ましい。また、該粗
大機粉体の添加により、重合性組成物の硬化前に
おける透明性を調整することが可能となる。即
ち、粗大無機粉体の添加量を増加すると重合性組
成物の透明性は徐々に低下する。従つて、該粗大
無機粉体の添加量を、該重合性組成物が透明性を
維持できる範囲で透明性を低下させるように調整
することにより、重合前と重合後との透明性の変
化が確認でき、これにより重合の進行状態を知る
ことが可能となる。 かかる粗大無機粉体において、平均粒径が
3.0μmより大きいものは得られる硬化体の表面で
の乱反射が大きくなり透明性が低下する傾向にあ
り、該平均粒径が0.1μmより小さい場合には上記
した効果を発揮することが困難となる。また、屈
折率が前記した範囲を外れた場合には重合性組成
物を重合して得られる硬化体の透明性が低下する
傾向がある。 このような特定の屈折率を有する粗大無機粉体
は、前記した微細無機粉体を構成する材質の中か
ら該屈折率を有するものを選択して使用すればよ
い。 前記したこれらの効果を発揮させるために好適
な粗大無機粉体の添加量は、重合性組成物中の(a)
のビニルモノマー100重量部に対して10〜120重量
部、好ましくは20〜100重量部である。 本発明において、前記した微細無機粉体又は粗
大無機粉体はその少なくとも一部を(a)のビニルモ
ノマーを重合して得られるポリマーとの複合体と
して使用してもよい。かかる複合体の製造方法は
公知の方法が採用される。例えば特開昭59−
101409号公報に示された方法が使用される。 本発明において、2−ヒドロキシ−4−メチル
ベンゾフエノンのような紫外線吸収剤、ハイドロ
キノン、ハイドロキノンモノメチルエーテル、
2,5−ジターシヤリブチル−4−メチルフエノ
ール等の重合禁止剤、顔料等の成分を本発明の重
合性組成物に任意に添加できる。 本発明の重合性組成物の硬化方法は特に制限さ
れない。例えば、400〜600nmの光によつて励起
される光重合触媒を用いる場合、前記の波長範囲
の光として、例えばハロゲンランプ、キセノンラ
ンプ、レーザー、螢光灯、太陽等の光を使用して
硬化させればよい。また、前記の光を照射し、ビ
ニルモノマーを重合する場合の温度、照射時間は
照射光の強さにより異なるが、一般に所望の重合
時間にあわせ適宜決定すればよい。好適には、0
℃〜60℃程度の比較的低温で、10秒〜数分程度の
比較的短時間の照射を行なえば十分である。 本発明の重合性組成物を重合させる場合、予め
(a)の重合可能なビニルモノマー、微細無機粉体又
は微細無機粉体と粗大無機粉体並びに重合用開始
触媒を混合しペースト状としたものを貯蔵してお
き、使用時に光を照射するかあるいは上記組成か
ら重合触媒のみを別々に保存しておき使用直前に
混合した光を照射して用いるのが一般的である。 但し、前記ペーストおよび光重合開始触媒の貯
蔵に際しては、前記ペーストの貯蔵中の重合ある
いは触媒の劣化を防ぐために遮光しておくことが
必要である。また、光を照射する前に、減圧脱泡
操作を行ないペースト中から気泡を除去しておく
と、本発明の効果が最も良好に発揮される。 また、レドツクス系触媒を用いる場合には、本
発明の重合性組成物に有機過酸化物を添加したも
のと、第3級アミンを添加したものを予め別々に
調製し、使用時に減圧脱泡操作を行ないながら、
両者を練和し、重合硬化させる方法が一般に採用
される。 一方加熱重合触媒を含む複合組成物は、常圧あ
るいは加圧下にて50〜200℃に加熱して、重合硬
化される。重合時間は10分から数時間でよい。加
熱重合は窒素・ヘリウム・アルゴンなどの不活性
気体中にて行なう方が好ましい。空気中の加熱重
合で得られる硬化体は表面に酸素の影響により未
重合な部分が出来やすいので、重合硬化後表面を
研磨して未重合な部分を除くことが好ましい。加
熱重合による硬化体は認識票の上に接着剤で接着
させる方法により用いられる。 (発明の効果) 以上の説明で明らかなように、本発明の重合性
組成物は、特定の屈折率と粒径を有する微細無機
粉体を重合可能なビニルモノマーに特定量配合す
ることにより、硬化前に透明性を有し、且つ該重
合性組成物を重合して得られる硬化体は透明性が
極めて高く、しかも表面硬度や引張強度などの機
械的強度および耐摩耗性等の機械的性質が優れた
ものである。 さらに、本発明においては、粗大無機粉体を特
定の割合で併用することにより、上記効果の他、
重合性組成物の粘度を上昇させることなく、無機
粉体の配合割合を高めることができる。しかも、
粗大無機粉体の添加により硬化前の重合性組成物
の透明性を低く調整できるため、重合硬化に伴な
う透明度の変化を追うことにより、重合が均一に
進行しているかどうか確認することができるとい
う利点もある。 本発明の複合組成物は、歯科用の認識票の接
着・被覆用以外に、小窩裂溝封鎖用のシーラン
ト、矯正用ブラケツト、動揺歯の固定材料、義歯
及び咬合調整材料等の用途に応用できる。 更に、注型材料、封止材料、成型材料等の工業
分野における材料としても有効である。 (実施例) 以下、実施例によりさらに詳しく本発明の内容
を説明するが、本発明はこれらの実施例に限定さ
れるものではない。なお、以下の製造例、実施例
および比較例に示した無機粉体の諸特性(粒径、
粒径分布の標準偏差値、屈折率)の測定、重合可
能なビニルモノマー及び該重合可能なビニルモノ
マーを重合して得られる重合体の屈折率の測定、
並びに複合組成物を用いた物性値(表面硬度、圧
縮強度、引張強度、透明度)の測定は以下に示す
方法に準じて行なつた。 (1) 無機粉体の痢径及び粒径分布の標準偏差値:
粉体の走査型電子顕微鏡写真を撮り、その写真
の単位視野内に観察される粒子の数(n)、お
よび粒径(直径Xi:但し、形状が球形でない
場合には水平方向フエレ径をXiとする)を求
め、次式により算出される。 標準偏差値=X−σn−1/X 但し (2) 無機粉体の屈折率: 試料の無機粉体の屈折率と同じ屈折率の溶媒を
調製し、その溶媒の屈折率を試料の屈折率とし
た。溶媒の調製方法としては、試料を溶媒に懸濁
させ、肉眼観察により透明に見えるような溶媒の
組成を一定温度下で調製した。使用した溶媒はペ
ンタン、ヘキサン、シクロヘキサン、トルエン、
スチレン、アニリン及びヨウ化メチレン等であり
溶媒の屈折率はアツベの屈折計で測定した。 (3) 重合可能なビニルモノマー及び該ビニルモノ
マーを重合して得られる重合体の屈折率: ビニルモノマーおよび重合体の屈折率は直接
アツベの屈折計を用いて測定した。なお、測定
は一定温度下で行なつた。 (4) 透明度 ペースト状の重合性組成物(以下、ペーストと
称する)を直径6mm、深さ1mmの孔を有するステ
ンレス製割型に填入し、ポリプロプレン製フイル
ムで圧接した。次に、圧接面に可視光線照射器ホ
ワイトライト(商品名、タカラベルモント社製)
の石英ロツド先端を固定し、30秒間光照射を行つ
た。照射後、硬化体を割型から取り外し、37℃空
気中に24時間静置後、色差計(TC−1500MC,
東京電色製)により、三刺激値の一つであるY値
を後述する方法にて測定した。Y.ミヤガワら,
ジヤーナル オブ デンタルリサーチ,60巻,第
5号,890−894ページ,1981年に示された方法に
従い、硬化体の裏側に標準白色板(X=81.2,Y
=82.7,Z=93.8)を置いた場合のY値(以下
Ywとする)と硬化体の裏側に標準黒色板(X=
0.1,Y=0.1,Z=0.2)を置いた場合のY値(以
下YBとする)を測定し、硬化体の不透明度を示
すコントラスト比は次式によつて算出した。 コントラスト比=YB/YW 透明度はコントラスト比を用いて、次式で算出
した。 透明度=1−(コントラスト比)=1−YB/YW 透明度は0から1の範囲の値で、その値が大き
いほど、透明性が高い事を示す。尚、透明度が
0.7より小さいものはほとんど不透明である。ま
た、重合前のペーストの透明度を測定するため
に、各実施例・比較例で示したペーストとフイラ
ー組成モノマー組成は同一であるが、触媒を含ま
ないペーストを別途調製した。次に、これらのペ
ーストを直径10mmの孔を有する厚さ1mmのアクリ
ル板に填入し、ポリプロピレン製フイルムで両面
から圧接した。その後、上述した硬化体の場合と
同様の方法でYW,YBを測定し、上記計算式に従
い透明度を算出した。 (5) 表面硬度: ペーストを直径6mm,深さ3mmの孔を有するス
テンレス製割型に填入しポリプロピレン製フイル
ムで圧接した。次に圧接面に可視光線照射器ホワ
イトライトの石英ロツド先端を固定し60秒間光照
射を行なつた。照射後、重合硬化体を割型から取
り外し37℃の蒸留水中に24時間浸漬保存した。保
存後、森試験機製ミクロブリネル硬さ試験機を用
いて照射面の表面硬度を測定した。 (6) 圧縮強度: ペーストを直径4mm、深さ3mmの孔を有するス
テンレス製割型に填入し、ポリプロピレン型フイ
ルムで圧接した。次に圧接面にホワイトの石英ロ
ツド先端を固定し30秒間光照射を行なつた。照射
後、重合硬化体を割型から取り外し、更に硬化体
の底面に30秒間光照射した。次いで、硬化体を37
℃の蒸留水中に24時間浸漬保存した後、東洋ボー
ルドウイン製テンシロン、UTM−5Tを用いて圧
縮強度を測定した。なおクロスヘツドスペードは
10mm/minとした。 (7) 引張強度: ペーストを直経6mm、深さ3mmの孔を有するス
テンレス製割型に填入しポリプロピレン製フイル
ムで圧接した他は、(6)の圧縮強度と同様に測定を
行なつた。 (8) 歯ブラシ摩耗深さ: ペーストを縦10mm、横0mm、深さ1.5mmの孔を
有するテフロン製モールドに填入し、ポリプロピ
レン製フイルムで圧接した。次に、圧接面に可視
光線照射器ホワイトライトの石英ロツド先端を固
定し60秒間光照射を行なつた。照射後、重合硬化
体をモールドから取り外し、37℃の蒸留水中に7
日間浸漬保存した。重合硬化体を荷重400gで歯
ブラシで1500m摩耗した。摩耗深さは摩耗重量を
重合硬化体の密度で除して求めた。 (9) 表面粗さ 歯ブラシ摩耗後、重合硬化体の表面粗さを東京
精密社製表面粗さ計サーフユムA−200を用いて
測定した。 表面粗さは十点平均粗さで表わした。 (10) ペーストの粘度 ペーストを適量取り、石田式ハイシエアーレオ
メーターモデルIGK−120を用いて、ペーストの
粘度は測定し、ポイズで表わした。 以下の実施例、比較例に於いて次の化合物を次
のとおり略記する。 化 合 物 名 略称 2,2−ビス〔4−(3−メタクリロキシ)−2
−ヒドロキシプロポキシフエニル〕プロパン
Bis−GMA 2,2−ビス(4−メタクリロキシポリエトキ
シフエニル)プロパン D−2,6E トリエチレングリコールジメタクリレート
TEGDMA ネオペンチルグリコールジメタクリレート
NPGDMA テトラメチロールメタントリアクリレート
A−TMM−3L テトラメチロールメタンテトラアクリレート
A−TMMT カンフアーキノン CQ N,N−ジメチル−p−トルイジン DMPT p−ジメチルアミノベンゾイツクアシツドエチ
ルエステル DMBE ベンゾイルパーオキサイド BPO 5−ブチルバルビツール酸 5−BBA ブチレイテイツドヒドロキシトルエン BHT N,N−ジヒドロキシエチル−p−トルイジン
DEPT 製造例 1 0.04%塩酸5.0gとテトラエチルシリケート(Si
(OC2H54,日本コルコート化学製,商品名「エ
チルシリケート28」)176.6gをメタノール0.44lに
溶かし、この溶液を30℃で約1時間撹拌しながら
加水分解した。その後、これにテトラブチルチタ
ネート(Ti(o−nC4H94、日本曹達製)21.4g
とナトリウムメチラートメタノール溶液(濃度28
重量%)をイソプロピルアルコール0.24lに溶か
した溶液を撹拌しながら添加し、テトラエチルシ
リケートの加水分解物とテトラブチルチタネート
との混合溶液を調製した。次に撹拌機付きの内容
積3のガラス製反応容器にメタノール1.17を
導入し、これに0.25のアンモニア水溶液(濃度
25重量%)を加えてアンモニア性アルコール溶液
を調製し、これにシリカの種子を作るための有機
珪素化合物溶液としてテトラエチルシリケート
0.8gをメタノール18mlに溶かした溶液を添加し、
添加終了10分後反応液がわずかに乳白色を帯びた
ところで、さらに続けて、上記混合液を約5時間
かけて添加し反応生成物を析出させた。 その後、さらに続けて、テトラエチルシリケー
ト25.2gを含むメタノール0.09からなる溶液を
該反応生成物が析出した系に約30分かけて添加し
た。なお反応中は反応容器の温度を40℃に保つ
た。反応終了後更に30分間撹拌を続けた後、乳白
色の反応液からエバポレーターで溶媒を除去し、
更に80℃で減圧乾燥することにより乳白色の粉体
を得た。 次に、この乳白色の粉体を850℃、1時間焼成
した後、メノウ乳鉢で分散し、シリカとチタニウ
ムを構成成分とする無機粉体を得た。この無機粉
体は透過型電子顕微鏡の観察から、粒子径は
0.075〜0.090μmの範囲にあり、平均粒径は
0.082μmで且つ形状は真球でさらに、粒径分布の
標準偏差値は1.04で屈折率は1.497であつた。得
られた無機粉体は更にγ−メタクリロキシプロピ
ルトリメトキシシランで表面処理した。 製造例 2〜7 製造例−1に於て、反応温度および混合溶液中
のテトラエチルシリケートとテトラブチルチタネ
ートの量を変えた以外は製造例−1と全く同様な
方法で無機粉体を製造した。得られた無機粉体は
さらにγ−メタクリロキシプロピルトリメトキシ
シランで表面処理した。反応温度、混合溶液中の
テトラエチルシリケートとテトラブチルチタネー
ートの量及び得られた無機粉体の諸性質を表1に
示した。
(Industrial Application Field) The present invention has transparency before and after polymerization,
In particular, the present invention relates to a polymerizable composition that has outstanding transparency after polymerization and can exhibit excellent mechanical properties after polymerization. (Prior Art and Problems to be Solved by the Invention) A polymerizable composition that provides a transparent cured product after polymerization is used as a coating material whose interior can be seen through. On the other hand, in recent years, in the field of dentistry,
Attempts have been made to use identification tags made of thin metal plates with information engraved on them for identification purposes, by covering the sides of teeth with a transparent covering material and holding them there. In such applications, the covering material has mechanical properties such as compressive strength and abrasion resistance to withstand the harsh environment of the oral cavity, as well as a hardened material with high transparency to read the information stamped on the identification tag. You are required to give your body. Further, the coating material is required to have a certain degree of transparency even before curing in order to confirm the position of the identification tag and the presence or absence of air bubbles in the coating layer when attaching the identification tag. Conventionally, ultrafine powdered silica whose particle size is much smaller than the wavelength of light in the visible region has been used as a polymerizable composition that provides a cured product with transparency, using 2,2-bis[4-
A composition blended with an acrylic vinyl monomer such as (3-methacryloxy)-2-hydroxypropoxyphenyl]propane is used. However, in the above composition, when the amount of ultrafine powdered silica is increased in order to obtain the required mechanical properties, the transparency of the cured product significantly decreases due to the difference in refractive index with the polymer. do. Moreover, the addition of the above-mentioned ultrafine powdered silica increases the viscosity of the polymerizable composition, making it easier for air bubbles to be mixed in, and the air bubbles also cause the problem that the identification tag appears distorted. Therefore, instead of the ultrafine powdered silica added to the vinyl monomer, it is conceivable to use an inorganic filler having the same refractive index as the polymer of the vinyl monomer. However, a polymerizable composition using such an inorganic filler does not have sufficient transparency before curing, which causes a problem in that it is not possible to confirm the position of the identification tag or the presence or absence of bubbles in the coating layer in the above-mentioned applications. (Means for Solving the Problems) The present inventors have conducted extensive research in order to develop a polymerizable composition that solves the above problems. As a result, we found that in polymerizable compositions containing a high proportion of inorganic filler, the particle size and refractive index of the inorganic filler are organically related and affect transparency before and after curing. Ta. As a result of further research based on this knowledge, we found that by blending inorganic powder with a specific particle size and refractive index in a specific ratio to vinyl monomer, it becomes transparent before polymerization, and The present inventors have discovered that a cured product having excellent transparency and mechanical properties can be obtained by polymerization, and have completed the present invention. The present invention comprises (a) 100 parts by weight of a polymerizable vinyl monomer, and (b) an average particle size of 0.07 μm or more and less than 0.1 μm,
And the refractive index (X) is expressed by the formula Y-10 -7.3・d -5.0 ≦X≦Y+10 -7.3・d -5.0 (where, Y is the refractive index of the polymer obtained by polymerizing the vinyl monomer of (a), The polymerizable composition is comprised of 100 to 240 parts by weight of inorganic powder (hereinafter referred to as fine inorganic powder) having an average particle diameter (in μm). In the present invention, the refractive index was directly measured for vinyl monomers and polymers using an Atsube refractometer, and for inorganic powders by an immersion method. Note that the measurement temperature was 23°C. In the present invention, any known polymerizable vinyl monomer can be used without particular limitation as long as it has transparency before and after polymerization. Among these, vinyl monomers with a difference in refractive index before and after polymerization of 0.05 or less, preferably 0.04 or less are suitable. In particular, vinyl monomers having acrylic and/or methacrylic groups that exhibit excellent transparency after polymerization are preferably used. Specific examples of such vinyl monomers are as follows. A Monofunctional vinyl monomer Methyl methacrylate; Ethyl methacrylate; Isopropyl methacrylate; Hydroxyethyl methacrylate; Tetrahydrofurfuryl methacrylate; Glycidyl methacrylate; and their acrylates or acrylic acid, methacrylic acid, p-methacryloxybenzoic acid, N-
2-Hydroxy-3-methacryloxypropyl-
N-phenylglycine, 4-methacryloxyethyl trimellitic acid and its anhydride, 6-methacryloxyhexamethylene malonic acid, 10-methacryloxydecamethylene malonic acid, 2-methacryloxyethyl dihydrogen phosphate, 10- Methacryloxydecamethylene dihydrogen phosphonate, 2-hydroxyethyl hydrogen phenyl phosphonate. (b) Difunctional vinyl monomer (i) Aromatic compound type 2,2-bis(methacryloxyphenyl)propane; 2,2-bis[4-(3-methacryloxy)
-2-Hydroxypropoxyphenyl]propane; 2,2-bis(4-methacryloxydiethoxyphenyl)propane; 2,2-bis(4-methacryloxydiethoxyphenyl)propane; 2,2
-Bis(4-methacryloxytetraethoxyphenyl)propane; 2,2-bis(4-methacryloxypentaethoxyphenyl)propane; 2,2-
Bis(4-methacryloxypolyethoxyphenyl)propane; 2,2-bis(4-methacryloxydipropoxyphenyl)propane; 2(4-methacryloxyethoxyphenyl)-2(4-methacryloxydiethoxyphenyl) enyl)propane; 2(4
-methacryloxydiethoxyphenyl)-2(4-
2(4-methacryloxydipropoxyphenyl)-2(4-methacryloxytriethoxyphenyl)propane; 2,2-bis(4-methacryloxypropoxyphenyl)propane; 2,2-bis(4-methacryloxyisopropoxyphenyl)
Propane and their acrylates; vinyl monomers with -OH groups such as 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 3-chloro-2-hydroxypropyl methacrylate or these acrylates, and diisocyanate methylbenzene, 4,4 Diaducts obtained from addition with diisocyanate compounds having aromatic groups such as '-diphenylmethane diisocyanate (ii) Based on aliphatic compounds Ethylene glycol dimethacrylate; diethylene glycol dimethacrylate; triethylene glycol dimethacrylate; butylene glycol dimethacrylate; methacrylate; neopentyl glycol dimethacrylate; propylene glycol dimethacrylate; 1,3-butanediol dimethacrylate; 1,4-butanediol dimethacrylate; 1,6-hexanediol dimethacrylate and their acrylates; 2-hydroxyethyl methacrylate; Vinyl monomers with -OH groups such as 2-hydroxypropyl methacrylate, 3-chloro-2-hydroxypropyl methacrylate, or these acrylates, and hexamethylene diisocyanate, trimemethylhexamethylene diisocyanate, diisocyanate methylcyclohexane, isophorone diisocyanate, methylene bis( Diaducts obtained from addition with diisocyanate compounds such as 4-cyclohexyl isocyanate); acrylic anhydride, methacrylic anhydride; 1,2-bis(3-
methacryloxy-2-hydroxypropoxy)ethyl, di(2-methacryloxyethyl) phosphatate, di(3-methacryloxypropyl) phosphatyl trifunctional vinyl monomer trimethylolpropane trimethacrylate,
Trimethylolethane trimethacrylate, pentaerythritol trimethacrylate, trimethylolmethane trimethacrylate and these acrylates Tetrafunctional vinyl monomer Pentaerythritol tetramethacrylate,
Pentaerythritol tetraacrylate and diisocyanate methylbenzene, diisocyanate methylcyclohexane, isophorone diisocyanate, hexamethylene diisocyanate,
Diaduct obtained by the addition reaction of a diisocyanate compound such as trimethylhexamethylene diisocyanate, methylene bis(4-cyclohexyl isocyanate), 4,4'-diphenylmethane diisocyanate, tolylene-2,4-diisocyanate and glycidol dimethacrylate. In addition to the vinyl monomers mentioned above, generally industrially known vinyl monomers can also be used. Examples include vinyl esters such as vinyl acetate and vinyl propionate; vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, and isobutyl vinyl ether; and alkenylbenzenes such as styrene, vinyltoluene, α-methylstyrene, chloromethylstyrene, and stilbene. . When using multiple types of polymerizable vinyl monomers, if the vinyl monomers have extremely high viscosity at room temperature or are solid, it is preferable to use them in combination with a polymerizable vinyl monomer of low viscosity. This combination is not limited to two types, but may be three or more types. Furthermore, since a polymer made only of monofunctional vinyl monomers does not have a crosslinked structure, the mechanical strength of the polymer generally tends to be poor. For this reason, when monofunctional vinyl monomers are used, they are preferably used together with polyfunctional monomers. The most preferable combination of polymerizable vinyl monomers is a method in which an aromatic compound of a difunctional vinyl monomer is used as a main component and an aliphatic compound of a difunctional vinyl monomer is combined. In addition to this, for example, a combination of a trifunctional vinyl monomer and a tetrafunctional vinyl monomer, a combination of an aromatic compound of a difunctional vinyl monomer, an aliphatic compound of the same, and a trifunctional vinyl monomer and/or a tetrafunctional vinyl monomer. , and combinations thereof in which a monofunctional vinyl monomer is further added can be suitably employed. Next, although the composition ratio in the above combination of vinyl monomers may be determined as necessary, the composition ratio of the polyfunctional vinyl monomer to the monofunctional vinyl monomer which is generally preferably employed will be shown. (1) The aromatic compound of the difunctional vinyl monomer is 30
-80% by weight and 70-20% by weight of the same aliphatic compound (2) 30-100% by weight of trifunctional vinyl monomer and 0-70% by weight of tetrafunctional vinyl monomer (3) Aroma of difunctional vinyl monomer Group compounds are 30
~60% by weight, 5-30% by weight of aliphatic compounds,
The trifunctional vinyl monomer preferably has a composition ratio of 10 to 80% by weight, and the tetrafunctional vinyl monomer has a composition ratio of 0 to 50% by weight. In the polymerizable composition of the present invention, the fine inorganic powder blended with the above polymerizable vinyl monomer has an average particle size of 0.07 μm or more and less than 0.1 μm, preferably 0.08 μm or more and less than 0.1 μm, and The refractive index (X) is expressed by the formula Y-10 -7.3・d -5.0 ≦X≦Y+10 -7.3・d -5.0 (where, Y is the refractive index of the polymer obtained by polymerizing the vinyl monomer of (a) above, d needs to be in the range of the average particle diameter (in μm). That is, when the average particle size of the fine inorganic powder is smaller than 0.07 μm, increasing the amount of the fine inorganic powder in the polymerizable composition increases the viscosity of the composition. This makes it difficult to obtain a cured product with sufficient mechanical strength. In addition, if the average particle size of the fine inorganic powder is 0.1 μm or more, even if its refractive index satisfies the above range, the transparency of the polymerizable composition before polymerization will decrease, which will defeat the purpose of the present invention. cannot be achieved. On the other hand, if the refractive index (X) of the fine inorganic powder is outside the above range, a cured product with sufficient transparency cannot be obtained even if the average particle size satisfies the above range. The type of fine inorganic powder having such a refractive index is not particularly limited. Examples of fine inorganic powders particularly preferably used in the present invention include at least one metal oxide selected from the group consisting of Groups 1, 2, 3, and 3 of the periodic table that can be bonded to silica. Examples include inorganic oxides containing silica and silica as main constituents. By using each of the above-mentioned metal oxides and silica as the main constituents, it is possible to easily obtain a fine inorganic powder having the above-mentioned specific refractive index. Such inorganic oxides include the silicon atoms of silica and metal oxides of the Group, Group, Group or Group, such as lithium oxide, sodium oxide, potassium oxide, magnesium oxide, calcium oxide,
Strontium oxide, barium oxide, aluminum oxide, titanium oxide, zirconium oxide, hafnium oxide, tin oxide, lead oxide, etc. are bonded through oxygen. And the metal oxides of the above group, group 3, group 3 and group 3 (hereinafter simply general formula M1/2O, M 2 O, M3/2O 3 , M 4 O 2 (however, M 1
is a group metal, M 2 is a group metal, M 3 is a group metal, and M 4 is a group metal). It has a big influence on the shape. Of course M1/2O,
The influence that the composition ratio has on the refractive index and shape varies depending on the type of M 2 O, M 3 / 2 O 3 , and M 4 DO 2 , manufacturing method, manufacturing conditions, etc., but generally the refractive index is within the above-mentioned range. When attempting to obtain a spherical inorganic oxide, the total composition ratio of M1/2O, M2O , M3/ 2O3 , and M4O2 may be in the range of 1 to 20 mol%. Preferably, when selecting the total composition ratio of M1/2O, M2O , M3/ 2O3 and M4O2 in the range of 5 to 15 mol%, it has an appropriate refractive index,
In addition, the particles have a uniform particle size and are close to true spheres. In order to adjust the refractive index of the above-mentioned fine inorganic powder to a specific range, metal oxides such as strontium oxide, barium oxide, and especially strontium oxide, barium oxide, zinc,
It is preferable to use an oxide having a higher refractive index than silica, such as aluminum oxide, indium oxide, titanium oxide, zirconium oxide, and tin oxide. The shape of the fine inorganic powder used in the present invention is particularly preferably spherical in view of the abrasion resistance, surface smoothness, surface hardness, etc. of the resulting cured polymerizable composition. In addition, the particle size distribution of the finely milled powder is
Although not particularly limited, a distribution with a sharpness in which the standard deviation value of the distribution is 1.30 or less is one that satisfactorily achieves the object of the present invention. In order to maintain surface stability of the fine inorganic powder used in the present invention, it is preferable to reduce the number of silanol groups on the surface. For this purpose, after drying the fine inorganic powder,
Means of firing at temperatures of ~1000°C are often suitably employed. In general, it is most suitable to use the fired fine inorganic powder after surface treatment with an organic silicon compound in order to maintain its stability. The surface treatment method described above is not particularly limited and may be a known method, for example, fine inorganic powder and a known organosilicon compound such as γ-methacryloxypropyltrimethoxysilane or vinyltriethoxysilane are mixed in an alcohol/water mixed solvent. A method is adopted in which the solvent is removed after being brought into contact with each other for a certain period of time. In the present invention, the addition of fine inorganic powder to the above-mentioned polymerizable vinyl monomer means that the fine inorganic powder is added in an amount of 100 to 100 parts by weight per 100 parts by weight of the vinyl monomer.
It is necessary to carry out the amount within a range of 240 parts by weight, preferably 120 to 200 parts by weight. That is, if the proportion of the fine inorganic powder added to the polymerizable composition is less than 100 parts by weight, a cured product having sufficient mechanical properties cannot be obtained. Further, if the addition ratio is more than 240 parts by weight, the viscosity becomes extremely high, making it difficult to handle the polymerizable composition. Moreover, the transparency of the polymerizable composition or the cured product obtained by polymerizing the polymerizable composition is reduced. The polymerizable composition of the present invention contains a polymerization initiation catalyst if necessary. The above-mentioned polymerization initiation catalyst is not particularly limited, and any known catalyst can be used without restriction. For example, a photopolymerization initiation catalyst, a redox catalyst consisting of an organic peroxide and a tertiary amine, a thermal polymerization opening catalyst, etc. are used. In particular, a photopolymerization catalyst is most preferably used when the composition is used as the dental coating material, since it can polymerize the composition with little air inclusion. As the above-mentioned photopolymerization catalyst, known ones can be used without particular limitation, but in particular, when the polymerizable composition of the present invention is used in the oral cavity, irradiation with visible light of 390 to 700 nm, preferably 400 to 600 nm can be used. Those which can be excited and initiate polymerization are preferably used. Generally, as a photopolymerization initiation catalyst, it is preferable to use a photosensitizer in combination with a photopolymerization accelerator. Examples of photosensitizers suitably used include benzyl, camphorquinone, α-naphthyl, acetonaphcene, p,p'-dimethoxybenzyl, p,
α of p′-dichlorobenzylacetyl, pentanedione, 1,2-phenanthrequinone, 1,4-phenanthrenequinone, 3,4-phenanthrenequinone, 9,10-phenanthrenequinone, naphthoquinone, etc. - They are diketones. As the α-diketone in the present invention, at least one type of known α-diketones can be selected and used, and two or more types can also be used as a mixture. Moreover, camphorquinone can be used most preferably. In addition, as a photopolymerization accelerator, N,N-dimethylaniline, N,N-diethylaniline, N,N-
Di-n-butylaniline, N,N-dibenzylaniline, N,N-dimethyl-p-toluidine,
N,N-diethyl-p-toluidine, N,N-dimethyl-m-toluidine, p-bromo-N,N-
Dimethylaniline, m-chloro-N,N-dimethylaniline, p-dimethylaminobenzaldehyde, p-dimethylaminoacetophenone, p-dimethylaminobenzoic acid, p-dimethylaminobenzoic acid ethyl ester,
p-dimethylaminobenzoic acid amino ester, N,N-dimethylanthranilic acid methyl ester, N,N-dihydroxyethylaniline, N,N-dihydroxyethyl, -
p-toluidine, p-dimethylaminophenethyl alcohol, p-dimethylaminostilbene,
N,N-dimethyl-3,5-xylidine, 4-dimethylaminopyridine, N,N-dimethyl-α-
Naphthylamine, N,N-dimethyl-β-naphthylamine, tributylamine, tripropylamine, triethylamine, N-methyldiethanolamine, N-ethyldiethanolamine, N,N
-dimethylhexylamine, N,N-dimethyldodecylamine, N,N-dimethylstearylamine, N,N-dimethylaminoethyl methacrylate, N,N-diethylaminoethyl methacrylate, 2,2'-(n-butylimino)diethanol, etc. Tertiary amines; barbituric acids such as 5-butylbarbituric acid and 1-benzyl-5-phenylbarbituric acid; benzoyl peroxide, di-t-butyl peroxide, t-butyl perbenzoate, etc. Organic peroxides and the like can be suitably used. At least one type of these photopolymerization accelerators can be selected and used, and two or more types can also be used in combination. When tertiary amines are used as accelerators, tertiary amines in which a nitrogen atom is directly substituted on an aromatic group are particularly preferably used. Furthermore, in order to improve the ability to promote photopolymerization, in addition to the tertiary amine, citric acid, malic acid, tartaric acid, glycolic acid, gluconic acid, α-oxyisobutyric acid, 2-hydroxypropanoic acid, 3-hydroxypropanoic acid, 3-hydroxypropanoic acid, - Addition of oxycarboxylic acids such as hydroxybutanoic acid, 4-hydroxybutanoic acid, and dimethylolpropionic acid is effective. Further, as the above-mentioned redox catalyst, the above-mentioned system of organic peroxide and tertiary amine can be suitably used. As examples of typical redox catalysts, the organic peroxides and tertiary amines already mentioned in the photo-heavy initiation catalysts can be suitably used. The most preferred combination is benzoyl peroxide and N,N-dihydroxyethyl-p-toluidine or benzoyl peroxide and N,N-dimethyl-p-toluidine. In addition to the organic peroxides shown above, known thermal polymerization initiation catalysts such as azo compounds can be used without particular limitation. Typical examples that are particularly preferably used include 2,2'-azobisisobutyronitrile, 4,4'-azobis(4-cyanovaleric acid), 2,2'-azobis(2, 4-dimethylvaleronitrile), 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile), 1,
1'azobis-(cyclohexane-1-carbonitrile), 2,2'-dimethyl azobisisobutyrate, 2,
2'-azobis(2-methylpropionic acid), 2,
2'-azobis(2-cyclobutylpropionic acid),
These include 2,2'-azobis[2-(3-hydroxyphenyl)butyric acid], 2,2'-azobis(4-nitrobeleric acid), and 2,2'-azobis(4-chlorovaleric acid). The amount of the polymerization initiation catalyst used may be in the range of 0.001 to 5% by weight, more preferably 0.01 to 3% by weight, based on the polymerizable vinyl monomer. In the present invention, the above-mentioned polymerizable composition has an average particle size of 0.1 to 3 μm, preferably 0.15 to 1 μm, and has a refractive index (X') of the formula Y-0.005≦X'≦Y+0.005 (wherein, Y is This shows the refractive index of the polymer obtained by polymerizing the vinyl monomer in (a) above.) By adding an inorganic powder (hereinafter referred to as coarse inorganic powder) within the range of It is preferable because the purpose can be achieved, and the viscosity of the composition before curing can be lowered without reducing the transparency of the cured product obtained from the polymerizable composition, and the workability during use can be further improved. . Further, by adding the coarse powder, it becomes possible to adjust the transparency of the polymerizable composition before curing. That is, as the amount of coarse inorganic powder added increases, the transparency of the polymerizable composition gradually decreases. Therefore, by adjusting the amount of the coarse inorganic powder added so as to reduce the transparency within a range that allows the polymerizable composition to maintain its transparency, changes in transparency between before and after polymerization can be prevented. This makes it possible to know the progress of polymerization. In such coarse inorganic powder, the average particle size is
If the particle size is larger than 3.0 μm, diffuse reflection on the surface of the resulting cured product increases and transparency tends to decrease. If the average particle size is smaller than 0.1 μm, it becomes difficult to achieve the above-mentioned effects. . Moreover, when the refractive index is out of the above range, the transparency of the cured product obtained by polymerizing the polymerizable composition tends to decrease. The coarse inorganic powder having such a specific refractive index may be used by selecting one having the refractive index from among the materials constituting the fine inorganic powder described above. A suitable amount of coarse inorganic powder to be added in order to exhibit these effects described above is (a) in the polymerizable composition.
The amount is 10 to 120 parts by weight, preferably 20 to 100 parts by weight, per 100 parts by weight of the vinyl monomer. In the present invention, at least a portion of the fine inorganic powder or coarse inorganic powder described above may be used as a composite with a polymer obtained by polymerizing the vinyl monomer (a). A known method can be used to manufacture such a composite. For example, JP-A-59-
The method described in Publication No. 101409 is used. In the present invention, ultraviolet absorbers such as 2-hydroxy-4-methylbenzophenone, hydroquinone, hydroquinone monomethyl ether,
Components such as a polymerization inhibitor such as 2,5-ditertyabutyl-4-methylphenol and a pigment can be optionally added to the polymerizable composition of the present invention. The method of curing the polymerizable composition of the present invention is not particularly limited. For example, when using a photopolymerization catalyst that is excited by light in the range of 400 to 600 nm, curing is performed using light in the above wavelength range, such as a halogen lamp, xenon lamp, laser, fluorescent lamp, sunlight, etc. Just let it happen. Further, the temperature and irradiation time when irradiating the above-mentioned light to polymerize the vinyl monomer vary depending on the intensity of the irradiated light, but may generally be appropriately determined according to the desired polymerization time. Preferably, 0
It is sufficient to perform irradiation at a relatively low temperature of about 60°C to 60°C for a relatively short time of about 10 seconds to several minutes. When polymerizing the polymerizable composition of the present invention, in advance
Either the polymerizable vinyl monomer, fine inorganic powder, or fine inorganic powder and coarse inorganic powder, and polymerization initiation catalyst of (a) are mixed together and made into a paste, then stored and irradiated with light when used. Alternatively, it is common to store only the polymerization catalyst of the above composition separately and irradiate the mixture with light just before use. However, when storing the paste and the photopolymerization initiation catalyst, it is necessary to shield it from light in order to prevent polymerization or deterioration of the catalyst during storage of the paste. Furthermore, the effects of the present invention are best exhibited by performing a vacuum defoaming operation to remove air bubbles from the paste before irradiating it with light. In addition, when using a redox catalyst, the polymerizable composition of the present invention with an organic peroxide added thereto and with a tertiary amine added thereto are prepared separately in advance, and degassing is carried out under reduced pressure before use. While carrying out
Generally, a method is employed in which both are kneaded and polymerized and cured. On the other hand, a composite composition containing a heating polymerization catalyst is polymerized and cured by heating to 50 to 200° C. under normal pressure or increased pressure. Polymerization time may be from 10 minutes to several hours. The thermal polymerization is preferably carried out in an inert gas such as nitrogen, helium, or argon. Since a cured product obtained by heating polymerization in air tends to have unpolymerized portions on the surface due to the influence of oxygen, it is preferable to polish the surface after polymerization and curing to remove unpolymerized portions. The cured product obtained by thermal polymerization is used by adhering it onto the identification tag using an adhesive. (Effects of the Invention) As is clear from the above explanation, the polymerizable composition of the present invention has the following properties: It has transparency before curing, and the cured product obtained by polymerizing the polymerizable composition has extremely high transparency, and has good mechanical properties such as surface hardness, mechanical strength such as tensile strength, and abrasion resistance. is excellent. Furthermore, in the present invention, by using coarse inorganic powder in a specific proportion, in addition to the above effects,
The blending ratio of the inorganic powder can be increased without increasing the viscosity of the polymerizable composition. Moreover,
By adding coarse inorganic powder, it is possible to adjust the transparency of the polymerizable composition before curing to a low level, so it is possible to check whether polymerization is proceeding uniformly by following changes in transparency accompanying polymerization and curing. There is also the advantage of being able to do so. The composite composition of the present invention can be used not only for adhering and covering dental identification tags, but also as sealants for sealing pits and fissures, orthodontic brackets, materials for fixing loose teeth, dentures, and occlusal adjustment materials. can. Furthermore, it is also effective as a material in industrial fields such as casting materials, sealing materials, and molding materials. (Examples) Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples. In addition, various characteristics (particle size,
Measurement of the standard deviation value of particle size distribution, refractive index), measurement of the refractive index of a polymerizable vinyl monomer and a polymer obtained by polymerizing the polymerizable vinyl monomer,
In addition, physical property values (surface hardness, compressive strength, tensile strength, transparency) using the composite composition were measured according to the method shown below. (1) Standard deviation values of particle size and particle size distribution of inorganic powder:
A scanning electron micrograph of the powder is taken, and the number of particles observed within the unit field of view of the photograph (n) and the particle size (diameter Xi: However, if the shape is not spherical, the horizontal direction Ferre diameter is ) is calculated using the following formula. Standard deviation value = X-σn-1/X However (2) Refractive index of inorganic powder: A solvent with the same refractive index as the inorganic powder of the sample was prepared, and the refractive index of the solvent was taken as the refractive index of the sample. The solvent was prepared by suspending the sample in a solvent and preparing the composition of the solvent at a constant temperature so that it appeared transparent when observed with the naked eye. The solvents used were pentane, hexane, cyclohexane, toluene,
Styrene, aniline, methylene iodide, etc., and the refractive index of the solvent was measured with an Atsube refractometer. (3) Refractive index of a polymerizable vinyl monomer and a polymer obtained by polymerizing the vinyl monomer: The refractive index of the vinyl monomer and polymer was directly measured using an Atsube refractometer. Note that the measurements were performed at a constant temperature. (4) Transparency A paste-like polymerizable composition (hereinafter referred to as paste) was put into a stainless steel split mold having a hole of 6 mm in diameter and 1 mm in depth, and the mold was pressed with a polypropylene film. Next, apply visible light irradiator White Light (trade name, manufactured by Takara Belmont Co., Ltd.) to the pressure contact surface.
The tip of the quartz rod was fixed and light was irradiated for 30 seconds. After irradiation, the cured product was removed from the split mold and left in air at 37°C for 24 hours.
(manufactured by Tokyo Denshoku), the Y value, which is one of the tristimulus values, was measured by the method described below. Y. Miyagawa et al.
A standard white plate (X = 81.2, Y
= 82.7, Z = 93.8), the Y value (below
Yw) and a standard black plate (X=
0.1, Y=0.1, Z= 0.2 ) was measured, and the contrast ratio indicating the opacity of the cured product was calculated using the following formula. Contrast ratio=Y B /Y W Transparency was calculated using the following formula using the contrast ratio. Transparency = 1 - (contrast ratio) = 1 - Y B /Y W Transparency is a value in the range of 0 to 1, and the larger the value, the higher the transparency. In addition, the transparency
Anything smaller than 0.7 is almost opaque. In addition, in order to measure the transparency of the paste before polymerization, a paste was separately prepared that had the same filler composition and monomer composition as the paste shown in each Example and Comparative Example, but did not contain a catalyst. Next, these pastes were filled into a 1 mm thick acrylic plate having a hole of 10 mm in diameter, and the plates were pressed together from both sides with a polypropylene film. Thereafter, Y W and Y B were measured in the same manner as in the case of the cured product described above, and the transparency was calculated according to the above calculation formula. (5) Surface hardness: The paste was put into a stainless steel split mold with holes of 6 mm in diameter and 3 mm in depth, and pressed with a polypropylene film. Next, the quartz rod tip of a white light visible light irradiator was fixed to the pressure contact surface, and light was irradiated for 60 seconds. After irradiation, the cured polymer was removed from the mold and immersed in distilled water at 37°C for 24 hours. After storage, the surface hardness of the irradiated surface was measured using a Micro Brinell hardness tester manufactured by Mori Shikenki. (6) Compressive strength: The paste was put into a stainless steel split mold with holes of 4 mm in diameter and 3 mm in depth, and pressed with a polypropylene film. Next, the tip of a white quartz rod was fixed on the pressure contact surface, and light was irradiated for 30 seconds. After irradiation, the cured polymer product was removed from the split mold, and the bottom surface of the cured product was further irradiated with light for 30 seconds. Next, the cured product was heated to 37
After being immersed and stored in distilled water at ℃ for 24 hours, the compressive strength was measured using Tensilon, UTM-5T manufactured by Toyo Baldwin. Furthermore, the crosshead spade is
The speed was set at 10 mm/min. (7) Tensile strength: Measurement was carried out in the same manner as for compressive strength in (6), except that the paste was inserted into a stainless steel split mold with a hole of 6 mm in diameter and 3 mm in depth, and pressed with a polypropylene film. . (8) Depth of toothbrush wear: The paste was put into a Teflon mold with holes measuring 10 mm long, 0 mm wide, and 1.5 mm deep, and pressed with a polypropylene film. Next, the quartz rod tip of a white light visible light irradiator was fixed to the pressure contact surface, and light was irradiated for 60 seconds. After irradiation, the cured polymer was removed from the mold and placed in distilled water at 37℃ for 7 days.
It was immersed and stored for a day. The hardened polymer was abraded for 1500 m with a toothbrush under a load of 400 g. The wear depth was determined by dividing the wear weight by the density of the cured polymer. (9) Surface roughness After the toothbrush was worn, the surface roughness of the polymerized hardened product was measured using a surface roughness meter Surf Yum A-200 manufactured by Tokyo Seimitsu Co., Ltd. The surface roughness was expressed as a ten-point average roughness. (10) Viscosity of paste An appropriate amount of paste was taken, and the viscosity of the paste was measured using an Ishida high shear rheometer model IGK-120, and the viscosity was expressed in poise. In the following Examples and Comparative Examples, the following compounds are abbreviated as follows. Compound name Abbreviation 2,2-bis[4-(3-methacryloxy)-2
-Hydroxypropoxyphenyl]propane
Bis-GMA 2,2-bis(4-methacryloxypolyethoxyphenyl)propane D-2,6E Triethylene glycol dimethacrylate
TEGDMA Neopentyl glycol dimethacrylate
NPGDMA Tetramethylolmethane triacrylate
A-TMM-3L Tetramethylolmethanetetraacrylate
A-TMMT camphorquinone CQ N,N-dimethyl-p-toluidine DMPT p-dimethylaminobenzoic acid ethyl ester DMBE benzoyl peroxide BPO 5-butylbarbituric acid 5-BBA butylated hydroxytoluene BHT N, N-dihydroxyethyl-p-toluidine
DEPT production example 1 0.04% hydrochloric acid 5.0g and tetraethyl silicate (Si
(OC 2 H 5 ) 4 , manufactured by Nippon Colcoat Chemical Co., Ltd., trade name "Ethyl Silicate 28") 176.6 g was dissolved in 0.44 L of methanol, and this solution was hydrolyzed at 30° C. while stirring for about 1 hour. Then, add 21.4 g of tetrabutyl titanate (Ti( onC4H9 ) 4 , manufactured by Nippon Soda) to this.
and sodium methylate methanol solution (concentration 28
% by weight) in 0.24 liters of isopropyl alcohol was added with stirring to prepare a mixed solution of tetraethyl silicate hydrolyzate and tetrabutyl titanate. Next, 1.17 methanol was introduced into a glass reaction vessel with an internal volume of 3 and equipped with a stirrer, and 0.25 aqueous ammonia solution (concentration
25% by weight) to prepare an ammoniacal alcohol solution, and to this add tetraethylsilicate as an organosilicon compound solution for making silica seeds.
Add a solution of 0.8g dissolved in 18ml of methanol,
When the reaction solution became slightly milky 10 minutes after the completion of the addition, the above-mentioned mixed solution was further added over a period of about 5 hours to precipitate the reaction product. Thereafter, a solution containing 25.2 g of tetraethyl silicate and 0.09 g of methanol was added over about 30 minutes to the system in which the reaction product had precipitated. During the reaction, the temperature of the reaction vessel was maintained at 40°C. After the reaction was completed, stirring was continued for another 30 minutes, and the solvent was removed from the milky white reaction solution using an evaporator.
Further drying under reduced pressure at 80°C gave a milky white powder. Next, this milky white powder was fired at 850°C for 1 hour and then dispersed in an agate mortar to obtain an inorganic powder containing silica and titanium as constituent components. From observation using a transmission electron microscope, this inorganic powder has a particle size of
It ranges from 0.075 to 0.090μm, with an average particle size of
The particle size was 0.082 μm, the shape was a true sphere, the standard deviation value of the particle size distribution was 1.04, and the refractive index was 1.497. The obtained inorganic powder was further surface-treated with γ-methacryloxypropyltrimethoxysilane. Production Examples 2 to 7 Inorganic powders were produced in exactly the same manner as Production Example 1, except that the reaction temperature and the amounts of tetraethyl silicate and tetrabutyl titanate in the mixed solution were changed. The obtained inorganic powder was further surface-treated with γ-methacryloxypropyltrimethoxysilane. Table 1 shows the reaction temperature, the amounts of tetraethyl silicate and tetrabutyl titanate in the mixed solution, and the properties of the obtained inorganic powder.

【表】 製造例 8 0.04%塩酸2.7gとテトラエチルシリケート(Si
(OC2H54、日本コルコート化学社製、製品名:
エチルシリケート28)80.0gをイソブタノール
0.4に溶かし、この溶液を35℃で約5時間撹拌
しながら加水分解した。その後、これにテトラブ
チルジルコネート(Zr(o−nC4H94、日本曹達
製)35.0gとナトリウムメチラートメタノール溶
液(濃度28重量%)8mlをイソブタノール0.2
に溶かした溶液を撹拌しながら添加し、テトラエ
チルシリケートの加水分解物とテトラブチルジル
コネートとの混合溶液を調製した。次に撹拌機付
きの内容積3のガラス製反応容器にメタノール
1.0を導入し、これに0.20のアンモニア水溶
液(濃度25重量%)水0.05を加えてアンモニア
性アルコール溶液を調製し、添加終了10分後反応
液がわずかに乳白色を帯びたところで、さらに続
けて上記の混合溶液を約5時間かけて添加し反応
生成物を析出させた。なお反応中は、反応容器の
温度を35℃に保つた、その後、さらに続けて、テ
トラエチルシリケート20.0gを含むメタノール
0.3からなる溶液を該反応生成物が析出した系
に約30分かけて添加した。反応終了後更に30分間
撹拌を続けた後、乳白色の反応液からエバポレー
ターで溶媒を除去し、更に80℃で減圧乾燥するこ
とにより乳白色の粉体を得た。 次に、この乳白色の粉体を850℃、1時間焼成
した後、メノウ乳鉢で分散し、シリカとジルコニ
アを構成成分とする無機粉体を得た。この無機粉
体は透過型電子顕微鏡の観察から、粒子径は
0.071〜0.091μmの範囲にあり、平均粒子径は
0.077μmで且つ形状は真球でさらに粒子径分布の
標準偏差値は1.08で屈折率は1.547であつた。得
られた無機粉体はさらにγ−メタクリロキシプロ
ピルトリメトキシシランで表面処理した。 製造例 9〜11 製造例−8において、反応温度、混合溶液中の
テトラエチルシリケートとテトラブチルジルコネ
ート、ナトリウムメチラートの量を変えた以外
は、製造例−8と全く同様な方法で無機粉体を製
造した。 得られた無機粉体はさらにγ−メタクリロキシ
プロピルトリメトキシシランで表面処理した。こ
れら合成条件および得られた無機粉体の諸物性を
表2に示した。
[Table] Production example 8 2.7 g of 0.04% hydrochloric acid and tetraethyl silicate (Si
(OC 2 H 5 ) 4 , manufactured by Nippon Colcoat Chemical Co., Ltd., product name:
Ethyl silicate 28) 80.0g isobutanol
0.4, and the solution was hydrolyzed at 35° C. with stirring for about 5 hours. Then, 35.0 g of tetrabutyl zirconate (Zr (on C 4 H 9 ) 4 , manufactured by Nippon Soda) and 8 ml of sodium methylate methanol solution (concentration 28% by weight) were added to this with 0.2 g of isobutanol.
A mixed solution of a hydrolyzate of tetraethyl silicate and tetrabutyl zirconate was prepared by adding the solution dissolved in the above solution with stirring. Next, methanol was added to a glass reaction vessel with an internal volume of 3 equipped with a stirrer.
1.0 and 0.20 ammonia aqueous solution (concentration 25% by weight) and 0.05% water were added to prepare an ammoniacal alcohol solution. 10 minutes after the addition was completed, the reaction liquid became slightly milky, and then the above was added. A mixed solution of was added over about 5 hours to precipitate the reaction product. During the reaction, the temperature of the reaction vessel was kept at 35°C, and then methanol containing 20.0 g of tetraethyl silicate was added.
A solution consisting of 0.3 was added over about 30 minutes to the system in which the reaction product was precipitated. After the reaction was completed, stirring was continued for an additional 30 minutes, the solvent was removed from the milky white reaction liquid using an evaporator, and the mixture was further dried under reduced pressure at 80°C to obtain a milky white powder. Next, this milky white powder was fired at 850°C for 1 hour and then dispersed in an agate mortar to obtain an inorganic powder containing silica and zirconia as constituent components. From observation using a transmission electron microscope, this inorganic powder has a particle size of
The average particle size is in the range of 0.071 to 0.091 μm.
The particle size was 0.077 μm, the shape was a perfect sphere, the standard deviation of the particle size distribution was 1.08, and the refractive index was 1.547. The obtained inorganic powder was further surface-treated with γ-methacryloxypropyltrimethoxysilane. Production Examples 9 to 11 Inorganic powder was prepared in exactly the same manner as Production Example 8, except that the reaction temperature and the amounts of tetraethyl silicate, tetrabutyl zirconate, and sodium methylate in the mixed solution were changed. was manufactured. The obtained inorganic powder was further surface-treated with γ-methacryloxypropyltrimethoxysilane. These synthesis conditions and various physical properties of the obtained inorganic powder are shown in Table 2.

【表】 製造例 12 テトラエチルシリケート(Si(OC2H54、日本
コルコート化学社製商品名:エチルシリケート
28)42gをメタノール0.2に溶かした溶液をバ
リウムビスイソペントキサイド6.2gをイソアミ
ルアルコール0.7に溶かした溶液に混合した。
この混合後の溶液を約90℃乾燥した窒素下で30分
間還流した後、室温まで冷却し、テトラエチルシ
リケートとバリウムビスイソペントキサイドとの
混合溶液を調製した。次に撹拌機つきの内容積10
のガラス製反応容器にメタノール2.5を満し、
これに500gのアンモニア水溶液(濃度25wt%)
を加えてアンモニア性メタノール溶液を調製し、
この溶液に先に調製したテトラエチルシリケート
とバリウムビスイソペントキサイドの混合溶液を
反応容器の温度を40℃に保ちながら約2時間かけ
て添加した。添加開始後数分間で反応液は乳白色
になつた。添加終了後更に一時的撹拌を続けた
後、乳白色の反応液からエバポレータで溶媒を除
き、さらに80℃で、減圧乾燥することにより乳白
色の粉体を得た。 次に、この乳白色の粉体を900℃、4時間焼成
した後、メノウ乳鉢で分散しシリカと酸化バリウ
ムを構成成分とする無機粉体を得た。この無機酸
化物は走査型電子顕微鏡の観察から、粒径は
0.071〜0.094μmの範囲にあり、平均粒径は
0.085μmで且つ形状は真球状で、更に粒径分布の
標準偏差値は、1.15で屈折率は1.524であつた。
得られた無機酸化物は更にγ−メタクリロキシプ
ロピルトリメトキシシランで表面処理した。 製造例 13 水0.56gと蒸留したテトラエチルシリケート
(Si(OC2H54、日本コルコート化学製製品名:エ
チルシリケート28)2gをメタノール0.2に溶
かし、この溶液を室温で約2時間撹拌しながら加
水分解した後、これにテトラブチルチタネート
(Ti(o−nC4H94、日本曹達製)3.4gをイソプ
ロパノール1.0に溶かした溶液に撹拌しながら
添加し、テトラエチルシリケートの加水分解物と
テトラブチルチタネートとの混合溶液(A)を調製し
た。次に、バリウムビスイソペントキサイド1.5
gとテトラエチルシリケート21gをメタノール
1.0に溶かし、その溶液を90℃、窒素雰囲気下
で30分間還流し、その後室温まで戻し、混合溶液
(B)を調製した。さらに混合溶液(A)と混合溶液(B)と
を室温で混合し、これを混合溶液(C)とした。 次に撹拌機つきの内容積10のガラス製反応容
器にメタノール2.5を満し、これに500gのアン
モニア水溶液(濃度25wt%)を加えてアンモニ
ア性メタノール溶液を調製し、この溶液に先に調
製した混合溶液(C)を反応容器の温度を40℃に保ち
ながら約4時間かけて添加した。添加開始後数分
間で反応液は乳白色になつた。添加終了後更に1
時間撹拌を続けた後乳白色の反応液からエバポレ
ータで溶液を除き、さらに80℃で減圧乾燥するこ
とにより乳白色の粉体を得た。 次にこの乳白色の粉体を800℃、2時間焼成し
た後、メノウ乳鉢で分散し、シリカ、チタニアお
よび酸化バリウムを構成成分とする無機粉体を得
た。この無機粉体は透過型電子顕微鏡の観察か
ら、粒径は0.065〜0.080μmの範囲にあり、平均粒
径は0.072μmで且つ形状は真球状で、更に粒径分
布の標準偏差値は1.06で屈折率は1.526であつた。
得られた無機粉体は更にγ−メタクリロキシプロ
ピルトリメトキシシランで表面処理した。 製造例 14 テトラエチルシリケート(Si(OC2H54、日本
コルコート化学社製製品名:エチルシリケート
28)10.4gおよびジルコニウムテトラブトキシサ
イド(Zr(OC4H94)3.1gをイソプロピルアルコ
ール0.2に溶かし、この溶液を100℃、窒素雰囲
気下で30分間還流した。その後室温まで戻し、こ
れを混合溶液(A)とした。次に、テトラエチルシリ
ケート10.4gおよびストロンチウムビスメトキサ
イド1.25gをメタノール0.2に仕込み、この溶
液を80℃、窒素雰囲気下で30分間還流した。その
後室温まで戻し、これを混合溶液(B)とした。混合
溶液(A)と混合溶液(B)とを室温で混合し、これを混
合溶液(C)とした。 次に、撹拌機つきの内容積10のガラス製反応
容器にメタノール2.4を満し、これに500gのア
ンモニア水(濃度25重量%)を加えてアンモニア
性アルコール溶液を調製し、この溶液に先に調製
した混合溶液(C)を、反応容器を40℃に保ちなが
ら、約4時間かけて添加し、反応生成物を析出さ
せた。その後さらに続けて、テトラエチルシリケ
ート4gを含むメタノール0.5からなる溶液を
該反応生成物が析出した系に約2時間かけて添加
した。添加終了後更に1時間撹拌を続けた後、乳
白色の反応液からエバポレータで溶媒を除きさら
に、減圧乾燥することにより乳白色の粉体を得
た。 さらに、この乳白色の粉体を900℃、3時間焼
成した後、擂潰機でほぐし、シリカとジルコニア
と酸化ストロンチウムとを主な構成成分とする無
機粉体を得た。 この無機粉体は透過型電子顕微鏡の観察から、
粒径は0.070〜0.082μmの範囲にあり、平均粒径は
0.077μmであり、形状は球形で、さらに粒径分布
の標準偏差値は1.20で、屈折率は1.532であつた。
得られた無機粉体はγ−メタクリロキシプロピル
トリメトキシシランで表面処理した。 製造例 15 水0.36gと蒸留したテトラエチルシリケート
(Si(OC2H54、日本コルコート化学社製製品名:
エチルシリケート28)21gをメタノール0.2に
溶かし、この溶液を室温で約2時間撹拌しながら
加水分解した後、これにテトラブチルチタネート
(Ti(o−nC4H94、日本曹達製)3.4gをイソプ
ロパノール1.0に溶かした溶液に撹拌しながら
添加し、テトラエチルシリケートの加水分解物と
テトラブチルチタネートとの混合溶液(A)を調製し
た。次にアルミニウムトリ−sec−ブトキサイド
3.0gとテトラエチルシリケート21gをメタノー
ル1.0に溶かし、その溶液を90℃、窒素雰囲気
下で30分間還流し、その後室温まで戻し、混合溶
液(B)を調製した。さらに混合溶液(A)と混合溶液(B)
とを室温で混合し、これを混合溶液(C)とした。 次に撹拌機つきの内容積10のガラス製反応容
器にメタノール2.5を満し、これに500gのアン
モニア水溶液(濃度25wt%)を加えてアンモニ
ア性メタノール溶液を調製し、この溶液に先に調
製した混合溶液(C)を反応容器の温度を40℃に保ち
ながら約4時間かけて添加した。添加開始後数分
間で反応液は乳白色になつた。添加終了後更に1
時間撹拌を続けた後、乳白色の反応液からエバポ
レーターで溶媒を除き、さらに80℃で減圧乾燥す
ることにより乳白色の粉体を得た。 次にこの乳白色の粉体を1000℃で2時間焼成し
た後、メノウ乳鉢で分散したシリカ、チタニアお
よびアルミナを構成成分とする無機粉体を得た。
この無機粉体は透過型電子顕微鏡の観察から粒径
は0.075〜0.090μmの範囲内にあり、平均粒径は
0.081μmで且つ形状は球形で更に粒径分布の標準
偏差値は1.08で屈折率は1.512であつた。得られ
た無機粉体は更にγ−メタクリロキシプロピルト
リメトキシシランで表面処理した。 製造例 16 テトラエチルシリケート(Si(OC2H54、日本
コルコート化学社製製品名:エチルシリケート
28)1280gおよび0.1%塩酸15gを溶解したイソ
ブタノール1を室温で1時間混合撹拌した。そ
の後に、テトラブチルチタネート(Ti(o−
nC4H94、日本曹達製)273gとイソブタノール
0.3の混合溶液を添加し、十分に撹拌混合した。
次にこの混合溶液を30℃で1週間放置し、透明な
ゲル状固体を得た。このようにして得られた固体
をボールミルで粉砕し、900℃、1時間焼成した
後更に振動ボールミルで粉砕した。粉砕した粉体
を分級することによりシリカとチタニアを構成成
分とする無機粉体を得た。 この無機粉体は透過型電子顕微鏡の観察から粒
径は0.16〜0.73μmの範囲にあり、平均粒径は
0.47μmで、更に粒径分布の標準偏差値は1.29で屈
折率は1.528であつた。得られた無機粉体は、更
にγ−メタクリロキシプロピルトリメトキシシラ
ンで表面処理した。 製造例 17 製造例−20に於て、テトラブチルチタネートの
かわりにテトラブチルジルコネート (Zr(o−n−C4H94、日本曹達製)325gを
用いた以外は製造例−20と全く同様な方法でシリ
カとジルコニアを構成成分とする無機粉体を得
た。この無機粉体は透過型電子顕微鏡の観察から
粒径は0.27〜0.65μmの範囲にあり、平均粒径は
0.46μmで、更に粒径分布の標準偏差値は1.44で屈
折率は1.540であつた。得られた無機粉体は更に
γ−メタクリロキシプロピルトリメトキシシラン
で表面処理した。 製造例 18 製造例−14において、混合溶液中テトラエチル
シリケートとバリウムビスイソペントキサイドの
量、反応温度、焼成温度を変化させた以外は製造
例−14と全く同様な方法で無機粉体を製造した。
合成条件はテトラエチルシリケート208g、バリ
ウムビスイソペントキサイド31.1g、反応温度20
℃、焼成温度1000℃とした。 その結果、得られた無機粉体は粒径が0.25〜
0.40μmの範囲にあり、平均粒径が0.28μmで且つ
形状が真球状で、更に粒径分布の標準偏差値が
1.20で屈折率が1.524であつた。 この無機粉体は更にγ−メタクリロキシプロピ
ルトリメトキシシランで表面処理した。 製造例 19 製造例−15において、水および混合溶液(A)と混
合溶液(B)に用いたテトラエチルシリケート、テト
ラブチルチタネート、バリウムビスイソペントキ
サイド、の量ならびに反応温度、を変化させた以
外は製造例−15と全く同様な方法で無機粉体を製
造した。 合成条件は、混合溶液(A)のテトラエチルシリケ
ート21g、テトラブチルチタネート3.4g、混合
溶液(B)のバリウムビスイソペントキサイド1.5g、
テトラエチルシリケート21g、反応温度20℃とし
た。 その結果、得られた無機粉体は粒径が0.12〜
0.26μmの範囲にあり、平均粒径が0.19μmで且つ
形状が真球状で、更に粒径分布の標準偏差値が
1.06で屈折率が1.526であつた。 製造例 20 製造例−16において、混合溶液(A)と混合溶液(B)
のテトラエチルシリケート、ジルコニウムテトラ
ブトキサイド、ストロンチウムビスメトキサイド
の量、および反応温度を変化させた以外は製造例
−23と全く同様な方法で、無機粉体を製造した。 合成条件は、混合溶液(A)のテトラエチルシリケ
ート52g、ジルコニウムテトラブトキサイド15.6
g、混合溶液(B)テトラエチルシリケート52g、ス
トロンチウムビスメトキシサイド6.1g、および
反応温度40℃とした。 その結果、得られた無機粉体は粒径が0.10〜
0.25μmの範囲にあり、平均粒径が0.17μmであり、
形状が球形で、更に粒径分布の標準偏差値が1.25
で、屈折率が1.532であつた。 製造例 21 製造例−17において、水および混合溶液(A)と混
合溶液(B)のテトラエチルシリケート、テトラブチ
ルチタネート、アルミニウム−sec−ブトキサイ
ドの量を変化させた以外は製造例−17と全く同様
な方法で無機粉体を製造した。 合成条件は、水0.36g、混合溶液(A)のテトラエ
チルシリケート104g、テトラブチルチタネート
17.0g、混合溶液(B)のアルミニウムトリ−sec−
ブトキサイド15.0g、テトラエチルシリケート21
gおよび反応温度40℃とした。 その結果、得られた無機粉体は、粒径が0.14〜
0.25μmの範囲内にあり、平均粒径は0.20μmで且
つ形状は球形で更に粒径分布の標準偏差値が1.15
で屈折率が1.512であつた。 製造例 22 製造例−1において、イソブタノール1.2と
アンモニア水溶液(濃度25重量%)からなるアン
モニア性アルコールおよび反応容器の温度を30℃
とした以外は全て、製造例−1と同様な方法で無
機粉体を得た。 この無機粉体は、粒径が0.12〜0.33μmの範囲に
あり、平均粒径が0.25μmで、粒径分布の標準偏
差値は1.12、屈折率は1.523であつた。 製造例 23 製造例−8において、原料のテトラエチルシリ
ケートとテトラブチルジルコネートの量、アンモ
ニア性アルコール溶液の溶媒組成を変えて、表−
3に示す粒径と屈折率を有する無機粉体を製造し
た。 得られた無機粉体は全て、標準偏差値が1.30以
下で、球形状であつた。
[Table] Production example 12 Tetraethylsilicate (Si(OC 2 H 5 ) 4 , manufactured by Nihon Colcoat Chemical Co., Ltd. Product name: Ethylsilicate
28) A solution of 42 g dissolved in methanol 0.2 was mixed with a solution of 6.2 g barium bisisopentoxide dissolved in isoamyl alcohol 0.7.
The mixed solution was refluxed at about 90° C. under dry nitrogen for 30 minutes, and then cooled to room temperature to prepare a mixed solution of tetraethyl silicate and barium bisisopentoxide. Next, the inner volume with a stirrer is 10
Fill a glass reaction vessel with 2.5 methanol,
Add to this 500g of ammonia aqueous solution (concentration 25wt%)
Prepare an ammoniacal methanol solution by adding
The previously prepared mixed solution of tetraethyl silicate and barium bisisopentoxide was added to this solution over about 2 hours while maintaining the temperature of the reaction vessel at 40°C. A few minutes after the addition started, the reaction solution became milky white. After the addition was completed, stirring was continued temporarily, and then the solvent was removed from the milky white reaction liquid using an evaporator, and the mixture was further dried at 80°C under reduced pressure to obtain a milky white powder. Next, this milky white powder was fired at 900°C for 4 hours and then dispersed in an agate mortar to obtain an inorganic powder containing silica and barium oxide as constituent components. From observation with a scanning electron microscope, the particle size of this inorganic oxide is
It ranges from 0.071 to 0.094μm, with an average particle size of
The particle diameter was 0.085 μm, and the shape was perfectly spherical. Furthermore, the standard deviation value of the particle size distribution was 1.15, and the refractive index was 1.524.
The obtained inorganic oxide was further surface-treated with γ-methacryloxypropyltrimethoxysilane. Production example 13 Dissolve 0.56 g of water and 2 g of distilled tetraethyl silicate (Si(OC 2 H 5 ) 4 , product name: Ethyl silicate 28, manufactured by Nihon Colcoat Chemical Co., Ltd.) in 0.2 g of methanol, and stir this solution at room temperature for about 2 hours. After hydrolysis, 3.4 g of tetrabutyl titanate (Ti(onC 4 H 9 ) 4 , manufactured by Nippon Soda) was added to a solution of 1.0 g of isopropanol with stirring, and the hydrolyzate of tetraethyl silicate and tetra A mixed solution (A) with butyl titanate was prepared. Next, barium bisisopentoxide 1.5
g and 21 g of tetraethyl silicate in methanol.
1.0, the solution was refluxed at 90°C under nitrogen atmosphere for 30 minutes, then warmed to room temperature, and the mixed solution
(B) was prepared. Further, the mixed solution (A) and the mixed solution (B) were mixed at room temperature to form a mixed solution (C). Next, fill a glass reaction container with an internal volume of 10 with a stirrer with 2.5 methanol, add 500 g of ammonia aqueous solution (concentration 25 wt%) to prepare an ammoniacal methanol solution, and add the previously prepared mixture to this solution. Solution (C) was added over about 4 hours while maintaining the temperature of the reaction vessel at 40°C. A few minutes after the addition started, the reaction solution became milky white. 1 more after addition
After stirring for a period of time, the solution was removed from the milky white reaction liquid using an evaporator, and the mixture was further dried under reduced pressure at 80°C to obtain a milky white powder. Next, this milky white powder was fired at 800°C for 2 hours and then dispersed in an agate mortar to obtain an inorganic powder containing silica, titania and barium oxide as constituent components. As observed by transmission electron microscopy, this inorganic powder has a particle size in the range of 0.065 to 0.080 μm, an average particle size of 0.072 μm, a true spherical shape, and a standard deviation value of the particle size distribution of 1.06. The refractive index was 1.526.
The obtained inorganic powder was further surface-treated with γ-methacryloxypropyltrimethoxysilane. Production example 14 Tetraethylsilicate (Si(OC 2 H 5 ) 4 , manufactured by Nippon Colcoat Chemical Co., Ltd. Product name: Ethylsilicate
28) 10.4 g and 3.1 g of zirconium tetrabutoxide (Zr(OC 4 H 9 ) 4 ) were dissolved in 0.2 g of isopropyl alcohol, and this solution was refluxed at 100° C. for 30 minutes under a nitrogen atmosphere. Thereafter, the temperature was returned to room temperature, and this was used as a mixed solution (A). Next, 10.4 g of tetraethyl silicate and 1.25 g of strontium bismethoxide were added to 0.2 g of methanol, and this solution was refluxed at 80° C. for 30 minutes under a nitrogen atmosphere. Thereafter, the temperature was returned to room temperature, and this was used as a mixed solution (B). The mixed solution (A) and the mixed solution (B) were mixed at room temperature to form a mixed solution (C). Next, fill a glass reaction container with an internal volume of 10 with a stirrer with 2.4 methanol, add 500 g of ammonia water (concentration 25% by weight) to this to prepare an ammonia alcohol solution, and add to this solution the previously prepared The mixed solution (C) was added over about 4 hours while keeping the reaction container at 40°C to precipitate the reaction product. Thereafter, a solution containing 4 g of tetraethyl silicate and 0.5 methanol was added over about 2 hours to the system in which the reaction product had precipitated. After the addition was completed, stirring was continued for another 1 hour, and the solvent was removed from the milky white reaction liquid using an evaporator, followed by drying under reduced pressure to obtain a milky white powder. Further, this milky white powder was calcined at 900°C for 3 hours and then loosened using a crusher to obtain an inorganic powder whose main components were silica, zirconia, and strontium oxide. From observation using a transmission electron microscope, this inorganic powder was found to be
The particle size ranges from 0.070 to 0.082μm, with an average particle size of
The particle size was 0.077 μm, the shape was spherical, the standard deviation value of the particle size distribution was 1.20, and the refractive index was 1.532.
The obtained inorganic powder was surface-treated with γ-methacryloxypropyltrimethoxysilane. Production example 15 Tetraethyl silicate (Si(OC 2 H 5 ) 4 ) distilled with 0.36 g of water, manufactured by Nihon Colcoat Chemical Co., Ltd. Product name:
Dissolve 21 g of ethyl silicate 28) in 0.2 methanol, hydrolyze this solution while stirring at room temperature for about 2 hours, and add 3.4 g of tetrabutyl titanate (Ti(onC 4 H 9 ) 4 , manufactured by Nippon Soda) to this solution. was added to a solution dissolved in isopropanol 1.0 with stirring to prepare a mixed solution (A) of tetraethyl silicate hydrolyzate and tetrabutyl titanate. Next, aluminum tri-sec-butoxide
3.0 g and 21 g of tetraethyl silicate were dissolved in 1.0 g of methanol, the solution was refluxed at 90° C. under a nitrogen atmosphere for 30 minutes, and then returned to room temperature to prepare a mixed solution (B). Furthermore, mixed solution (A) and mixed solution (B)
and were mixed at room temperature to obtain a mixed solution (C). Next, fill a glass reaction container with an internal volume of 10 with a stirrer with 2.5 methanol, add 500 g of ammonia aqueous solution (concentration 25 wt%) to prepare an ammoniacal methanol solution, and add the previously prepared mixture to this solution. Solution (C) was added over about 4 hours while maintaining the temperature of the reaction vessel at 40°C. A few minutes after the addition started, the reaction solution became milky white. 1 more after addition
After continuing to stir for an hour, the solvent was removed from the milky white reaction liquid using an evaporator, and the mixture was further dried under reduced pressure at 80°C to obtain a milky white powder. Next, this milky white powder was fired at 1000° C. for 2 hours to obtain an inorganic powder containing silica, titania and alumina dispersed in an agate mortar.
The particle size of this inorganic powder was found to be within the range of 0.075 to 0.090μm, and the average particle size was observed using a transmission electron microscope.
The particle diameter was 0.081 μm, the shape was spherical, the standard deviation value of the particle size distribution was 1.08, and the refractive index was 1.512. The obtained inorganic powder was further surface-treated with γ-methacryloxypropyltrimethoxysilane. Production example 16 Tetraethylsilicate (Si(OC 2 H 5 ) 4 , manufactured by Nihon Colcoat Chemical Co., Ltd. Product name: Ethylsilicate
28) Isobutanol 1 in which 1280 g and 15 g of 0.1% hydrochloric acid were dissolved were mixed and stirred at room temperature for 1 hour. Then, tetrabutyl titanate (Ti(o-
nC4H9 ) 4 , manufactured by Nippon Soda) 273g and isobutanol
A mixed solution of 0.3 was added and stirred and mixed thoroughly.
Next, this mixed solution was left at 30°C for one week to obtain a transparent gel-like solid. The thus obtained solid was ground in a ball mill, calcined at 900°C for 1 hour, and further ground in a vibrating ball mill. By classifying the pulverized powder, an inorganic powder containing silica and titania as constituent components was obtained. The particle size of this inorganic powder is found to be in the range of 0.16 to 0.73 μm, and the average particle size is determined by observation using a transmission electron microscope.
The particle diameter was 0.47 μm, the standard deviation of the particle size distribution was 1.29, and the refractive index was 1.528. The obtained inorganic powder was further surface-treated with γ-methacryloxypropyltrimethoxysilane. Production Example 17 Production Example 20 except that 325 g of tetrabutyl zirconate (Zr(on- C4H9 ) 4 , manufactured by Nippon Soda) was used instead of tetrabutyl titanate. An inorganic powder containing silica and zirconia as constituent components was obtained in exactly the same manner. The particle size of this inorganic powder is found to be in the range of 0.27 to 0.65 μm as observed using a transmission electron microscope, and the average particle size is
The particle diameter was 0.46 μm, the standard deviation of the particle size distribution was 1.44, and the refractive index was 1.540. The obtained inorganic powder was further surface-treated with γ-methacryloxypropyltrimethoxysilane. Production Example 18 Inorganic powder was produced in exactly the same manner as Production Example 14, except that the amounts of tetraethyl silicate and barium bisisopentoxide in the mixed solution, reaction temperature, and calcination temperature were changed. did.
Synthesis conditions were: 208 g of tetraethyl silicate, 31.1 g of barium bisisopentoxide, reaction temperature: 20
℃, and the firing temperature was 1000℃. As a result, the obtained inorganic powder has a particle size of 0.25~
It is in the range of 0.40μm, the average particle size is 0.28μm, the shape is perfectly spherical, and the standard deviation value of the particle size distribution is
1.20 and the refractive index was 1.524. This inorganic powder was further surface-treated with γ-methacryloxypropyltrimethoxysilane. Production Example 19 In Production Example 15, except that the amounts of water, tetraethyl silicate, tetrabutyl titanate, and barium bisisopentoxide used in mixed solutions (A) and mixed solutions (B), and the reaction temperature were changed. An inorganic powder was produced in exactly the same manner as Production Example-15. The synthesis conditions were: mixed solution (A) of 21 g of tetraethyl silicate, 3.4 g of tetrabutyl titanate, mixed solution (B) of barium bisisopentoxide 1.5 g,
21 g of tetraethyl silicate was used, and the reaction temperature was 20°C. As a result, the obtained inorganic powder has a particle size of 0.12~
It is in the range of 0.26 μm, the average particle size is 0.19 μm, the shape is perfectly spherical, and the standard deviation value of the particle size distribution is
1.06 and the refractive index was 1.526. Production Example 20 In Production Example-16, mixed solution (A) and mixed solution (B)
An inorganic powder was produced in exactly the same manner as Production Example 23, except that the amounts of tetraethyl silicate, zirconium tetrabutoxide, and strontium bismethoxide, and the reaction temperature were changed. The synthesis conditions are: mixed solution (A), 52 g of tetraethyl silicate, 15.6 g of zirconium tetrabutoxide.
g, mixed solution (B) 52 g of tetraethyl silicate, 6.1 g of strontium bismethoxide, and a reaction temperature of 40°C. As a result, the obtained inorganic powder has a particle size of 0.10~
in the range of 0.25μm, with an average particle size of 0.17μm,
The shape is spherical, and the standard deviation value of the particle size distribution is 1.25.
The refractive index was 1.532. Production Example 21 Completely the same as Production Example 17 except that the amounts of water and tetraethyl silicate, tetrabutyl titanate, and aluminum-sec-butoxide in mixed solutions (A) and (B) were changed. Inorganic powder was produced using a method. The synthesis conditions were: 0.36 g of water, 104 g of tetraethyl silicate (mixed solution (A)), and tetrabutyl titanate.
17.0g, aluminum tri-sec- of mixed solution (B)
Butoxide 15.0g, Tetraethylsilicate 21
g and the reaction temperature was 40°C. As a result, the obtained inorganic powder has a particle size of 0.14~
Within the range of 0.25μm, the average particle size is 0.20μm, the shape is spherical, and the standard deviation value of the particle size distribution is 1.15.
The refractive index was 1.512. Production Example 22 In Production Example-1, ammoniacal alcohol consisting of 1.2% isobutanol and ammonia aqueous solution (concentration 25% by weight) and the temperature of the reaction vessel were set at 30°C.
Inorganic powder was obtained in the same manner as in Production Example-1 except for the following. This inorganic powder had a particle size in the range of 0.12 to 0.33 μm, an average particle size of 0.25 μm, a standard deviation value of particle size distribution of 1.12, and a refractive index of 1.523. Production Example 23 In Production Example-8, the amounts of tetraethyl silicate and tetrabutyl zirconate as raw materials and the solvent composition of the ammoniacal alcohol solution were changed, and the results shown in Table-
An inorganic powder having a particle size and refractive index shown in No. 3 was produced. All of the obtained inorganic powders had a standard deviation value of 1.30 or less and were spherical.

【表】 実施例 1〜3、比較例 1〜4 NPGDMA25重量部、A−TMM−3L32.5重量
部およびTEGDMA32.5重量部を撹拌混合し、均
一なビニルモノマー混合液とした。このモノマー
液の屈折率は1.468であり、またこれを重合して
得られる重合体の屈折率は1.503であつた。容器
の周囲をアルミ箔でおおい遮光し、続いてCQ0.5
重量部およびDMBE0.60重量部をビニルモノマー
液に添加し撹拌溶解させた。次にこのビニルモノ
マー混合液43重量部と表4に示した無機粉体57重
量部をメノウ乳鉢で十分に練和し、ペースト状の
重合性組成物(以下、ペーストと称する)を調製
した。ペースト調製後減圧下で脱泡し、気泡をペ
ースト中から除去した。こうして得たペーストを
重合させた硬化体を用いて、表面硬度、圧縮強
度、引張強度、歯ブラシ摩耗深さ及び透明度を測
定し、その結果を表4に併記した。なお、ペース
トの調製及び脱泡は赤色光の下で行なつた。 また比較として、比較例−1では、粒径が
0.10μm以上の無機粉体を、比較例−2では粒径
が0.07μmより小さい無機粉体として超微粒子シ
リカ(粒径0.014μm、徳山曹達(株)製、商品名レオ
ロシールQ102)を用いた。但し、比較例−2で
は超微粒子シリカをビニルモノマー混合液に多量
に混合することができない為に、上記ビニルモノ
マー混合液と無機粉体の混合割合を夫々80重量
部、20重量部とした。 さらに、比較例−3では、屈折率が重合体から
0.03よりさらに高い無機粉体を用いた例を、比較
例−4では、屈折率が重合体から0.03よりさらに
低い無機粉体を用いた例を示した。 以上の結果から、実施例1から4の硬化体は透
明度が0.9以上で、ブリネル表面硬度が高く、耐
歯ブラシ摩耗性・表面粗さに優れていた。 一方、比較例−1で、粒径が0.1μm以上で、重
合体との屈折率の差が0.006である無機粉体を用
いた硬化体は、透明度が0.9以下であつた。比較
例−2で、超微粒子シリカを用いた硬化体は、無
機粉体の混合割合が少なく、ブリネル表面硬度、
引張強度などの機械的性質が劣つた。比較例−3
と−4では粒径が0.07〜1.0μmの範囲にあるが、
重合体との屈折率の差が大きい無機粉体を用いた
硬化体は、透明度が0.9未満であつた。
[Table] Examples 1 to 3, Comparative Examples 1 to 4 25 parts by weight of NPGDMA, 32.5 parts by weight of A-TMM-3L, and 32.5 parts by weight of TEGDMA were stirred and mixed to obtain a uniform vinyl monomer mixture. The refractive index of this monomer liquid was 1.468, and the refractive index of the polymer obtained by polymerizing it was 1.503. Cover the container with aluminum foil to block light, and then apply CQ0.5
Parts by weight and 0.60 parts by weight of DMBE were added to the vinyl monomer solution and dissolved with stirring. Next, 43 parts by weight of this vinyl monomer mixture and 57 parts by weight of the inorganic powder shown in Table 4 were sufficiently kneaded in an agate mortar to prepare a paste-like polymerizable composition (hereinafter referred to as paste). After the paste was prepared, it was defoamed under reduced pressure to remove air bubbles from the paste. Surface hardness, compressive strength, tensile strength, toothbrush wear depth, and transparency were measured using the cured product obtained by polymerizing the paste obtained in this way, and the results are also listed in Table 4. Note that the paste preparation and defoaming were performed under red light. As a comparison, in Comparative Example-1, the particle size was
In Comparative Example 2, ultrafine silica particles (particle size 0.014 μm, manufactured by Tokuyama Soda Co., Ltd., trade name Reolo Seal Q102) were used as the inorganic powder with a particle size of 0.10 μm or more. However, in Comparative Example 2, since it was not possible to mix a large amount of ultrafine particle silica into the vinyl monomer mixture, the mixing proportions of the vinyl monomer mixture and inorganic powder were set to 80 parts by weight and 20 parts by weight, respectively. Furthermore, in Comparative Example-3, the refractive index was lower than that of the polymer.
An example using an inorganic powder with a refractive index higher than 0.03 was shown in Comparative Example-4, and an example using an inorganic powder with a refractive index lower than 0.03 from a polymer was shown. From the above results, the cured products of Examples 1 to 4 had a transparency of 0.9 or more, high Brinell surface hardness, and excellent toothbrush abrasion resistance and surface roughness. On the other hand, in Comparative Example 1, the cured body using an inorganic powder having a particle size of 0.1 μm or more and a difference in refractive index from the polymer of 0.006 had a transparency of 0.9 or less. In Comparative Example 2, the cured product using ultrafine silica had a small mixing ratio of inorganic powder, and had a low Brinell surface hardness.
Mechanical properties such as tensile strength were poor. Comparative example-3
For and -4, the particle size is in the range of 0.07 to 1.0 μm, but
A cured product using an inorganic powder with a large difference in refractive index from the polymer had a transparency of less than 0.9.

【表】【table】

【表】 実施例 5〜8 Bis−GMA62重量部、TEGDMA38重量部を撹
拌混合し、均一なビニルモノマー混合液とした。
このモノマー混合液の屈折率は1.517であり、ま
たこれと重合して得られる重合体の屈折率は
1.547であつた。容器の周囲をアルミ箔でおおい
遮光し、続いてCQ0.5重量部およびDMPT0.4重
量部及びリンゴ酸0.4重量部をビニルモノマー液
に添加し、撹拌溶解させた。次にこのビニルモノ
マー混合液40重量部と表4に示した無機粉体60重
量部をメノウ乳鉢で十分に練和しペーストを調製
した。ペースト調製後、減圧下で脱泡し気泡をペ
ースト中から除去した。こうして得たペーストを
用いて、表面硬度、圧縮強度、引張強度、歯ブラ
シ摩耗深さ及び透明度を測定し、その結果を表5
に併記した。なおペーストの調製及び脱泡は赤色
光のもとで行なつた。 実施例 9〜12 Bis−GMA23重量部、TEGDMA57重量部、A
−TMM−3L20重量部からなるビニルモノマー混
合液と表4に示した無機粉体を用いた以外は全て
実施例5と同様な方法でペーストを調製し、諸物
性を測定した。その結果を表5に併記した。な
お、ビニルモノマー混合液とそれを重合して得ら
れる重合体の屈折率はそれぞれ1.487,1.525であ
つた。
[Table] Examples 5 to 8 62 parts by weight of Bis-GMA and 38 parts by weight of TEGDMA were stirred and mixed to obtain a uniform vinyl monomer mixture.
The refractive index of this monomer mixture is 1.517, and the refractive index of the polymer obtained by polymerizing with it is
It was 1.547. The periphery of the container was covered with aluminum foil to shield it from light, and then 0.5 parts by weight of CQ, 0.4 parts by weight of DMPT, and 0.4 parts by weight of malic acid were added to the vinyl monomer liquid and dissolved with stirring. Next, 40 parts by weight of this vinyl monomer mixture and 60 parts by weight of the inorganic powder shown in Table 4 were sufficiently kneaded in an agate mortar to prepare a paste. After the paste was prepared, air bubbles were removed from the paste by defoaming under reduced pressure. Using the thus obtained paste, surface hardness, compressive strength, tensile strength, toothbrush wear depth and transparency were measured, and the results are shown in Table 5.
Also listed. Note that the paste preparation and defoaming were performed under red light. Examples 9 to 12 Bis-GMA23 parts by weight, TEGDMA57 parts by weight, A
A paste was prepared in the same manner as in Example 5, except that a vinyl monomer mixture containing 20 parts by weight of -TMM-3L and the inorganic powder shown in Table 4 were used, and various physical properties were measured. The results are also listed in Table 5. The refractive index of the vinyl monomer mixture and the polymer obtained by polymerizing it were 1.487 and 1.525, respectively.

【表】【table】

【表】 実施例 13〜18 実施例−5と同様な方法でペーストを作製し、
表−6の物性を測定した。その結果を表−5に併
記した。 比較例 5〜8 実施例−5と同様な方法でペーストを作製し、
表−6に示した物性を測定した。その結果を表−
6に併記した。 なお、比較例−7では無機粉体の配合割合は45
重量部とした。
[Table] Examples 13 to 18 Pastes were prepared in the same manner as in Example-5,
The physical properties shown in Table 6 were measured. The results are also listed in Table-5. Comparative Examples 5 to 8 Pastes were prepared in the same manner as in Example-5,
The physical properties shown in Table 6 were measured. Table the results.
Also listed in 6. In addition, in Comparative Example-7, the blending ratio of inorganic powder was 45
Parts by weight.

【表】【table】

【表】 実施例19〜25、比較例9〜10 Bis−GMAあるいはD−2.6EとTEGDMAを表
7示す混合割合で撹拌混合し、均一なビニルモノ
マー混合液とした。そのビニルモノマー混合液お
よびこれを重合して得られる重合体の屈折率を合
せて表7に示した。 次に、表8に示した無機粉体と上記のビニルモ
ノマー混合液を用いた以外は実施例5と同様な方
法で調製したペーストを用いて、諸物性を測定
し、その結果を表8に併記した。 また、比較として、比較例−9ではビニルモノ
マー100重量部に対して、製造例−8で合成した
無機粉体とα−石英(不定形、平均粒径5.6μm、
屈折率1.544,1.553)からなるものを、比較例−
10では製造例−13で合成した無機粉体と製造例−
20で合成した無機粉体からなるものを無機粉体と
して用いた場合の測定結果を表8に示した。 その結果、実施例19〜25において、無機粉体の
配合割合が高いにもかかわらず、ペーストの粘度
は高くない。しかも、硬化体の透明度、機械的性
質、表面滑沢性を犠性にすることなく、ペースト
の透明度を重合後の透明度より低く調製すること
ができた。 一方、比較例9では、粒径が3μmより大きい無
機粉体としてα−石英を用いた硬化体は、表面粗
さが大きくなつた。比較例10では、粒径が0.1μm
より大きく、重合体との屈折率の差が大きい無機
粉体を用いた硬化体は、透明度が0.9より低かつ
た。 比較例 11 表7に示したビニルモノマー混合液(C)100重量
部、製造例−13の無機粉体100重量部および製造
例−19の無機粉体130重量部からなるペーストを
実施例19と同様な方法で調製し、諸物性を測定し
た。その結果を表8に併記した。
[Table] Examples 19 to 25, Comparative Examples 9 to 10 Bis-GMA or D-2.6E and TEGDMA were stirred and mixed at the mixing ratio shown in Table 7 to obtain a uniform vinyl monomer mixture. Table 7 shows the refractive index of the vinyl monomer mixture and the polymer obtained by polymerizing the same. Next, various physical properties were measured using a paste prepared in the same manner as in Example 5, except that the inorganic powder shown in Table 8 and the above vinyl monomer mixture were used, and the results are shown in Table 8. Also listed. For comparison, in Comparative Example 9, the inorganic powder synthesized in Production Example 8 and α-quartz (amorphous, average particle size 5.6 μm,
Comparative example -
10 shows the production example - the inorganic powder synthesized in 13 and the production example -
Table 8 shows the measurement results when the inorganic powder synthesized in step 20 was used as the inorganic powder. As a result, in Examples 19 to 25, the viscosity of the paste was not high despite the high blending ratio of inorganic powder. Moreover, the transparency of the paste could be adjusted to be lower than the transparency after polymerization without sacrificing the transparency, mechanical properties, and surface smoothness of the cured product. On the other hand, in Comparative Example 9, the hardened body using α-quartz as the inorganic powder with a particle size larger than 3 μm had a large surface roughness. In Comparative Example 10, the particle size was 0.1 μm.
The cured product using an inorganic powder with a larger difference in refractive index from the polymer had a transparency lower than 0.9. Comparative Example 11 A paste consisting of 100 parts by weight of the vinyl monomer mixture (C) shown in Table 7, 100 parts by weight of the inorganic powder of Production Example-13, and 130 parts of the inorganic powder of Production Example-19 was prepared as Example 19. It was prepared in the same manner and various physical properties were measured. The results are also listed in Table 8.

【表】【table】

【表】【table】

【表】 実施例 26 Bis−GMA29重量部、TEGDMA71重量部、重
量部を撹拌混合し、均一なビニルモノマー混合液
とした。このモノマー混合液の屈折率は1.486で
あり、またこれを重合して得られる重合体の屈折
率は1.525であつた。 次にこのビニルモノマー混合液40重量部、
BPO0.8重量部、BHT0.04重量部および製造例−
9の無機粉体60重量部をメノウ乳鉢で十分に練和
してペーストを調製した(このペーストをペース
トBと称する)。 一方、上記のビニルモノマー混合液40重量部、
DEPT0.6重量部、BHT0.008重量部および上記の
無機粉体60重量部をペーストBと同様に乳鉢を用
いてペーストを調製した(このペーストをペース
トAと称する)。 ペーストAとペーストBを練和紙に等量採り、
減圧下で、両者を練和することにより、諸物性測
定用の試験片を作製した。 物性測定の結果は、ブリネル表面硬度が53、圧
縮強度が4.010、引張強度が525、歯ブラシ摩耗深
さが5.0μm、硬化体の透明度が0.96であつた。尚、
重合前の組成物の透明度は0.84であつた。 実施例 27 実施例−21で調製したペースト(B)を諸物性測定
用の割型あるいはモールドに充填した後、窒素加
圧4Kg/cm2と温度90℃の条件下で重合させ、硬化
体を得た。 測定した硬化体の物性値は、ブリネル表面硬度
53、圧縮強度4500Kg/cm2、引張強度620Kg/cm2
歯ブラシ摩耗深さ3.0μm、透明度0.95、表面粗さ
0.3μmであつた。尚、重合前の組成物の透明度は
0.85であつた。 実施例 28〜29 実施例−15において表9に示した無機粉体とビ
ニルモノマー混合物の配合割合とした以外は全
て、実施例−13と同様な方法で、ペーストを調製
し、諸物性を測定した。その結果を表9に併記し
た。 比較例 12〜13 実施例−13−3において表10に示した無機粉体
とビニルモノマー混合物の配合割合とした以外は
全て、実施例−13と同様な方法で、ペーストを調
製し、諸物性を測定した。その結果を表10に併記
した。
[Table] Example 26 29 parts by weight of Bis-GMA, 71 parts by weight of TEGDMA, and 71 parts by weight were stirred and mixed to obtain a uniform vinyl monomer mixture. The refractive index of this monomer mixture was 1.486, and the refractive index of the polymer obtained by polymerizing it was 1.525. Next, 40 parts by weight of this vinyl monomer mixture,
BPO0.8 parts by weight, BHT0.04 parts by weight and manufacturing example-
A paste was prepared by thoroughly kneading 60 parts by weight of the inorganic powder No. 9 in an agate mortar (this paste is referred to as paste B). On the other hand, 40 parts by weight of the above vinyl monomer mixture,
A paste was prepared from 0.6 parts by weight of DEPT, 0.008 parts by weight of BHT, and 60 parts by weight of the above-mentioned inorganic powder using a mortar in the same manner as Paste B (this paste is referred to as Paste A). Take equal amounts of paste A and paste B on kneaded paper,
By kneading both under reduced pressure, test pieces for measuring various physical properties were prepared. As for the results of physical property measurements, the Brinell surface hardness was 53, the compressive strength was 4.010, the tensile strength was 525, the toothbrush wear depth was 5.0 μm, and the transparency of the cured product was 0.96. still,
The transparency of the composition before polymerization was 0.84. Example 27 After filling the paste (B) prepared in Example 21 into a split die or mold for measuring various physical properties, it was polymerized under nitrogen pressure of 4 kg/cm 2 and temperature of 90°C to form a cured product. Obtained. The measured physical properties of the cured product are Brinell surface hardness
53, compressive strength 4500Kg/cm 2 , tensile strength 620Kg/cm 2 ,
Toothbrush wear depth 3.0μm, transparency 0.95, surface roughness
It was 0.3 μm. Furthermore, the transparency of the composition before polymerization is
It was 0.85. Examples 28 to 29 Pastes were prepared in the same manner as in Example 13, except that the proportions of the inorganic powder and vinyl monomer mixture shown in Table 9 in Example 15 were used, and various physical properties were measured. did. The results are also listed in Table 9. Comparative Examples 12-13 A paste was prepared in the same manner as in Example-13, except that the blending ratio of the inorganic powder and vinyl monomer mixture shown in Table 10 was used in Example-13-3, and various physical properties were determined. was measured. The results are also listed in Table 10.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 (a) 重合可能なビニルモノマー100重量部、
及び (b) 平均粒径が0.07μm以上、0.1μm未満であり、
且つ屈折率(X)が式 Y−10-7.3・d-5.0≦X≦Y+10-7.3・d-5.0 (ただし、Yは(a)のビニルモノマーを重合して
得られる重合体の屈折率、dは平均粒径(単位
はμm)を示す) の範囲にある無機粉体100〜240重量部よりなる重
合性組成物。 2 (a) 重合可能なビニルモノマー100重量部、 (b) 平均粒径が0.07μm以上、0.1μm未満であり、
且つ屈折率(X)が式 Y−10-7.3・d-5.0≦X≦Y+10-7.3・d-5.0 (ただし、Yは(a)のビニルモノマーを重合して
得られる重合体の屈折率、dは平均粒径(単位
はμm)を示す) の範囲にある無機粉体100〜240重量部及び (c) 平均粒径が0.1〜3μmであり、且つ屈折率
(X′)が式 Y−0.005≦X′≦Y+0.005 (ただし、Yは(a)のビニルモノマーを重合して
得られる重合体の屈折率を示す) の範囲にある無機粉体10〜120重量部よりなる重
合性組成物。
[Scope of Claims] 1 (a) 100 parts by weight of a polymerizable vinyl monomer;
and (b) the average particle size is 0.07 μm or more and less than 0.1 μm,
And the refractive index (X) is expressed by the formula Y-10 -7.3・d -5.0 ≦X≦Y+10 -7.3・d -5.0 (where, Y is the refractive index of the polymer obtained by polymerizing the vinyl monomer of (a), A polymerizable composition comprising 100 to 240 parts by weight of an inorganic powder having an average particle diameter (in μm). 2 (a) 100 parts by weight of a polymerizable vinyl monomer; (b) an average particle size of 0.07 μm or more and less than 0.1 μm;
And the refractive index (X) is expressed by the formula Y-10 -7.3・d -5.0 ≦X≦Y+10 -7.3・d -5.0 (where, Y is the refractive index of the polymer obtained by polymerizing the vinyl monomer of (a), (c) 100 to 240 parts by weight of inorganic powder having an average particle size (unit: μm), and (c) an inorganic powder having an average particle size of 0.1 to 3 μm, and a refractive index (X′) of A polymerizable composition consisting of 10 to 120 parts by weight of inorganic powder in the range of 0.005≦X′≦Y+0.005 (where, Y indicates the refractive index of the polymer obtained by polymerizing the vinyl monomer of (a)). thing.
JP2972187A 1987-02-13 1987-02-13 Polymerizable composition Granted JPS63199204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2972187A JPS63199204A (en) 1987-02-13 1987-02-13 Polymerizable composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2972187A JPS63199204A (en) 1987-02-13 1987-02-13 Polymerizable composition

Publications (2)

Publication Number Publication Date
JPS63199204A JPS63199204A (en) 1988-08-17
JPH0412883B2 true JPH0412883B2 (en) 1992-03-06

Family

ID=12283971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2972187A Granted JPS63199204A (en) 1987-02-13 1987-02-13 Polymerizable composition

Country Status (1)

Country Link
JP (1) JPS63199204A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6262142B1 (en) 1997-04-02 2001-07-17 Dentsply Research & Development Translucent wear resistant dental enamel material and method
EP1017354B1 (en) * 1998-07-20 2005-07-06 Dentsply International, Inc. Translucent wear resistant dental enamel material and method
US6232367B1 (en) * 1999-10-07 2001-05-15 Kerr Corporation Opalescent fillers for dental restorative composites
DE102004017124B4 (en) * 2004-04-07 2008-07-10 Ivoclar Vivadent Ag Hardenable dental materials with adjustable translucency and high opalescence
JP5584877B2 (en) * 2009-10-29 2014-09-10 小川 一文 Fine particle paste, method for producing the same, fine particle film using the same, method for producing the same, solar cell, photothermal sensor, TFT array, touch panel using the same
JP5760833B2 (en) * 2011-08-10 2015-08-12 日立化成株式会社 Photocurable resin composition and optical member using the same

Also Published As

Publication number Publication date
JPS63199204A (en) 1988-08-17

Similar Documents

Publication Publication Date Title
US5886064A (en) Fine-grained polymerizable compositions flowable under pressure or shear stress
US5883153A (en) Fluoride ion sustained release preformed glass ionomer filler and dental compositions containing the same
CN102327194B (en) Dental fillers, methods, compositions including a caseinate
EP1790323B1 (en) Dental polymerizable core build-up material of separately packed type
EP1878418B1 (en) Dental Cement
EP3366269A1 (en) Curable composition and dental filling restorative material
JP2000513339A (en) Glass ionomer cement
JPH0447681B2 (en)
EP0694298B1 (en) Preformed glass ionomer filler which can sustainedly release fluoride ion and dental composition containing the same
JP2001302429A (en) Composite composition for dental use containing aggregate
JPH09509392A (en) Paste: Paste glass ionomer cement system and method
JP2007126417A (en) Curable composition for dental use
JP5898218B2 (en) Dental composition
JPH0959119A (en) Inorganic and organic composite filler for dentistry
JPS6115807A (en) Photocurable dental composition for crown and bridge
JPH0651735B2 (en) Curable composition
JPH0412883B2 (en)
JPH0448801B2 (en)
US20200246118A1 (en) Dental composite material and mill blanks consisting of said composite material
JP7075635B2 (en) Dental curable composition
JPH0692444B2 (en) Curable composition
JP2523993B2 (en) Method for manufacturing dental composite material
JPS6011505A (en) Polymerizable composite composition
JP2002029909A (en) Composition for dentistry
JPH07101819A (en) Dental resin composition having sustained releasability of fluorine ion

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term